from typing import Optional, Union import numpy # type: ignore from ..fdmath import dx_lists_t, fdfield_t from ..fdmath.functional import deriv_back # TODO documentation def poynting(e: fdfield_t, h: fdfield_t, dxes: Optional[dx_lists_t] = None, ) -> fdfield_t: """ Calculate the poynting vector `S` ($S$). This is the energy transfer rate (amount of energy `U` per `dt` transferred between adjacent cells) in each direction that happens during the half-step bounded by the two provided fields. The returned vector field `S` is the energy flow across +x, +y, and +z boundaries of the corresponding `U` cell. For example, ``` mx = numpy.roll(mask, -1, axis=0) my = numpy.roll(mask, -1, axis=1) mz = numpy.roll(mask, -1, axis=2) u_hstep = fdtd.energy_hstep(e0=es[ii - 1], h1=hs[ii], e2=es[ii], **args) u_estep = fdtd.energy_estep(h0=hs[ii], e1=es[ii], h2=hs[ii + 1], **args) delta_j_B = fdtd.delta_energy_j(j0=js[ii], e1=es[ii], dxes=dxes) du_half_h2e = u_estep - u_hstep - delta_j_B s_h2e = -fdtd.poynting(e=es[ii], h=hs[ii], dxes=dxes) * dt planes = [s_h2e[0, mask].sum(), -s_h2e[0, mx].sum(), s_h2e[1, mask].sum(), -s_h2e[1, my].sum(), s_h2e[2, mask].sum(), -s_h2e[2, mz].sum()] assert_close(sum(planes), du_half_h2e[mask]) ``` (see `meanas.tests.test_fdtd.test_poynting_planes`) The full relationship is $$ \\begin{aligned} (U_{l+\\frac{1}{2}} - U_l) / \\Delta_t &= -\\hat{\\nabla} \\cdot \\tilde{S}_{l, l + \\frac{1}{2}} \\ \\ - \\hat{H}_{l+\\frac{1}{2}} \\cdot \\hat{M}_l \\ \\ - \\tilde{E}_l \\cdot \\tilde{J}_{l+\\frac{1}{2}} \\\\ (U_l - U_{l-\\frac{1}{2}}) / \\Delta_t &= -\\hat{\\nabla} \\cdot \\tilde{S}_{l, l - \\frac{1}{2}} \\ \\ - \\hat{H}_{l-\\frac{1}{2}} \\cdot \\hat{M}_l \\ \\ - \\tilde{E}_l \\cdot \\tilde{J}_{l-\\frac{1}{2}} \\\\ \\end{aligned} $$ These equalities are exact and should practically hold to within numerical precision. No time- or spatial-averaging is necessary. (See `meanas.fdtd` docs for derivation.) Args: e: E-field h: H-field (one half-timestep before or after `e`) dxes: Grid description; see `meanas.fdmath`. Returns: s: Vector field. Components indicate the energy transfer rate from the corresponding energy cell into its +x, +y, and +z neighbors during the half-step from the time of the earlier input field until the time of later input field. """ if dxes is None: dxes = tuple(tuple(numpy.ones(1) for _ in range(3)) for _ in range(2)) ex = e[0] * dxes[0][0][:, None, None] ey = e[1] * dxes[0][1][None, :, None] ez = e[2] * dxes[0][2][None, None, :] hx = h[0] * dxes[1][0][:, None, None] hy = h[1] * dxes[1][1][None, :, None] hz = h[2] * dxes[1][2][None, None, :] s = numpy.empty_like(e) s[0] = numpy.roll(ey, -1, axis=0) * hz - numpy.roll(ez, -1, axis=0) * hy s[1] = numpy.roll(ez, -1, axis=1) * hx - numpy.roll(ex, -1, axis=1) * hz s[2] = numpy.roll(ex, -1, axis=2) * hy - numpy.roll(ey, -1, axis=2) * hx return s def poynting_divergence(s: Optional[fdfield_t] = None, *, e: Optional[fdfield_t] = None, h: Optional[fdfield_t] = None, dxes: Optional[dx_lists_t] = None, ) -> fdfield_t: """ Calculate the divergence of the poynting vector. This is the net energy flow for each cell, i.e. the change in energy `U` per `dt` caused by transfer of energy to nearby cells (rather than absorption/emission by currents `J` or `M`). See `poynting` and `meanas.fdtd` for more details. Args: s: Poynting vector, as calculated with `poynting`. Optional; caller can provide `e` and `h` instead. e: E-field (optional; need either `s` or both `e` and `h`) h: H-field (optional; need either `s` or both `e` and `h`) dxes: Grid description; see `meanas.fdmath`. Returns: ds: Divergence of the poynting vector. Entries indicate the net energy flow out of the corresponding energy cell. """ if s is None: assert(e is not None) assert(h is not None) assert(dxes is not None) s = poynting(e, h, dxes=dxes) Dx, Dy, Dz = deriv_back() ds = Dx(s[0]) + Dy(s[1]) + Dz(s[2]) return ds def energy_hstep(e0: fdfield_t, h1: fdfield_t, e2: fdfield_t, epsilon: Optional[fdfield_t] = None, mu: Optional[fdfield_t] = None, dxes: Optional[dx_lists_t] = None, ) -> fdfield_t: """ Calculate energy `U` at the time of the provided H-field `h1`. TODO: Figure out what this means spatially. Args: e0: E-field one half-timestep before the energy. h1: H-field (at the same timestep as the energy). e2: E-field one half-timestep after the energy. epsilon: Dielectric constant distribution. mu: Magnetic permeability distribution. dxes: Grid description; see `meanas.fdmath`. Returns: Energy, at the time of the H-field `h1`. """ u = dxmul(e0 * e2, h1 * h1, epsilon, mu, dxes) return u def energy_estep(h0: fdfield_t, e1: fdfield_t, h2: fdfield_t, epsilon: Optional[fdfield_t] = None, mu: Optional[fdfield_t] = None, dxes: Optional[dx_lists_t] = None, ) -> fdfield_t: """ Calculate energy `U` at the time of the provided E-field `e1`. TODO: Figure out what this means spatially. Args: h0: H-field one half-timestep before the energy. e1: E-field (at the same timestep as the energy). h2: H-field one half-timestep after the energy. epsilon: Dielectric constant distribution. mu: Magnetic permeability distribution. dxes: Grid description; see `meanas.fdmath`. Returns: Energy, at the time of the E-field `e1`. """ u = dxmul(e1 * e1, h0 * h2, epsilon, mu, dxes) return u def delta_energy_h2e(dt: float, e0: fdfield_t, h1: fdfield_t, e2: fdfield_t, h3: fdfield_t, epsilon: Optional[fdfield_t] = None, mu: Optional[fdfield_t] = None, dxes: Optional[dx_lists_t] = None, ) -> fdfield_t: """ Change in energy during the half-step from `h1` to `e2`. This is just from (e2 * e2 + h3 * h1) - (h1 * h1 + e0 * e2) Args: e0: E-field one half-timestep before the start of the energy delta. h1: H-field at the start of the energy delta. e2: E-field at the end of the energy delta (one half-timestep after `h1`). h3: H-field one half-timestep after the end of the energy delta. epsilon: Dielectric constant distribution. mu: Magnetic permeability distribution. dxes: Grid description; see `meanas.fdmath`. Returns: Change in energy from the time of `h1` to the time of `e2`. """ de = e2 * (e2 - e0) / dt dh = h1 * (h3 - h1) / dt du = dxmul(de, dh, epsilon, mu, dxes) return du def delta_energy_e2h(dt: float, h0: fdfield_t, e1: fdfield_t, h2: fdfield_t, e3: fdfield_t, epsilon: Optional[fdfield_t] = None, mu: Optional[fdfield_t] = None, dxes: Optional[dx_lists_t] = None, ) -> fdfield_t: """ Change in energy during the half-step from `e1` to `h2`. This is just from (h2 * h2 + e3 * e1) - (e1 * e1 + h0 * h2) Args: h0: E-field one half-timestep before the start of the energy delta. e1: H-field at the start of the energy delta. h2: E-field at the end of the energy delta (one half-timestep after `e1`). e3: H-field one half-timestep after the end of the energy delta. epsilon: Dielectric constant distribution. mu: Magnetic permeability distribution. dxes: Grid description; see `meanas.fdmath`. Returns: Change in energy from the time of `e1` to the time of `h2`. """ de = e1 * (e3 - e1) / dt dh = h2 * (h2 - h0) / dt du = dxmul(de, dh, epsilon, mu, dxes) return du def delta_energy_j(j0: fdfield_t, e1: fdfield_t, dxes: Optional[dx_lists_t] = None, ) -> fdfield_t: """ Calculate Note that each value of $J$ contributes to the energy twice (i.e. once per field update) despite only causing the value of $E$ to change once (same for $M$ and $H$). """ if dxes is None: dxes = tuple(tuple(numpy.ones(1) for _ in range(3)) for _ in range(2)) du = ((j0 * e1).sum(axis=0) * dxes[0][0][:, None, None] * dxes[0][1][None, :, None] * dxes[0][2][None, None, :]) return du def dxmul(ee: fdfield_t, hh: fdfield_t, epsilon: Optional[Union[fdfield_t, float]] = None, mu: Optional[Union[fdfield_t, float]] = None, dxes: Optional[dx_lists_t] = None ) -> fdfield_t: if epsilon is None: epsilon = 1 if mu is None: mu = 1 if dxes is None: dxes = tuple(tuple(numpy.ones(1) for _ in range(3)) for _ in range(2)) result = ((ee * epsilon).sum(axis=0) * dxes[0][0][:, None, None] * dxes[0][1][None, :, None] * dxes[0][2][None, None, :] + (hh * mu).sum(axis=0) * dxes[1][0][:, None, None] * dxes[1][1][None, :, None] * dxes[1][2][None, None, :]) return result