import scipy import numpy from numpy.typing import ArrayLike, NDArray from numpy.linalg import pinv from numpy import sqrt, real, abs, pi def diag(twod): # numpy.diag() but makes a stack of diagonal matrices return numpy.einsum('ij,jk->ijk', twod, numpy.eye(twod.shape[-1], dtype=twod.dtype)) def s2z(s, zref): # G0_inv @ inv(I - S) @ (S Z0 + Z0*) @ G0 # Where Z0 is diag(zref) and G0 = diag(1/sqrt(abs(real(zref)))) nf = s.shape[-1] I = numpy.eye(nf)[None, :, :] zref = numpy.array(zref, copy=False) gref = 1 / sqrt(abs(zref.real)) z = diag(1 / gref) @ pinv(I - s) @ ( S @ diag(zref) + diag(zref).conj()) @ diag(gref) return z def change_of_zref( s, # (nf, np, np) zref_old, # (nf, np) zref_new, # (nf, np) ): # Change-of-Z0 to Z0' # S' = inv(A) @ (S - rho*) @ inv(I - rho @ S) @ A* # A = inv(G0') @ G0 @ inv(I - rho*) (diagonal) # rho = (Z0' - Z0) @ inv(Z0' + Z0) (diagonal) I = numpy.zeros_like(SL) numpy.einsum('...jj->...j', I)[...] = 1 zref_old = numpy.array(zref_old, copy=False) zref_new = numpy.array(zref_new, copy=False) g_old = 1 / sqrt(abs(zref_old.real)) r_new = sqrt(abs(zref_new.real)) rhov = (zref_new - zref_old) / (zref_new + zref_old) av = r_new * g_old / (1 - rhov.conj()) s_new = diag(1 / av) @ (s - diag(rhov.conj())) @ pinv(I[None, :] - diag(rhov) @ S) @ diag(av.conj()) return s_new def embedding( See, # (nf, ne, ne) Sei, # (nf, ne, ni) Sie, # (nf, ni, ne) Sii, # (nf, ni, ni) SL, # (nf, ni, ni) ): # Reveyrand, doi:10.1109/INMMIC.2018.8430023 I = numpy.zeros_like(SL) numpy.einsum('...jj->...j', I)[...] = 1 S_tot = See + Sei @ pinv(I - SL @ Sii) @ SL @ Sie return S_tot def deembedding( Sei, # (nf, ne, ni) Sie, # (nf, ni, ne) Sext, # (nf, ne, ne) See, # (nf, ne, ne) Si, # (nf, ni, ni) ): # Reveyrand, doi:10.1109/INMMIC.2018.8430023 # Requires balanced number of ports, similar to VNA calibration Sei_inv = pinv(Sei) Sdif = Sext - See return Sei_inv @ Sdif @ pinv(Sie + Sii @ Sei_inv @ Sdif) def thru_with_Zref_change( zref0, # (nf,) zref1, # (nf,) ): s = numpy.empty(tuple(zref0.shape) + (2, 2), dtype=complex) s[..., 0, 0] = zref1 - zref0 s[..., 0, 1] = 2 * sqrt(zref0 * zref1) s[..., 1, 0] = s[..., 0, 1] s[..., 1, 1] = -s[..., 0, 0] s /= zref0 + zref1 return s def propagation_matrix(mode_neffs: ArrayLike, wavelength: float, distance: float): eigenv = numpy.array(mode_neffs, copy=False) * 2 * pi / wavelength prop_diag = numpy.diag(numpy.exp(distance * 1j * numpy.hstack((eigenv, eigenv)))) prop_matrix = numpy.roll(prop_diag, len(eigenv), axis=0) return prop_matrix def connect_s( A: NDArray[numpy.complex128], k: int, B: NDArray[numpy.complex128], l: int, ) -> NDArray[numpy.complex128]: """ TODO freq x ... x n x n Based on skrf implementation Connect two n-port networks' s-matrices together. Specifically, connect port `k` on network `A` to port `l` on network `B`. The resultant network has nports = (A.rank + B.rank-2); first (A.rank - 1) ports are from `A`, remainder are from B. Assumes same reference impedance for both `k` and `l`; may need to connect an "impedance mismatch" thru element first! Args: A: S-parameter matrix of `A`, shape is fxnxn k: port index on `A` (port indices start from 0) B: S-parameter matrix of `B`, shape is fxnxn l: port index on `B` Returns: new S-parameter matrix """ if k > A.shape[-1] - 1 or l > B.shape[-1] - 1: raise ValueError("port indices are out of range") #C = scipy.sparse.block_diag((A, B), dtype=complex) #return innerconnect_s(C, k, A.shape[0] + l) nA = A.shape[-1] nB = B.shape[-1] nC = nA + nB - 2 assert numpy.array_equal(A.shape[:-2], B.shape[:-2]) ll = slice(l, l + 1) kk = slice(k, k + 1) denom = 1 - A[..., kk, kk] * B[..., ll, ll] Anew = A + A[..., kk, :] * B[..., ll, ll] * A[..., :, kk] / denom Bnew = A[..., kk, :] * B[..., :, ll] / denom Anew = numpy.delete(Anew, (k,), 1) Anew = numpy.delete(Anew, (k,), 2) Bnew = numpy.delete(Bnew, (l,), 1) Bnew = numpy.delete(Bnew, (l,), 2) dtype = (A[0, 0] * B[0, 0]).dtype C = numpy.zeros(tuple(A.shape[:-2]) + (nC, nC), dtype=dtype) C[..., :nA - 1, :nA - 1] = Anew C[..., nA - 1:, nA - 1:] = Bnew return C def innerconnect_s( S: NDArray[numpy.complex128], k: int, l: int, ) -> NDArray[numpy.complex128]: """ TODO freq x ... x n x n Based on skrf implementation Connect two ports of a single n-port network's s-matrix. Specifically, connect port `k` to port `l` on `S`. This results in a (n-2)-port network. Assumes same reference impedance for both `k` and `l`; may need to connect an "impedance mismatch" thru element first! Args: S: S-parameter matrix of `S`, shape is fxnxn k: port index on `S` (port indices start from 0) l: port index on `S` Returns: new S-parameter matrix Notes: - Compton, R.C., "Perspectives in microwave circuit analysis", doi:10.1109/MWSCAS.1989.101955 - Filipsson, G., "A New General Computer Algorithm for S-Matrix Calculation of Interconnected Multiports", doi:10.1109/EUMA.1981.332972 """ if k > S.shape[-1] - 1 or l > S.shape[-1] - 1: raise ValueError("port indices are out of range") ll = slice(l, l + 1) kk = slice(k, k + 1) mkl = 1 - S[..., kk, ll] mlk = 1 - S[..., ll, kk] C = S + ( S[..., kk, :] * S[..., :, l] * mlk + S[..., ll, :] * S[..., :, k] * mkl + S[..., kk, :] * S[..., l, l] * S[..., :, kk] + S[..., ll, :] * S[..., k, k] * S[..., :, ll] ) / ( mlk * mkl - S[..., kk, kk] * S[..., ll, ll] ) # remove connected ports C = numpy.delete(C, (k, l), 1) C = numpy.delete(C, (k, l), 2) return C def s2abcd( S: NDArray[numpy.complex128], z0: NDArray[numpy.complex128], ) -> NDArray[numpy.complex128]: assert numpy.array_equal(S.shape[:2] == (2, 2)) Z1, Z2 = z0 cross = S[0, 1] * S[1, 0] T = numpy.empty_like(S, dtype=complex) T[0, 0, :] = (Z1.conj() + S[0, 0] * Z1) * (1 - S[1, 1]) + cross * Z1 # A numerator T[0, 1, :] = (Z1.conj() + S[0, 0] * Z1) * (Z1.conj() + S[1, 1] * Z2) - cross * Z1 * Z2 # B numerator T[1, 0, :] = (1 - S[0, 0]) * (1 - S[1, 1]) - cross # C numerator T[1, 1, :] = (1 - S[0, 0]) * (Z2.conj() + S[1, 1] * Z2) + cross * Z2 # D numerator det = 2 * S[1, 0] * numpy.sqrt(Z1.real * Z2.real) T /= det return T def generalize_S( S: NDArray[numpy.complex128], r0: float, z0: NDArray[numpy.complex128], ) -> NDArray[numpy.complex128]: g = (z0 - r0) / (z0 + r0) D = numpy.diag((1 - g) / numpy.abs(1 - g.conj()) * numpy.sqrt(1 - numpy.abs(g * g.conj()))) G = numpy.diag(g) U = numpy.eye(S.shape[-1]).reshape((S.ndim - 2) * (1,) + (S.shape[-2], S.shape[-1])) S_gen = pinv(D.conj()) @ (S - G.conj()) @ pinv(U - G @ S) @ D return S_gen def change_R0( S: NDArray[numpy.complex128], r1: float, r2: float, ) -> NDArray[numpy.complex128]: g = (r2 - r1) / (r2 + r1) U = numpy.eye(S.shape[-1]).reshape((S.ndim - 2) * (1,) + (S.shape[-2], S.shape[-1])) G = U * g S_r2 = (S - G) @ pinv(U - G @ S) return S_r2 # Zc = numpy.sqrt(B / C) # gamma = numpy.arccosh(A) / L_TL # n_eff = -1j * gamma * c_light / (2 * pi * f) # n_eff_grp = n_eff + f * diff(n_eff) / diff(f) # attenuation = (1 - S[0, 0] * S[0, 0].conj()) / (S[1, 0] * S[1, 0].conj()) # R = numpy.real(gamma * Zc) # C = numpy.real(gamma / Zc) # L = numpy.imag(gamma * Zc) / (-1j * 2 * pi * f) # G = numpy.imag(gamma / Zc) / (-1j * 2 * pi * f)