from typing import Dict, List import numpy import scipy.sparse as sparse from .. import vec, unvec, dx_lists_t, vfield_t, field_t from . import operators, waveguide, functional from ..eigensolvers import signed_eigensolve, rayleigh_quotient_iteration def solve_waveguide_mode_2d(mode_number: int, omega: complex, dxes: dx_lists_t, epsilon: vfield_t, mu: vfield_t = None, mode_margin: int = 2, ) -> Dict[str, complex or field_t]: """ Given a 2d region, attempts to solve for the eigenmode with the specified mode number. :param mode_number: Number of the mode, 0-indexed. :param omega: Angular frequency of the simulation :param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types :param epsilon: Dielectric constant :param mu: Magnetic permeability (default 1 everywhere) :param mode_margin: The eigensolver will actually solve for (mode_number + mode_margin) modes, but only return the target mode. Increasing this value can improve the solver's ability to find the correct mode. Default 2. :return: {'E': List[numpy.ndarray], 'H': List[numpy.ndarray], 'wavenumber': complex} """ ''' Solve for the largest-magnitude eigenvalue of the real operator ''' dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes] A_r = waveguide.operator_e(numpy.real(omega), dxes_real, numpy.real(epsilon), numpy.real(mu)) eigvals, eigvecs = signed_eigensolve(A_r, mode_number + mode_margin) exy = eigvecs[:, -(mode_number + 1)] ''' Now solve for the eigenvector of the full operator, using the real operator's eigenvector as an initial guess for Rayleigh quotient iteration. ''' A = waveguide.operator_e(omega, dxes, epsilon, mu) eigval, exy = rayleigh_quotient_iteration(A, exy) # Calculate the wave-vector (force the real part to be positive) wavenumber = numpy.sqrt(eigval) wavenumber *= numpy.sign(numpy.real(wavenumber)) e, h = waveguide.normalized_fields_e(exy, wavenumber, omega, dxes, epsilon, mu) shape = [d.size for d in dxes[0]] fields = { 'wavenumber': wavenumber, 'E': unvec(e, shape), 'H': unvec(h, shape), } return fields def solve_waveguide_mode(mode_number: int, omega: complex, dxes: dx_lists_t, axis: int, polarity: int, slices: List[slice], epsilon: field_t, mu: field_t = None, ) -> Dict[str, complex or numpy.ndarray]: """ Given a 3D grid, selects a slice from the grid and attempts to solve for an eigenmode propagating through that slice. :param mode_number: Number of the mode, 0-indexed :param omega: Angular frequency of the simulation :param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types :param axis: Propagation axis (0=x, 1=y, 2=z) :param polarity: Propagation direction (+1 for +ve, -1 for -ve) :param slices: epsilon[tuple(slices)] is used to select the portion of the grid to use as the waveguide cross-section. slices[axis] should select only one :param epsilon: Dielectric constant :param mu: Magnetic permeability (default 1 everywhere) :return: {'E': List[numpy.ndarray], 'H': List[numpy.ndarray], 'wavenumber': complex} """ if mu is None: mu = numpy.ones_like(epsilon) slices = tuple(slices) ''' Solve the 2D problem in the specified plane ''' # Define rotation to set z as propagation direction order = numpy.roll(range(3), 2 - axis) reverse_order = numpy.roll(range(3), axis - 2) # Find dx in propagation direction dxab_forward = numpy.array([dx[order[2]][slices[order[2]]] for dx in dxes]) dx_prop = 0.5 * sum(dxab_forward) # Reduce to 2D and solve the 2D problem args_2d = { 'dxes': [[dx[i][slices[i]] for i in order[:2]] for dx in dxes], 'epsilon': vec([epsilon[i][slices].transpose(order) for i in order]), 'mu': vec([mu[i][slices].transpose(order) for i in order]), } fields_2d = solve_waveguide_mode_2d(mode_number, omega=omega, **args_2d) ''' Apply corrections and expand to 3D ''' # Correct wavenumber to account for numerical dispersion. fields_2d['wavenumber'] = 2/dx_prop * numpy.arcsin(fields_2d['wavenumber'] * dx_prop/2) # Adjust for propagation direction fields_2d['H'] *= polarity # Apply phase shift to H-field fields_2d['H'] *= numpy.exp(-polarity * 1j * 0.5 * fields_2d['wavenumber'] * dx_prop) # Expand E, H to full epsilon space we were given E = numpy.zeros_like(epsilon, dtype=complex) H = numpy.zeros_like(epsilon, dtype=complex) for a, o in enumerate(reverse_order): E[(a, *slices)] = fields_2d['E'][o][:, :, None].transpose(reverse_order) H[(a, *slices)] = fields_2d['H'][o][:, :, None].transpose(reverse_order) results = { 'wavenumber': fields_2d['wavenumber'], 'H': H, 'E': E, } return results def compute_source(E: field_t, H: field_t, wavenumber: complex, omega: complex, dxes: dx_lists_t, axis: int, polarity: int, slices: List[slice], mu: field_t = None, ) -> field_t: """ Given an eigenmode obtained by solve_waveguide_mode, returns the current source distribution necessary to position a unidirectional source at the slice location. :param E: E-field of the mode :param H: H-field of the mode (advanced by half of a Yee cell from E) :param wavenumber: Wavenumber of the mode :param omega: Angular frequency of the simulation :param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types :param axis: Propagation axis (0=x, 1=y, 2=z) :param polarity: Propagation direction (+1 for +ve, -1 for -ve) :param slices: epsilon[tuple(slices)] is used to select the portion of the grid to use as the waveguide cross-section. slices[axis] should select only one :param mu: Magnetic permeability (default 1 everywhere) :return: J distribution for the unidirectional source """ J = numpy.zeros_like(E, dtype=complex) M = numpy.zeros_like(E, dtype=complex) src_order = numpy.roll(range(3), -axis) # exp_iphi = numpy.exp(1j * polarity * wavenumber * dxes[1][axis][slices[axis]]) # rollby = -1 if polarity > 0 else 0 # J[src_order[1]] = +exp_iphi * H[src_order[2]] * polarity / dxes[1][axis][slices[axis]] # J[src_order[2]] = -exp_iphi * H[src_order[1]] * polarity / dxes[1][axis][slices[axis]] # M[src_order[1]] = +numpy.roll(E[src_order[2]], rollby, axis=axis) / dxes[0][axis][slices[axis]] # M[src_order[2]] = -numpy.roll(E[src_order[1]], rollby, axis=axis) / dxes[0][axis][slices[axis]] s2 = [slice(None), slice(None), slice(None)] s2[axis] = slice(slices[axis].start, slices[axis].stop) s2 = (src_order, *s2) rollby = 1 if polarity > 0 else 0 exp_iphi = numpy.exp(-1j * polarity * wavenumber * dxes[1][axis][slices[axis]]) J[s2] = numpy.roll(functional.curl_h(dxes=dxes)(H.conj()), -rollby, axis=axis+1)[s2] * polarity * exp_iphi M[s2] = -numpy.roll(functional.curl_e(dxes=dxes)(E.conj()), rollby, axis=axis+1)[s2] m2j = functional.m2j(omega, dxes, mu) Jm = m2j(M) Jtot = J + Jm return Jtot def compute_overlap_e(E: field_t, H: field_t, wavenumber: complex, omega: complex, dxes: dx_lists_t, axis: int, polarity: int, slices: List[slice], mu: field_t = None, ) -> field_t: """ Given an eigenmode obtained by solve_waveguide_mode, calculates overlap_e for the mode orthogonality relation Integrate(((E x H_mode) + (E_mode x H)) dot dn) [assumes reflection symmetry]. overlap_e makes use of the e2h operator to collapse the above expression into (vec(E) @ vec(overlap_e)), allowing for simple calculation of the mode overlap. :param E: E-field of the mode :param H: H-field of the mode (advanced by half of a Yee cell from E) :param wavenumber: Wavenumber of the mode :param omega: Angular frequency of the simulation :param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types :param axis: Propagation axis (0=x, 1=y, 2=z) :param polarity: Propagation direction (+1 for +ve, -1 for -ve) :param slices: epsilon[tuple(slices)] is used to select the portion of the grid to use as the waveguide cross-section. slices[axis] should select only one :param mu: Magnetic permeability (default 1 everywhere) :return: overlap_e for calculating the mode overlap """ slices = tuple(slices) cross_plane = [slice(None)] * 4 cross_plane[axis + 1] = slices[axis] cross_plane = tuple(cross_plane) # Determine phase factors for parallel slices a_shape = numpy.roll([-1, 1, 1], axis) a_E = numpy.real(dxes[0][axis]).cumsum() a_H = numpy.real(dxes[1][axis]).cumsum() iphi = -polarity * 1j * wavenumber phase_E = numpy.exp(iphi * (a_E - a_E[slices[axis]])).reshape(a_shape) phase_H = numpy.exp(iphi * (a_H - a_H[slices[axis]])).reshape(a_shape) # Expand our slice to the entire grid using the calculated phase factors Ee = phase_E * E[cross_plane] He = phase_H * H[cross_plane] # Write out the operator product for the mode orthogonality integral domain = numpy.zeros_like(E[0], dtype=int) domain[slices] = 1 npts = E[0].size dn = numpy.zeros(npts * 3, dtype=int) dn[0:npts] = 1 dn = numpy.roll(dn, npts * axis) e2h = operators.e2h(omega, dxes, mu) ds = sparse.diags(vec([domain]*3)) h_cross_ = operators.poynting_h_cross(vec(He), dxes) e_cross_ = operators.poynting_e_cross(vec(Ee), dxes) overlap_e = dn @ ds @ (-h_cross_ + e_cross_ @ e2h) # Normalize dx_forward = dxes[0][axis][slices[axis]] norm_factor = numpy.abs(overlap_e @ vec(Ee)) overlap_e /= norm_factor * dx_forward return unvec(overlap_e, E[0].shape) def solve_waveguide_mode_cylindrical(mode_number: int, omega: complex, dxes: dx_lists_t, epsilon: vfield_t, r0: float, ) -> Dict[str, complex or field_t]: """ TODO: fixup Given a 2d (r, y) slice of epsilon, attempts to solve for the eigenmode of the bent waveguide with the specified mode number. :param mode_number: Number of the mode, 0-indexed :param omega: Angular frequency of the simulation :param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types. The first coordinate is assumed to be r, the second is y. :param epsilon: Dielectric constant :param r0: Radius of curvature for the simulation. This should be the minimum value of r within the simulation domain. :return: {'E': List[numpy.ndarray], 'H': List[numpy.ndarray], 'wavenumber': complex} """ ''' Solve for the largest-magnitude eigenvalue of the real operator ''' dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes] A_r = waveguide.cylindrical_operator(numpy.real(omega), dxes_real, numpy.real(epsilon), r0) eigvals, eigvecs = signed_eigensolve(A_r, mode_number + 3) v = eigvecs[:, -(mode_number+1)] ''' Now solve for the eigenvector of the full operator, using the real operator's eigenvector as an initial guess for Rayleigh quotient iteration. ''' A = waveguide.cylindrical_operator(omega, dxes, epsilon, r0) eigval, v = rayleigh_quotient_iteration(A, v) # Calculate the wave-vector (force the real part to be positive) wavenumber = numpy.sqrt(eigval) wavenumber *= numpy.sign(numpy.real(wavenumber)) # TODO: Perform correction on wavenumber to account for numerical dispersion. shape = [d.size for d in dxes[0]] v = numpy.hstack((v, numpy.zeros(shape[0] * shape[1]))) fields = { 'wavenumber': wavenumber, 'E': unvec(v, shape), # 'E': unvec(e, shape), # 'H': unvec(h, shape), } return fields def compute_source_q(E: field_t, H: field_t, wavenumber: complex, omega: complex, dxes: dx_lists_t, axis: int, polarity: int, slices: List[slice], mu: field_t = None, ) -> field_t: A1f = functional.curl_h(dxes) A2f = functional.curl_e(dxes) J = A1f(H) M = A2f(-E) m2j = functional.m2j(omega, dxes, mu) Jm = m2j(M) Jtot = J + Jm return Jtot, J, M def compute_source_e(QE: field_t, omega: complex, dxes: dx_lists_t, axis: int, polarity: int, slices: List[slice], epsilon: field_t, mu: field_t = None, ) -> field_t: """ Want AQE = -iwJ, where Q is mask and normally AE = -iwJ ## Want (AQ-QA) E = -iwJ, where Q is a mask ## If E is an eigenmode, AE = 0 so just AQE = -iwJ Really only need E in 4 cells along axis (0, 0, Emode1, Emode2), find AE (1 iteration), then use center 2 cells as src Maybe better to use (0, Emode1, Emode2, Emode3), find AE (1 iteration), then use left 2 cells as src? """ slices = tuple(slices) # Trim a cell from each end of the propagation axis slices_reduced = list(slices) for aa in range(3): if aa == axis: if polarity > 0: slices_reduced[axis] = slice(slices[axis].start, slices[axis].start+2) else: slices_reduced[axis] = slice(slices[axis].stop-2, slices[axis].stop) else: start = slices[aa].start stop = slices[aa].stop # if start is not None or stop is not None: # if start is None: # start = 1 # stop -= 1 # elif stop is None: # stop = E.shape[aa + 1] - 1 # start += 1 # else: # start += 1 # stop -= 1 # slices_reduced[aa] = slice(start, stop) slices_reduced = (slice(None), *slices_reduced) # Don't actually need to mask out E here since it needs to be pre-masked (QE) A = functional.e_full(omega, dxes, epsilon, mu) J4 = A(QE) / (-1j * omega) #J4 is 4-cell result of -iwJ = A QE J = numpy.zeros_like(J4) J[slices_reduced] = J4[slices_reduced] return J def compute_source_wg(E: field_t, wavenumber: complex, omega: complex, dxes: dx_lists_t, axis: int, polarity: int, slices: List[slice], epsilon: field_t, mu: field_t = None, ) -> field_t: slices = tuple(slices) Etgt, _slices2 = compute_overlap_ce(E=E, wavenumber=wavenumber, dxes=dxes, axis=axis, polarity=polarity, slices=slices) slices4 = list(slices) slices4[axis] = slice(slices[axis].start - 4 * polarity, slices[axis].start) slices4 = tuple(slices4) J = compute_source_e(QE=Etgt, omega=omega, dxes=dxes, axis=axis, polarity=polarity, slices=slices4, epsilon=epsilon, mu=mu) return J def compute_overlap_ce(E: field_t, wavenumber: complex, dxes: dx_lists_t, axis: int, polarity: int, slices: List[slice], ) -> field_t: slices = tuple(slices) Ee = expand_wgmode_e(E=E, wavenumber=wavenumber, dxes=dxes, axis=axis, polarity=polarity, slices=slices) start, stop = sorted((slices[axis].start, slices[axis].start - 2 * polarity)) slices2 = list(slices) slices2[axis] = slice(start, stop) slices2 = (slice(None), *slices2) Etgt = numpy.zeros_like(Ee) Etgt[slices2] = Ee[slices2] Etgt /= (Etgt.conj() * Etgt).sum() return Etgt, slices2 def expand_wgmode_e(E: field_t, wavenumber: complex, dxes: dx_lists_t, axis: int, polarity: int, slices: List[slice], ) -> field_t: slices = tuple(slices) # Determine phase factors for parallel slices a_shape = numpy.roll([1, -1, 1, 1], axis) a_E = numpy.real(dxes[0][axis]).cumsum() r_E = a_E - a_E[slices[axis]] iphi = polarity * 1j * wavenumber phase_E = numpy.exp(iphi * r_E).reshape(a_shape) # Expand our slice to the entire grid using the phase factors E_expanded = numpy.zeros_like(E) slices_exp = list(slices) slices_exp[axis] = slice(E.shape[axis + 1]) slices_exp = (slice(None), *slices_exp) slices_in = (slice(None), *slices) E_expanded[slices_exp] = phase_E * numpy.array(E)[slices_in] return E_expanded