""" Tools for finite difference frequency-domain (FDFD) simulations and calculations. These mostly involve picking a single frequency, then setting up and solving a matrix equation (Ax=b) or eigenvalue problem. Submodules: - `operators`, `functional`: General FDFD problem setup. - `solvers`: Solver interface and reference implementation. - `scpml`: Stretched-coordinate perfectly matched layer (scpml) boundary conditions - `waveguide_2d`: Operators and mode-solver for waveguides with constant cross-section. - `waveguide_3d`: Functions for transforming `waveguide_2d` results into 3D. ================================================================ From the "Frequency domain" section of `meanas.fdmath`, we have $$ \\begin{aligned} \\tilde{E}_{l, \\vec{r}} &= \\tilde{E}_{\\vec{r}} e^{-\\imath \\omega l \\Delta_t} \\\\ \\tilde{H}_{l - \\frac{1}{2}, \\vec{r} + \\frac{1}{2}} &= \\tilde{H}_{\\vec{r} + \\frac{1}{2}} e^{-\\imath \\omega (l - \\frac{1}{2}) \\Delta_t} \\\\ \\tilde{J}_{l, \\vec{r}} &= \\tilde{J}_{\\vec{r}} e^{-\\imath \\omega (l - \\frac{1}{2}) \\Delta_t} \\\\ \\tilde{M}_{l - \\frac{1}{2}, \\vec{r} + \\frac{1}{2}} &= \\tilde{M}_{\\vec{r} + \\frac{1}{2}} e^{-\\imath \\omega l \\Delta_t} \\\\ \\hat{\\nabla} \\times (\\mu^{-1}_{\\vec{r} + \\frac{1}{2}} \\cdot \\tilde{\\nabla} \\times \\tilde{E}_{\\vec{r}}) -\\Omega^2 \\epsilon_{\\vec{r}} \\cdot \\tilde{E}_{\\vec{r}} &= -\\imath \\Omega \\tilde{J}_{\\vec{r}} e^{\\imath \\omega \\Delta_t / 2} \\\\ \\Omega &= 2 \\sin(\\omega \\Delta_t / 2) / \\Delta_t \\end{aligned} $$ resulting in $$ \\begin{aligned} \\tilde{\\partial}_t &\\Rightarrow -\\imath \\Omega e^{-\\imath \\omega \\Delta_t / 2}\\\\ \\hat{\\partial}_t &\\Rightarrow -\\imath \\Omega e^{ \\imath \\omega \\Delta_t / 2}\\\\ \\end{aligned} $$ Maxwell's equations are then $$ \\begin{aligned} \\tilde{\\nabla} \\times \\tilde{E}_{\\vec{r}} &= \\imath \\Omega e^{-\\imath \\omega \\Delta_t / 2} \\hat{B}_{\\vec{r} + \\frac{1}{2}} - \\hat{M}_{\\vec{r} + \\frac{1}{2}} \\\\ \\hat{\\nabla} \\times \\hat{H}_{\\vec{r} + \\frac{1}{2}} &= -\\imath \\Omega e^{ \\imath \\omega \\Delta_t / 2} \\tilde{D}_{\\vec{r}} + \\tilde{J}_{\\vec{r}} \\\\ \\tilde{\\nabla} \\cdot \\hat{B}_{\\vec{r} + \\frac{1}{2}} &= 0 \\\\ \\hat{\\nabla} \\cdot \\tilde{D}_{\\vec{r}} &= \\rho_{\\vec{r}} \\end{aligned} $$ With $\\Delta_t \\to 0$, this simplifies to $$ \\begin{aligned} \\tilde{E}_{l, \\vec{r}} &\\to \\tilde{E}_{\\vec{r}} \\\\ \\tilde{H}_{l - \\frac{1}{2}, \\vec{r} + \\frac{1}{2}} &\\to \\tilde{H}_{\\vec{r} + \\frac{1}{2}} \\\\ \\tilde{J}_{l, \\vec{r}} &\\to \\tilde{J}_{\\vec{r}} \\\\ \\tilde{M}_{l - \\frac{1}{2}, \\vec{r} + \\frac{1}{2}} &\\to \\tilde{M}_{\\vec{r} + \\frac{1}{2}} \\\\ \\Omega &\\to \\omega \\\\ \\tilde{\\partial}_t &\\to -\\imath \\omega \\\\ \\hat{\\partial}_t &\\to -\\imath \\omega \\\\ \\end{aligned} $$ and then $$ \\begin{aligned} \\tilde{\\nabla} \\times \\tilde{E}_{\\vec{r}} &= \\imath \\omega \\hat{B}_{\\vec{r} + \\frac{1}{2}} - \\hat{M}_{\\vec{r} + \\frac{1}{2}} \\\\ \\hat{\\nabla} \\times \\hat{H}_{\\vec{r} + \\frac{1}{2}} &= -\\imath \\omega \\tilde{D}_{\\vec{r}} + \\tilde{J}_{\\vec{r}} \\\\ \\end{aligned} $$ $$ \\hat{\\nabla} \\times (\\mu^{-1}_{\\vec{r} + \\frac{1}{2}} \\cdot \\tilde{\\nabla} \\times \\tilde{E}_{\\vec{r}}) -\\omega^2 \\epsilon_{\\vec{r}} \\cdot \\tilde{E}_{\\vec{r}} = -\\imath \\omega \\tilde{J}_{\\vec{r}} \\\\ $$ # TODO FDFD? # TODO PML """ from . import solvers, operators, functional, scpml, waveguide_2d, waveguide_3d # from . import farfield, bloch TODO