import importlib import numpy from numpy.linalg import norm from matplotlib import pyplot, colors import logging import meanas from meanas import fdtd from meanas.fdmath import vec, unvec from meanas.fdfd import waveguide_3d, functional, scpml, operators from meanas.fdfd.solvers import generic as generic_solver import gridlock logging.basicConfig(level=logging.DEBUG) logging.getLogger('matplotlib').setLevel(logging.WARNING) __author__ = 'Jan Petykiewicz' def test1(solver=generic_solver): dx = 40 # discretization (nm/cell) pml_thickness = 10 # (number of cells) wl = 1550 # Excitation wavelength omega = 2 * numpy.pi / wl # Device design parameters w = 600 th = 220 center = [0, 0, 0] # refractive indices n_wg = numpy.sqrt(12.6) # ~Si n_air = 1.0 # air # Half-dimensions of the simulation grid xyz_max = numpy.array([0.8, 0.9, 0.6]) * 1000 + (pml_thickness + 2) * dx # Coordinates of the edges of the cells. half_edge_coords = [numpy.arange(dx/2, m + dx/2, step=dx) for m in xyz_max] edge_coords = [numpy.hstack((-h[::-1], h)) for h in half_edge_coords] # #### Create the grid and draw the device #### grid = gridlock.Grid(edge_coords) epsilon = grid.allocate(n_air**2, dtype=numpy.float32) grid.draw_cuboid(epsilon, x=dict(center=0, span=8e3), y=dict(center=0, span=w), z=dict(center=0, span=th), foreground=n_wg**2) dxes = [grid.dxyz, grid.autoshifted_dxyz()] for a in (0, 1, 2): for p in (-1, 1): dxes = scpml.stretch_with_scpml(dxes,omega=omega, axis=a, polarity=p, thickness=pml_thickness) half_dims = numpy.array([10, 20, 15]) * dx dims = [-half_dims, half_dims] dims[1][0] = dims[0][0] ind_dims = (grid.pos2ind(dims[0], which_shifts=None).astype(int), grid.pos2ind(dims[1], which_shifts=None).astype(int)) src_axis = 0 wg_args = { 'slices': [slice(i, f+1) for i, f in zip(*ind_dims)], 'dxes': dxes, 'axis': src_axis, 'polarity': +1, } wg_results = waveguide_3d.solve_mode(mode_number=0, omega=omega, epsilon=epsilon, **wg_args) J = waveguide_3d.compute_source(E=wg_results['E'], wavenumber=wg_results['wavenumber'], omega=omega, epsilon=epsilon, **wg_args) e_overlap = waveguide_3d.compute_overlap_e(E=wg_results['E'], wavenumber=wg_results['wavenumber'], **wg_args) pecg = numpy.zeros_like(epsilon) # pecg.draw_cuboid(pecg, center=[700, 0, 0], dimensions=[80, 1e8, 1e8], eps=1) # pecg.visualize_isosurface(pecg) pmcg = numpy.zeros_like(epsilon) # grid.draw_cuboid(pmcg, center=[700, 0, 0], dimensions=[80, 1e8, 1e8], eps=1) # grid.visualize_isosurface(pmcg) grid.visualize_slice(J.imag, plane=dict(y=6*dx), which_shifts=1, pcolormesh_args=dict(norm=colors.CenteredNorm(), cmap='bwr')) fig, ax = pyplot.subplots() ax.pcolormesh((numpy.abs(J).sum(axis=2).sum(axis=0) > 0).astype(float).T, cmap='hot') pyplot.show(block=True) # # Solve! # sim_args = { 'omega': omega, 'dxes': dxes, 'epsilon': vec(epsilon), 'pec': vec(pecg), 'pmc': vec(pmcg), } x = solver(J=vec(J), **sim_args) b = -1j * omega * vec(J) A = operators.e_full(**sim_args).tocsr() print('Norm of the residual is ', norm(A @ x - b)) E = unvec(x, grid.shape) # # Plot results # center = grid.pos2ind([0, 0, 0], None).astype(int) fig, axes = pyplot.subplots(2, 2) grid.visualize_slice(E.real, plane=dict(x=0), which_shifts=1, ax=axes[0, 0], finalize=False, pcolormesh_args=dict(norm=colors.CenteredNorm(), cmap='bwr')) grid.visualize_slice(E.real, plane=dict(z=0), which_shifts=1, ax=axes[0, 1], finalize=False, pcolormesh_args=dict(norm=colors.CenteredNorm(), cmap='bwr')) # pcolor(axes[0, 0], numpy.real(E[1][center[0], :, :]).T) # pcolor(axes[0, 1], numpy.real(E[1][:, :, center[2]]).T) axes[1, 0].plot(numpy.log10(numpy.abs(E[1][:, center[1], center[2]]) + 1e-10)) axes[1, 0].grid(alpha=0.6) axes[1, 0].set_ylabel('log10 of field') def poyntings(E): H = functional.e2h(omega, dxes)(E) poynting = fdtd.poynting(e=E, h=H.conj(), dxes=dxes) cross1 = operators.poynting_e_cross(vec(E), dxes) @ vec(H).conj() cross2 = operators.poynting_h_cross(vec(H), dxes) @ vec(E).conj() * -1 s1 = 0.5 * unvec(numpy.real(cross1), grid.shape) s2 = 0.5 * unvec(numpy.real(cross2), grid.shape) s0 = 0.5 * poynting.real # s2 = poynting.imag return s0, s1, s2 s0x, s1x, s2x = poyntings(E) ax = axes[1, 1] ax.plot(s0x[0].sum(axis=2).sum(axis=1), label='s0', marker='.') ax.plot(s1x[0].sum(axis=2).sum(axis=1), label='s1', marker='.') ax.plot(s2x[0].sum(axis=2).sum(axis=1), label='s2', marker='.') ax.plot(E[1][:, center[1], center[2]].real.T, label='Ey', marker='x') ax.grid(alpha=0.6) ax.legend() p_in = (-E * J.conj()).sum() / 2 * (dx * dx * dx) print(f'{p_in=}') q = [] for i in range(-5, 30): e_ovl_rolled = numpy.roll(e_overlap, i, axis=1) q += [numpy.abs(vec(E).conj() @ vec(e_ovl_rolled))] fig, ax = pyplot.subplots() ax.plot(q, marker='.') ax.grid(alpha=0.6) ax.set_title('Overlap with mode') print('Average overlap with mode:', sum(q[8:32])/len(q[8:32])) pyplot.show(block=True) def module_available(name): return importlib.util.find_spec(name) is not None if __name__ == '__main__': if module_available('opencl_fdfd'): from opencl_fdfd import cg_solver as opencl_solver test1(opencl_solver) # from opencl_fdfd.csr import fdfd_cg_solver as opencl_csr_solver # test1(opencl_csr_solver) # elif module_available('magma_fdfd'): # from magma_fdfd import solver as magma_solver # test1(magma_solver) else: test1()