Compare commits
	
		
			No commits in common. "9ffe57b4d06ecacdd93e89aec9998dd93b622950" and "ccfd4fbf04ac40eadc97527bbeef3b9254d27cbe" have entirely different histories.
		
	
	
		
			9ffe57b4d0
			...
			ccfd4fbf04
		
	
		
| @ -157,8 +157,7 @@ def main(): | ||||
|         e[1][tuple(grid.shape//2)] += field_source(t) | ||||
|         update_H(e, h) | ||||
| 
 | ||||
|         avg_rate = (t + 1)/(time.perf_counter() - start)) | ||||
|         print(f'iteration {t}: average {avg_rate} iterations per sec') | ||||
|         print('iteration {}: average {} iterations per sec'.format(t, (t+1)/(time.perf_counter()-start))) | ||||
|         sys.stdout.flush() | ||||
| 
 | ||||
|         if t % 20 == 0: | ||||
|  | ||||
| @ -684,11 +684,11 @@ def eigsolve( | ||||
|                 Qi = Qi_func(theta) | ||||
|                 c2 = numpy.cos(2 * theta) | ||||
|                 s2 = numpy.sin(2 * theta) | ||||
|                 F = -0.5 * s2 * (ZtAZ - DtAD) + c2 * symZtAD | ||||
|                 F = -0.5*s2 *  (ZtAZ - DtAD) + c2 * symZtAD | ||||
|                 trace_deriv = _rtrace_AtB(Qi, F) | ||||
| 
 | ||||
|                 G = Qi @ F.conj().T @ Qi.conj().T | ||||
|                 H = -0.5 * s2 * (ZtZ - DtD) + c2 * symZtD | ||||
|                 H = -0.5*s2 * (ZtZ - DtD) + c2 * symZtD | ||||
|                 trace_deriv -= _rtrace_AtB(G, H) | ||||
| 
 | ||||
|                 trace_deriv *= 2 | ||||
| @ -696,12 +696,12 @@ def eigsolve( | ||||
| 
 | ||||
|             U_sZtD = U @ symZtD | ||||
| 
 | ||||
|             dE = 2.0 * (_rtrace_AtB(U, symZtAD) | ||||
|                         - _rtrace_AtB(ZtAZU, U_sZtD)) | ||||
|             dE = 2.0 * (_rtrace_AtB(U, symZtAD) - | ||||
|                         _rtrace_AtB(ZtAZU, U_sZtD)) | ||||
| 
 | ||||
|             d2E = 2 * (_rtrace_AtB(U, DtAD) | ||||
|                        - _rtrace_AtB(ZtAZU, U @ (DtD - 4 * symZtD @ U_sZtD)) | ||||
|                        - 4 * _rtrace_AtB(U, symZtAD @ U_sZtD)) | ||||
|             d2E = 2 * (_rtrace_AtB(U, DtAD) - | ||||
|                        _rtrace_AtB(ZtAZU, U @ (DtD - 4 * symZtD @ U_sZtD)) - | ||||
|                    4 * _rtrace_AtB(U, symZtAD @ U_sZtD)) | ||||
| 
 | ||||
|             # Newton-Raphson to find a root of the first derivative: | ||||
|             theta = -dE / d2E | ||||
| @ -781,7 +781,7 @@ def linmin(x_guess, f0, df0, x_max, f_tol=0.1, df_tol=min(tolerance, 1e-6), x_to | ||||
|                                           x_min, x_max, isave, dsave) | ||||
|         for i in range(int(1e6)): | ||||
|             if task != 'F': | ||||
|                 logging.info(f'search converged in {i} iterations') | ||||
|                 logging.info('search converged in {} iterations'.format(i)) | ||||
|                 break | ||||
|             fx = f(x, dfx) | ||||
|             x, fx, dfx, task = minpack2.dsrch(x, fx, dfx, f_tol, df_tol, x_tol, task, | ||||
|  | ||||
| @ -43,8 +43,7 @@ def _scipy_qmr( | ||||
|         nonlocal ii | ||||
|         ii += 1 | ||||
|         if ii % 100 == 0: | ||||
|             cur_norm = norm(A @ xk - b) | ||||
|             logger.info(f'Solver residual at iteration {ii} : {cur_norm}') | ||||
|             logger.info('Solver residual at iteration {} : {}'.format(ii, norm(A @ xk - b))) | ||||
| 
 | ||||
|     if 'callback' in kwargs: | ||||
|         def augmented_callback(xk: ArrayLike) -> None: | ||||
|  | ||||
| @ -253,8 +253,7 @@ def operator_e( | ||||
|     mu_yx = sparse.diags(numpy.hstack((mu_parts[1], mu_parts[0]))) | ||||
|     mu_z_inv = sparse.diags(1 / mu_parts[2]) | ||||
| 
 | ||||
|     op = ( | ||||
|         omega * omega * mu_yx @ eps_xy | ||||
|     op = (omega * omega * mu_yx @ eps_xy | ||||
|         + mu_yx @ sparse.vstack((-Dby, Dbx)) @ mu_z_inv @ sparse.hstack((-Dfy, Dfx)) | ||||
|         + sparse.vstack((Dfx, Dfy)) @ eps_z_inv @ sparse.hstack((Dbx, Dby)) @ eps_xy | ||||
|         ) | ||||
| @ -322,8 +321,7 @@ def operator_h( | ||||
|     mu_xy = sparse.diags(numpy.hstack((mu_parts[0], mu_parts[1]))) | ||||
|     mu_z_inv = sparse.diags(1 / mu_parts[2]) | ||||
| 
 | ||||
|     op = ( | ||||
|         omega * omega * eps_yx @ mu_xy | ||||
|     op = (omega * omega * eps_yx @ mu_xy | ||||
|         + eps_yx @ sparse.vstack((-Dfy, Dfx)) @ eps_z_inv @ sparse.hstack((-Dby, Dbx)) | ||||
|         + sparse.vstack((Dbx, Dby)) @ mu_z_inv @ sparse.hstack((Dfx, Dfy)) @ mu_xy | ||||
|         ) | ||||
| @ -422,7 +420,7 @@ def _normalized_fields( | ||||
|     Sz_a = E[0] * numpy.conj(H[1] * phase) * dxes_real[0][1] * dxes_real[1][0] | ||||
|     Sz_b = E[1] * numpy.conj(H[0] * phase) * dxes_real[0][0] * dxes_real[1][1] | ||||
|     Sz_tavg = numpy.real(Sz_a.sum() - Sz_b.sum()) * 0.5       # 0.5 since E, H are assumed to be peak (not RMS) amplitudes | ||||
|     assert Sz_tavg > 0, f'Found a mode propagating in the wrong direction! {Sz_tavg=}' | ||||
|     assert Sz_tavg > 0, 'Found a mode propagating in the wrong direction! Sz_tavg={}'.format(Sz_tavg) | ||||
| 
 | ||||
|     energy = epsilon * e.conj() * e | ||||
| 
 | ||||
| @ -720,109 +718,6 @@ def e_err( | ||||
|     return float(norm(op) / norm(e)) | ||||
| 
 | ||||
| 
 | ||||
| def sensitivity( | ||||
|         e_norm: vcfdfield_t, | ||||
|         h_norm: vcfdfield_t, | ||||
|         wavenumber: complex, | ||||
|         omega: complex, | ||||
|         dxes: dx_lists_t, | ||||
|         epsilon: vfdfield_t, | ||||
|         mu: vfdfield_t | None = None, | ||||
|         ) -> vcfdfield_t: | ||||
|     r""" | ||||
|       Given a waveguide structure (`dxes`, `epsilon`, `mu`) and mode fields | ||||
|     (`e_norm`, `h_norm`, `wavenumber`, `omega`), calculates the sensitivity of the wavenumber | ||||
|     $\beta$ to changes in the dielectric structure $\epsilon$. | ||||
| 
 | ||||
|     The output is a vector of the same size as `vec(epsilon)`, with each element specifying the | ||||
|     sensitivity of `wavenumber` to changes in the corresponding element in `vec(epsilon)`, i.e. | ||||
| 
 | ||||
|     $$sens_{i} = \frac{\partial\beta}{\partial\epsilon_i}$$ | ||||
| 
 | ||||
|     An adjoint approach is used to calculate the sensitivity; the derivation is provided here: | ||||
| 
 | ||||
|     Starting with the eigenvalue equation | ||||
| 
 | ||||
|     $$\beta^2 E_{xy} = A_E E_{xy}$$ | ||||
| 
 | ||||
|     where $A_E$ is the waveguide operator from `operator_e()`, and $E_{xy} = \begin{bmatrix} E_x \\ | ||||
|                                                                                              E_y \end{bmatrix}$, | ||||
|     we can differentiate with respect to one of the $\epsilon$ elements (i.e. at one Yee grid point), $\epsilon_i$: | ||||
| 
 | ||||
|     $$ | ||||
|     (2 \beta) \partial_{\epsilon_i}(\beta) E_{xy} + \beta^2 \partial_{\epsilon_i} E_{xy} | ||||
|         = \partial_{\epsilon_i}(A_E) E_{xy} + A_E \partial_{\epsilon_i} E_{xy} | ||||
|     $$ | ||||
| 
 | ||||
|     We then multiply by $H_{yx}^\star = \begin{bmatrix}H_y^\star \\ -H_x^\star \end{bmatrix}$ from the left: | ||||
| 
 | ||||
|     $$ | ||||
|     (2 \beta) \partial_{\epsilon_i}(\beta) H_{yx}^\star E_{xy} + \beta^2 H_{yx}^\star \partial_{\epsilon_i} E_{xy} | ||||
|         = H_{yx}^\star \partial_{\epsilon_i}(A_E) E_{xy} + H_{yx}^\star A_E \partial_{\epsilon_i} E_{xy} | ||||
|     $$ | ||||
| 
 | ||||
|     However, $H_{yx}^\star$ is actually a left-eigenvector of $A_E$. This can be verified by inspecting | ||||
|     the form of `operator_h` ($A_H$) and comparing its conjugate transpose to `operator_e` ($A_E$). Also, note | ||||
|     $H_{yx}^\star \cdot E_{xy} = H^\star \times E$ recalls the mode orthogonality relation. See doi:10.5194/ars-9-85-201 | ||||
|     for a similar approach. Therefore, | ||||
| 
 | ||||
|     $$ | ||||
|     H_{yx}^\star A_E \partial_{\epsilon_i} E_{xy} = \beta^2 H_{yx}^\star \partial_{\epsilon_i} E_{xy} | ||||
|     $$ | ||||
| 
 | ||||
|     and we can simplify to | ||||
| 
 | ||||
|     $$ | ||||
|     \partial_{\epsilon_i}(\beta) | ||||
|         = \frac{1}{2 \beta} \frac{H_{yx}^\star \partial_{\epsilon_i}(A_E) E_{xy} }{H_{yx}^\star E_{xy}} | ||||
|     $$ | ||||
| 
 | ||||
|     This expression can be quickly calculated for all $i$ by writing out the various terms of | ||||
|     $\partial_{\epsilon_i} A_E$ and recognizing that the vector-matrix-vector products (i.e. scalars) | ||||
|     $sens_i = \vec{v}_{left} \partial_{\epsilon_i} (\epsilon_{xyz}) \vec{v}_{right}$, indexed by $i$, can be expressed as | ||||
|     elementwise multiplications $\vec{sens} = \vec{v}_{left} \star \vec{v}_{right}$ | ||||
| 
 | ||||
| 
 | ||||
|     Args: | ||||
|         e_norm: Normalized, vectorized E_xyz field for the mode. E.g. as returned by `normalized_fields_e`. | ||||
|         h_norm: Normalized, vectorized H_xyz field for the mode. E.g. as returned by `normalized_fields_e`. | ||||
|         wavenumber: Propagation constant for the mode. The z-axis is assumed to be continuous (i.e. without numerical dispersion). | ||||
|         omega: The angular frequency of the system. | ||||
|         dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D) | ||||
|         epsilon: Vectorized dielectric constant grid | ||||
|         mu: Vectorized magnetic permeability grid (default 1 everywhere) | ||||
| 
 | ||||
|     Returns: | ||||
|         Sparse matrix representation of the operator. | ||||
|     """ | ||||
|     if mu is None: | ||||
|         mu = numpy.ones_like(epsilon) | ||||
| 
 | ||||
|     Dfx, Dfy = deriv_forward(dxes[0]) | ||||
|     Dbx, Dby = deriv_back(dxes[1]) | ||||
| 
 | ||||
|     eps_x, eps_y, eps_z = numpy.split(epsilon, 3) | ||||
|     eps_xy = sparse.diags(numpy.hstack((eps_x, eps_y))) | ||||
|     eps_z_inv = sparse.diags(1 / eps_z) | ||||
| 
 | ||||
|     mu_x, mu_y, _mu_z = numpy.split(mu, 3) | ||||
|     mu_yx = sparse.diags(numpy.hstack((mu_y, mu_x))) | ||||
| 
 | ||||
|     dv_e = dxes[0][0][:, None, None] * dxes[0][1][None, :, None] * dxes[0][2][None, None, :] | ||||
|     dv_h = dxes[1][0][:, None, None] * dxes[1][1][None, :, None] * dxes[1][2][None, None, :] | ||||
|     ev_xy = numpy.concatenate(numpy.split(e_norm, 3)[:2]) * dv_e | ||||
|     hx, hy, hz = numpy.split(h_norm, 3) | ||||
|     hv_yx_conj = numpy.conj(numpy.concatenate([hy, -hx])) * dv_h | ||||
| 
 | ||||
|     sens_xy1 = (hv_yx_conj @ (omega * omega @ mu_yx)) * ev_xy | ||||
|     sens_xy2 = (hv_yx_conj @ sparse.vstack((Dfx, Dfy)) @ eps_z_inv @ sparse.hstack((Dbx, Dby))) * ev_xy | ||||
|     sens_z   = (hv_yx_conj @ sparse.vstack((Dfx, Dfy)) @ (-eps_z_inv * eps_z_inv)) * (sparse.hstack((Dbx, Dby)) @ eps_xy @ ev_xy) | ||||
|     norm = hv_yx_conj @ ev_xy | ||||
| 
 | ||||
|     sens_tot = numpy.concatenate([sens_xy1 + sens_xy2, sens_z]) / (2 * wavenumber * norm) | ||||
|     return sens_tot | ||||
| 
 | ||||
| 
 | ||||
| def solve_modes( | ||||
|         mode_numbers: list[int], | ||||
|         omega: complex, | ||||
|  | ||||
| @ -29,9 +29,9 @@ def shift_circ( | ||||
|         Sparse matrix for performing the circular shift. | ||||
|     """ | ||||
|     if len(shape) not in (2, 3): | ||||
|         raise Exception(f'Invalid shape: {shape}') | ||||
|         raise Exception('Invalid shape: {}'.format(shape)) | ||||
|     if axis not in range(len(shape)): | ||||
|         raise Exception(f'Invalid direction: {axis}, shape is {shape}') | ||||
|         raise Exception('Invalid direction: {}, shape is {}'.format(axis, shape)) | ||||
| 
 | ||||
|     shifts = [abs(shift_distance) if a == axis else 0 for a in range(3)] | ||||
|     shifted_diags = [(numpy.arange(n) + s) % n for n, s in zip(shape, shifts)] | ||||
| @ -69,11 +69,12 @@ def shift_with_mirror( | ||||
|         Sparse matrix for performing the shift-with-mirror. | ||||
|     """ | ||||
|     if len(shape) not in (2, 3): | ||||
|         raise Exception(f'Invalid shape: {shape}') | ||||
|         raise Exception('Invalid shape: {}'.format(shape)) | ||||
|     if axis not in range(len(shape)): | ||||
|         raise Exception(f'Invalid direction: {axis}, shape is {shape}') | ||||
|         raise Exception('Invalid direction: {}, shape is {}'.format(axis, shape)) | ||||
|     if shift_distance >= shape[axis]: | ||||
|         raise Exception(f'Shift ({shift_distance}) is too large for axis {axis} of size {shape[axis]}') | ||||
|         raise Exception('Shift ({}) is too large for axis {} of size {}'.format( | ||||
|                         shift_distance, axis, shape[axis])) | ||||
| 
 | ||||
|     def mirrored_range(n: int, s: int) -> NDArray[numpy.int_]: | ||||
|         v = numpy.arange(n) + s | ||||
| @ -197,7 +198,7 @@ def avg_forward(axis: int, shape: Sequence[int]) -> sparse.spmatrix: | ||||
|         Sparse matrix for forward average operation. | ||||
|     """ | ||||
|     if len(shape) not in (2, 3): | ||||
|         raise Exception(f'Invalid shape: {shape}') | ||||
|         raise Exception('Invalid shape: {}'.format(shape)) | ||||
| 
 | ||||
|     n = numpy.prod(shape) | ||||
|     return 0.5 * (sparse.eye(n) + shift_circ(axis, shape)) | ||||
|  | ||||
| @ -15,17 +15,13 @@ def conducting_boundary( | ||||
|         ) -> tuple[fdfield_updater_t, fdfield_updater_t]: | ||||
|     dirs = [0, 1, 2] | ||||
|     if direction not in dirs: | ||||
|         raise Exception(f'Invalid direction: {direction}') | ||||
|         raise Exception('Invalid direction: {}'.format(direction)) | ||||
|     dirs.remove(direction) | ||||
|     u, v = dirs | ||||
| 
 | ||||
|     boundary_slice: list[Any] | ||||
|     shifted1_slice: list[Any] | ||||
|     shifted2_slice: list[Any] | ||||
| 
 | ||||
|     if polarity < 0: | ||||
|         boundary_slice = [slice(None)] * 3 | ||||
|         shifted1_slice = [slice(None)] * 3 | ||||
|         boundary_slice = [slice(None)] * 3      # type: list[Any] | ||||
|         shifted1_slice = [slice(None)] * 3      # type: list[Any] | ||||
|         boundary_slice[direction] = 0 | ||||
|         shifted1_slice[direction] = 1 | ||||
| 
 | ||||
| @ -46,7 +42,7 @@ def conducting_boundary( | ||||
|     if polarity > 0: | ||||
|         boundary_slice = [slice(None)] * 3 | ||||
|         shifted1_slice = [slice(None)] * 3 | ||||
|         shifted2_slice = [slice(None)] * 3 | ||||
|         shifted2_slice = [slice(None)] * 3      # type: list[Any] | ||||
|         boundary_slice[direction] = -1 | ||||
|         shifted1_slice[direction] = -2 | ||||
|         shifted2_slice[direction] = -3 | ||||
| @ -68,4 +64,4 @@ def conducting_boundary( | ||||
| 
 | ||||
|         return ep, hp | ||||
| 
 | ||||
|     raise Exception(f'Bad polarity: {polarity}') | ||||
|     raise Exception('Bad polarity: {}'.format(polarity)) | ||||
|  | ||||
| @ -33,10 +33,10 @@ def cpml_params( | ||||
|         ) -> dict[str, Any]: | ||||
| 
 | ||||
|     if axis not in range(3): | ||||
|         raise Exception(f'Invalid axis: {axis}') | ||||
|         raise Exception('Invalid axis: {}'.format(axis)) | ||||
| 
 | ||||
|     if polarity not in (-1, 1): | ||||
|         raise Exception(f'Invalid polarity: {polarity}') | ||||
|         raise Exception('Invalid polarity: {}'.format(polarity)) | ||||
| 
 | ||||
|     if thickness <= 2: | ||||
|         raise Exception('It would be wise to have a pml with 4+ cells of thickness') | ||||
|  | ||||
| @ -101,7 +101,7 @@ def test_poynting_divergence(sim: 'TDResult') -> None: | ||||
| def test_poynting_planes(sim: 'TDResult') -> None: | ||||
|     mask = (sim.js[0] != 0).any(axis=0) | ||||
|     if mask.sum() > 1: | ||||
|         pytest.skip(f'test_poynting_planes can only test single point sources, got {mask.sum()}') | ||||
|         pytest.skip('test_poynting_planes can only test single point sources, got {}'.format(mask.sum())) | ||||
| 
 | ||||
|     args: dict[str, Any] = { | ||||
|         'dxes': sim.dxes, | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user