""" Utilities for running finite-difference time-domain (FDTD) simulations See the discussion of `Maxwell's Equations` in `meanas.fdmath` for basic mathematical background. Timestep ======== From the discussion of "Plane waves and the Dispersion relation" in `meanas.fdmath`, we have $$ c^2 \\Delta_t^2 = \\frac{\\Delta_t^2}{\\mu \\epsilon} < 1/(\\frac{1}{\\Delta_x^2} + \\frac{1}{\\Delta_y^2} + \\frac{1}{\\Delta_z^2}) $$ or, if \\( \\Delta_x = \\Delta_y = \\Delta_z \\), then \\( c \\Delta_t < \\frac{\\Delta_x}{\\sqrt{3}} \\). Based on this, we can set dt = sqrt(mu.min() * epsilon.min()) / sqrt(1/dx_min**2 + 1/dy_min**2 + 1/dz_min**2) The `dx_min`, `dy_min`, `dz_min` should be the minimum value across both the base and derived grids. Poynting Vector and Energy Conservation ======================================= Let $$ \\begin{align*} \\tilde{S}_{l, l', \\vec{r}} &=& &\\tilde{E}_{l, \\vec{r}} \\otimes \\hat{H}_{l', \\vec{r} + \\frac{1}{2}} \\\\ &=& &\\vec{x} (\\tilde{E}^y_{l,m+1,n,p} \\hat{H}^z_{l',\\vec{r} + \\frac{1}{2}} - \\tilde{E}^z_{l,m+1,n,p} \\hat{H}^y_{l', \\vec{r} + \\frac{1}{2}}) \\\\ & &+ &\\vec{y} (\\tilde{E}^z_{l,m,n+1,p} \\hat{H}^x_{l',\\vec{r} + \\frac{1}{2}} - \\tilde{E}^x_{l,m,n+1,p} \\hat{H}^z_{l', \\vec{r} + \\frac{1}{2}}) \\\\ & &+ &\\vec{z} (\\tilde{E}^x_{l,m,n,p+1} \\hat{H}^y_{l',\\vec{r} + \\frac{1}{2}} - \\tilde{E}^y_{l,m,n,p+1} \\hat{H}^z_{l', \\vec{r} + \\frac{1}{2}}) \\end{align*} $$ where \\( \\vec{r} = (m, n, p) \\) and \\( \\otimes \\) is a modified cross product in which the \\( \\tilde{E} \\) terms are shifted as indicated. By taking the divergence and rearranging terms, we can show that $$ \\begin{align*} \\hat{\\nabla} \\cdot \\tilde{S}_{l, l', \\vec{r}} &= \\hat{\\nabla} \\cdot (\\tilde{E}_{l, \\vec{r}} \\otimes \\hat{H}_{l', \\vec{r} + \\frac{1}{2}}) \\\\ &= \\hat{H}_{l', \\vec{r} + \\frac{1}{2}} \\cdot \\tilde{\\nabla} \\times \\tilde{E}_{l, \\vec{r}} - \\tilde{E}_{l, \\vec{r}} \\cdot \\hat{\\nabla} \\times \\hat{H}_{l', \\vec{r} + \\frac{1}{2}} \\\\ &= \\hat{H}_{l', \\vec{r} + \\frac{1}{2}} \\cdot (-\\tilde{\\partial}_t \\mu_{\\vec{r} + \\frac{1}{2}} \\hat{H}_{l - \\frac{1}{2}, \\vec{r} + \\frac{1}{2}} - \\hat{M}_{l-1, \\vec{r} + \\frac{1}{2}}) - \\tilde{E}_{l, \\vec{r}} \\cdot (\\hat{\\partial}_t \\tilde{\\epsilon}_\\vec{r} \\tilde{E}_{l'+\\frac{1}{2}, \\vec{r}} + \\tilde{J}_{l', \\vec{r}}) \\\\ &= \\hat{H}_{l'} \\cdot (-\\mu / \\Delta_t)(\\hat{H}_{l + \\frac{1}{2}} - \\hat{H}_{l - \\frac{1}{2}}) - \\tilde{E}_l \\cdot (\\epsilon / \\Delta_t )(\\tilde{E}_{l'+\\frac{1}{2}} - \\tilde{E}_{l'-\\frac{1}{2}}) - \\hat{H}_{l'} \\cdot \\hat{M}_{l-1} - \\tilde{E}_l \\cdot \\tilde{J}_{l'} \\\\ \\end{align*} $$ where in the last line the spatial subscripts have been dropped to emphasize the time subscripts \\( l, l' \\), i.e. $$ \\begin{align*} \\tilde{E}_l &= \\tilde{E}_{l, \\vec{r}} \\\\ \\hat{H}_l &= \\tilde{H}_{l, \\vec{r} + \\frac{1}{2}} \\\\ \\tilde{\\epsilon} &= \\tilde{\\epsilon}_\\vec{r} \\\\ \\end{align*} $$ etc. For \\( l' = l + \\frac{1}{2} \\) we get $$ \\begin{align*} \\hat{\\nabla} \\cdot \\tilde{S}_{l, l + \\frac{1}{2}} &= \\hat{H}_{l + \\frac{1}{2}} \\cdot (-\\mu / \\Delta_t)(\\hat{H}_{l + \\frac{1}{2}} - \\hat{H}_{l - \\frac{1}{2}}) - \\tilde{E}_l \\cdot (\\epsilon / \\Delta_t)(\\tilde{E}_{l+1} - \\tilde{E}_l) - \\hat{H}_{l'} \\cdot \\hat{M}_l - \\tilde{E}_l \\cdot \\tilde{J}_{l + \\frac{1}{2}} \\\\ &= (-\\mu / \\Delta_t)(\\hat{H}^2_{l + \\frac{1}{2}} - \\hat{H}_{l + \\frac{1}{2}} \\cdot \\hat{H}_{l - \\frac{1}{2}}) - (\\epsilon / \\Delta_t)(\\tilde{E}_{l+1} \\cdot \\tilde{E}_l - \\tilde{E}^2_l) - \\hat{H}_{l'} \\cdot \\hat{M}_l - \\tilde{E}_l \\cdot \\tilde{J}_{l + \\frac{1}{2}} \\\\ &= -(\\mu \\hat{H}^2_{l + \\frac{1}{2}} +\\epsilon \\tilde{E}_{l+1} \\cdot \\tilde{E}_l) / \\Delta_t \\ \\ +(\\mu \\hat{H}_{l + \\frac{1}{2}} \\cdot \\hat{H}_{l - \\frac{1}{2}} +\\epsilon \\tilde{E}^2_l) / \\Delta_t \\ \\ - \\hat{H}_{l+\\frac{1}{2}} \\cdot \\hat{M}_l \\ \\ - \\tilde{E}_l \\cdot \\tilde{J}_{l+\\frac{1}{2}} \\\\ \\end{align*} $$ and for \\( l' = l - \\frac{1}{2} \\), $$ \\begin{align*} \\hat{\\nabla} \\cdot \\tilde{S}_{l, l - \\frac{1}{2}} &= (\\mu \\hat{H}^2_{l - \\frac{1}{2}} +\\epsilon \\tilde{E}_{l-1} \\cdot \\tilde{E}_l) / \\Delta_t \\ \\ -(\\mu \\hat{H}_{l + \\frac{1}{2}} \\cdot \\hat{H}_{l - \\frac{1}{2}} +\\epsilon \\tilde{E}^2_l) / \\Delta_t \\ \\ - \\hat{H}_{l-\\frac{1}{2}} \\cdot \\hat{M}_l \\ \\ - \\tilde{E}_l \\cdot \\tilde{J}_{l-\\frac{1}{2}} \\\\ \\end{align*} $$ These two results form the discrete time-domain analogue to Poynting's theorem. They hint at the expressions for the energy, which can be calculated at the same time-index as either the E or H field: $$ \\begin{align*} U_l &= \\epsilon \\tilde{E}^2_l + \\mu \\hat{H}_{l + \\frac{1}{2}} \\cdot \\hat{H}_{l - \\frac{1}{2}} \\\\ U_{l + \\frac{1}{2}} &= \\epsilon \\tilde{E}_l \\cdot \\tilde{E}_{l + 1} + \\mu \\hat{H}^2_{l + \\frac{1}{2}} \\\\ \\end{align*} $$ Rewriting the Poynting theorem in terms of the energy expressions, $$ \\begin{align*} (U_{l+\\frac{1}{2}} - U_l) / \\Delta_t &= -\\hat{\\nabla} \\cdot \\tilde{S}_{l, l + \\frac{1}{2}} \\ \\ - \\hat{H}_{l+\\frac{1}{2}} \\cdot \\hat{M}_l \\ \\ - \\tilde{E}_l \\cdot \\tilde{J}_{l+\\frac{1}{2}} \\\\ (U_l - U_{l-\\frac{1}{2}}) / \\Delta_t &= -\\hat{\\nabla} \\cdot \\tilde{S}_{l, l - \\frac{1}{2}} \\ \\ - \\hat{H}_{l-\\frac{1}{2}} \\cdot \\hat{M}_l \\ \\ - \\tilde{E}_l \\cdot \\tilde{J}_{l-\\frac{1}{2}} \\\\ \\end{align*} $$ This result is exact an should practically hold to within numerical precision. No time- or spatial-averaging is necessary. Note that each value of \\( J \\) contributes to the energy twice (i.e. once per field update) despite only causing the value of \\( E \\) to change once (same for \\( M \\) and \\( H \\)). Boundary conditions =================== # TODO notes about boundaries / PMLs """ from .base import maxwell_e, maxwell_h from .pml import cpml from .energy import (poynting, poynting_divergence, energy_hstep, energy_estep, delta_energy_h2e, delta_energy_h2e, delta_energy_j) from .boundaries import conducting_boundary