Compare commits

...

7 Commits

5 changed files with 403 additions and 88 deletions

View File

@ -18,8 +18,8 @@ $$
\begin{aligned}
\nabla \times \vec{E}(x, y, z) &= -\imath \omega \mu \vec{H} \\
\nabla \times \vec{H}(x, y, z) &= \imath \omega \epsilon \vec{E} \\
\vec{E}(x,y,z) &= (\vec{E}_t(x, y) + E_z(x, y)\vec{z}) e^{-\gamma z} \\
\vec{H}(x,y,z) &= (\vec{H}_t(x, y) + H_z(x, y)\vec{z}) e^{-\gamma z} \\
\vec{E}(x,y,z) &= (\vec{E}_t(x, y) + E_z(x, y)\vec{z}) e^{-\imath \beta z} \\
\vec{H}(x,y,z) &= (\vec{H}_t(x, y) + H_z(x, y)\vec{z}) e^{-\imath \beta z} \\
\end{aligned}
$$
@ -40,56 +40,57 @@ Substituting in our expressions for $\vec{E}$, $\vec{H}$ and discretizing:
$$
\begin{aligned}
-\imath \omega \mu_{xx} H_x &= \tilde{\partial}_y E_z + \gamma E_y \\
-\imath \omega \mu_{yy} H_y &= -\gamma E_x - \tilde{\partial}_x E_z \\
-\imath \omega \mu_{xx} H_x &= \tilde{\partial}_y E_z + \imath \beta E_y \\
-\imath \omega \mu_{yy} H_y &= -\imath \beta E_x - \tilde{\partial}_x E_z \\
-\imath \omega \mu_{zz} H_z &= \tilde{\partial}_x E_y - \tilde{\partial}_y E_x \\
\imath \omega \epsilon_{xx} E_x &= \hat{\partial}_y H_z + \gamma H_y \\
\imath \omega \epsilon_{yy} E_y &= -\gamma H_x - \hat{\partial}_x H_z \\
\imath \omega \epsilon_{xx} E_x &= \hat{\partial}_y H_z + \imath \beta H_y \\
\imath \omega \epsilon_{yy} E_y &= -\imath \beta H_x - \hat{\partial}_x H_z \\
\imath \omega \epsilon_{zz} E_z &= \hat{\partial}_x H_y - \hat{\partial}_y H_x \\
\end{aligned}
$$
Rewrite the last three equations as
$$
\begin{aligned}
\gamma H_y &= \imath \omega \epsilon_{xx} E_x - \hat{\partial}_y H_z \\
\gamma H_x &= -\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z \\
\imath \beta H_y &= \imath \omega \epsilon_{xx} E_x - \hat{\partial}_y H_z \\
\imath \beta H_x &= -\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z \\
\imath \omega E_z &= \frac{1}{\epsilon_{zz}} \hat{\partial}_x H_y - \frac{1}{\epsilon_{zz}} \hat{\partial}_y H_x \\
\end{aligned}
$$
Now apply $\gamma \tilde{\partial}_x$ to the last equation,
then substitute in for $\gamma H_x$ and $\gamma H_y$:
Now apply $\imath \beta \tilde{\partial}_x$ to the last equation,
then substitute in for $\imath \beta H_x$ and $\imath \beta H_y$:
$$
\begin{aligned}
\gamma \tilde{\partial}_x \imath \omega E_z &= \gamma \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x H_y
- \gamma \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y H_x \\
\imath \beta \tilde{\partial}_x \imath \omega E_z &= \imath \beta \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x H_y
- \imath \beta \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y H_x \\
&= \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x ( \imath \omega \epsilon_{xx} E_x - \hat{\partial}_y H_z)
- \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y (-\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z) \\
&= \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x ( \imath \omega \epsilon_{xx} E_x)
- \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y (-\imath \omega \epsilon_{yy} E_y) \\
\gamma \tilde{\partial}_x E_z &= \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
\imath \beta \tilde{\partial}_x E_z &= \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
+ \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y) \\
\end{aligned}
$$
With a similar approach (but using $\gamma \tilde{\partial}_y$ instead), we can get
With a similar approach (but using $\imath \beta \tilde{\partial}_y$ instead), we can get
$$
\begin{aligned}
\gamma \tilde{\partial}_y E_z &= \tilde{\partial}_y \frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
\imath \beta \tilde{\partial}_y E_z &= \tilde{\partial}_y \frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
+ \tilde{\partial}_y \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y) \\
\end{aligned}
$$
We can combine this equation for $\gamma \tilde{\partial}_y E_z$ with
We can combine this equation for $\imath \beta \tilde{\partial}_y E_z$ with
the unused $\imath \omega \mu_{xx} H_x$ and $\imath \omega \mu_{yy} H_y$ equations to get
$$
\begin{aligned}
-\imath \omega \mu_{xx} \gamma H_x &= \gamma^2 E_y + \gamma \tilde{\partial}_y E_z \\
-\imath \omega \mu_{xx} \gamma H_x &= \gamma^2 E_y + \tilde{\partial}_y (
-\imath \omega \mu_{xx} \imath \beta H_x &= -\beta^2 E_y + \imath \beta \tilde{\partial}_y E_z \\
-\imath \omega \mu_{xx} \imath \beta H_x &= -\beta^2 E_y + \tilde{\partial}_y (
\frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
+ \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y)
)\\
@ -100,22 +101,21 @@ and
$$
\begin{aligned}
-\imath \omega \mu_{yy} \gamma H_y &= -\gamma^2 E_x - \gamma \tilde{\partial}_x E_z \\
-\imath \omega \mu_{yy} \gamma H_y &= -\gamma^2 E_x - \tilde{\partial}_x (
-\imath \omega \mu_{yy} \imath \beta H_y &= \beta^2 E_x - \imath \beta \tilde{\partial}_x E_z \\
-\imath \omega \mu_{yy} \imath \beta H_y &= \beta^2 E_x - \tilde{\partial}_x (
\frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
+ \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y)
)\\
\end{aligned}
$$
However, based on our rewritten equation for $\gamma H_x$ and the so-far unused
However, based on our rewritten equation for $\imath \beta H_x$ and the so-far unused
equation for $\imath \omega \mu_{zz} H_z$ we can also write
$$
\begin{aligned}
-\imath \omega \mu_{xx} (\gamma H_x) &= -\imath \omega \mu_{xx} (-\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z) \\
&= -\omega^2 \mu_{xx} \epsilon_{yy} E_y
+\imath \omega \mu_{xx} \hat{\partial}_x (
-\imath \omega \mu_{xx} (\imath \beta H_x) &= -\imath \omega \mu_{xx} (-\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z) \\
&= -\omega^2 \mu_{xx} \epsilon_{yy} E_y + \imath \omega \mu_{xx} \hat{\partial}_x (
\frac{1}{-\imath \omega \mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x)) \\
&= -\omega^2 \mu_{xx} \epsilon_{yy} E_y
-\mu_{xx} \hat{\partial}_x \frac{1}{\mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x) \\
@ -126,7 +126,7 @@ and, similarly,
$$
\begin{aligned}
-\imath \omega \mu_{yy} (\gamma H_y) &= \omega^2 \mu_{yy} \epsilon_{xx} E_x
-\imath \omega \mu_{yy} (\imath \beta H_y) &= \omega^2 \mu_{yy} \epsilon_{xx} E_x
+\mu_{yy} \hat{\partial}_y \frac{1}{\mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x) \\
\end{aligned}
$$
@ -135,12 +135,12 @@ By combining both pairs of expressions, we get
$$
\begin{aligned}
-\gamma^2 E_x - \tilde{\partial}_x (
\beta^2 E_x - \tilde{\partial}_x (
\frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
+ \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y)
) &= \omega^2 \mu_{yy} \epsilon_{xx} E_x
+\mu_{yy} \hat{\partial}_y \frac{1}{\mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x) \\
\gamma^2 E_y + \tilde{\partial}_y (
-\beta^2 E_y + \tilde{\partial}_y (
\frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
+ \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y)
) &= -\omega^2 \mu_{xx} \epsilon_{yy} E_y
@ -165,14 +165,13 @@ $$
E_y \end{bmatrix}
$$
where $\gamma = \imath\beta$. In the literature, $\beta$ is usually used to denote
the lossless/real part of the propagation constant, but in `meanas` it is allowed to
be complex.
In the literature, $\beta$ is usually used to denote the lossless/real part of the propagation constant,
but in `meanas` it is allowed to be complex.
An equivalent eigenvalue problem can be formed using the $H_x$ and $H_y$ fields, if those are more convenient.
Note that $E_z$ was never discretized, so $\gamma$ and $\beta$ will need adjustment
to account for numerical dispersion if the result is introduced into a space with a discretized z-axis.
Note that $E_z$ was never discretized, so $\beta$ will need adjustment to account for numerical dispersion
if the result is introduced into a space with a discretized z-axis.
"""
@ -531,10 +530,37 @@ def exy2e(
dxes: dx_lists_t,
epsilon: vfdfield_t,
) -> sparse.spmatrix:
"""
r"""
Operator which transforms the vector `e_xy` containing the vectorized E_x and E_y fields,
into a vectorized E containing all three E components
From the operator derivation (see module docs), we have
$$
\imath \omega \epsilon_{zz} E_z = \hat{\partial}_x H_y - \hat{\partial}_y H_x \\
$$
as well as the intermediate equations
$$
\begin{aligned}
\imath \beta H_y &= \imath \omega \epsilon_{xx} E_x - \hat{\partial}_y H_z \\
\imath \beta H_x &= -\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z \\
\end{aligned}
$$
Combining these, we get
$$
\begin{aligned}
E_z &= \frac{1}{- \omega \beta \epsilon_{zz}} ((
\hat{\partial}_y \hat{\partial}_x H_z
-\hat{\partial}_x \hat{\partial}_y H_z)
+ \imath \omega (\hat{\partial}_x \epsilon_{xx} E_x + \hat{\partial}_y \epsilon{yy} E_y))
&= \frac{1}{\imath \beta \epsilon_{zz}} (\hat{\partial}_x \epsilon_{xx} E_x + \hat{\partial}_y \epsilon{yy} E_y)
\end{aligned}
$$
Args:
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`
It should satisfy `operator_e() @ e_xy == wavenumber**2 * e_xy`
@ -905,7 +931,7 @@ def inner_product( # TODO documentation
prop_phase: float = 0,
conj_h: bool = False,
trapezoid: bool = False,
) -> tuple[vcfdfield_t, vcfdfield_t]:
) -> complex:
shape = [s.size for s in dxes[0]]
@ -920,7 +946,7 @@ def inner_product( # TODO documentation
# Find time-averaged Sz and normalize to it
dxes_real = [[numpy.real(dxyz) for dxyz in dxeh] for dxeh in dxes]
if integrate:
if trapezoid:
Sz_a = numpy.trapezoid(numpy.trapezoid(E1[0] * H2[1], numpy.cumsum(dxes_real[0][1])), numpy.cumsum(dxes_real[1][0]))
Sz_b = numpy.trapezoid(numpy.trapezoid(E1[1] * H2[0], numpy.cumsum(dxes_real[0][0])), numpy.cumsum(dxes_real[1][1]))
else:

View File

@ -1,14 +1,66 @@
"""
r"""
Operators and helper functions for cylindrical waveguides with unchanging cross-section.
WORK IN PROGRESS, CURRENTLY BROKEN
Waveguide operator is derived according to 10.1364/OL.33.001848.
The curl equations in the complex coordinate system become
As the z-dependence is known, all the functions in this file assume a 2D grid
$$
\begin{aligned}
-\imath \omega \mu_{xx} H_x &= \tilde{\partial}_y E_z + \imath \beta frac{E_y}{\tilde{t}_x} \\
-\imath \omega \mu_{yy} H_y &= -\imath \beta E_x - \frac{1}{\hat{t}_x} \tilde{\partial}_x \tilde{t}_x E_z \\
-\imath \omega \mu_{zz} H_z &= \tilde{\partial}_x E_y - \tilde{\partial}_y E_x \\
\imath \omega \epsilon_{xx} E_x &= \hat{\partial}_y H_z + \imath \beta \frac{H_y}{\hat{T}} \\
\imath \omega \epsilon_{yy} E_y &= -\imath \beta H_x - \{1}{\tilde{t}_x} \hat{\partial}_x \hat{t}_x} H_z \\
\imath \omega \epsilon_{zz} E_z &= \hat{\partial}_x H_y - \hat{\partial}_y H_x \\
\end{aligned}
$$
where $t_x = 1 + \frac{\Delta_{x, m}}{R_0}$ is the grid spacing adjusted by the nominal radius $R0$.
Rewrite the last three equations as
$$
\begin{aligned}
\imath \beta H_y &= \imath \omega \hat{t}_x \epsilon_{xx} E_x - \hat{t}_x \hat{\partial}_y H_z \\
\imath \beta H_x &= -\imath \omega \hat{t}_x \epsilon_{yy} E_y - \hat{t}_x \hat{\partial}_x H_z \\
\imath \omega E_z &= \frac{1}{\epsilon_{zz}} \hat{\partial}_x H_y - \frac{1}{\epsilon_{zz}} \hat{\partial}_y H_x \\
\end{aligned}
$$
The derivation then follows the same steps as the straight waveguide, leading to the eigenvalue problem
$$
\beta^2 \begin{bmatrix} E_x \\
E_y \end{bmatrix} =
(\omega^2 \begin{bmatrix} T_b T_b \mu_{yy} \epsilon_{xx} & 0 \\
0 & T_a T_a \mu_{xx} \epsilon_{yy} \end{bmatrix} +
\begin{bmatrix} -T_b \mu_{yy} \hat{\partial}_y \\
T_a \mu_{xx} \hat{\partial}_x \end{bmatrix} T_b \mu_{zz}^{-1}
\begin{bmatrix} -\tilde{\partial}_y & \tilde{\partial}_x \end{bmatrix} +
\begin{bmatrix} \tilde{\partial}_x \\
\tilde{\partial}_y \end{bmatrix} T_a \epsilon_{zz}^{-1}
\begin{bmatrix} \hat{\partial}_x T_b \epsilon_{xx} & \hat{\partial}_y T_a \epsilon_{yy} \end{bmatrix})
\begin{bmatrix} E_x \\
E_y \end{bmatrix}
$$
which resembles the straight waveguide eigenproblem with additonal $T_a$ and $T_b$ terms. These
are diagonal matrices containing the $t_x$ values:
$$
\begin{aligned}
T_a &= 1 + \frac{\Delta_{x, m }}{R_0}
T_b &= 1 + \frac{\Delta_{x, m + \frac{1}{2} }}{R_0}
\end{aligned}
TODO: consider 10.1364/OE.20.021583 for an alternate approach
$$
As in the straight waveguide case, all the functions in this file assume a 2D grid
(i.e. `dxes = [[[dr_e_0, dx_e_1, ...], [dy_e_0, ...]], [[dr_h_0, ...], [dy_h_0, ...]]]`).
"""
# TODO update module docs
from typing import Any
from typing import Any, cast
from collections.abc import Sequence
import logging
@ -19,7 +71,7 @@ from scipy import sparse
from ..fdmath import vec, unvec, dx_lists_t, vfdfield_t, vcfdfield_t
from ..fdmath.operators import deriv_forward, deriv_back
from ..eigensolvers import signed_eigensolve, rayleigh_quotient_iteration
from . import waveguide_2d
logger = logging.getLogger(__name__)
@ -30,13 +82,21 @@ def cylindrical_operator(
epsilon: vfdfield_t,
rmin: float,
) -> sparse.spmatrix:
"""
r"""
Cylindrical coordinate waveguide operator of the form
(NOTE: See 10.1364/OL.33.001848)
TODO: consider 10.1364/OE.20.021583
TODO
$$
(\omega^2 \begin{bmatrix} T_b T_b \mu_{yy} \epsilon_{xx} & 0 \\
0 & T_a T_a \mu_{xx} \epsilon_{yy} \end{bmatrix} +
\begin{bmatrix} -T_b \mu_{yy} \hat{\partial}_y \\
T_a \mu_{xx} \hat{\partial}_x \end{bmatrix} T_b \mu_{zz}^{-1}
\begin{bmatrix} -\tilde{\partial}_y & \tilde{\partial}_x \end{bmatrix} +
\begin{bmatrix} \tilde{\partial}_x \\
\tilde{\partial}_y \end{bmatrix} T_a \epsilon_{zz}^{-1}
\begin{bmatrix} \hat{\partial}_x T_b \epsilon_{xx} & \hat{\partial}_y T_a \epsilon_{yy} \end{bmatrix})
\begin{bmatrix} E_x \\
E_y \end{bmatrix}
$$
for use with a field vector of the form `[E_r, E_y]`.
@ -46,11 +106,13 @@ def cylindrical_operator(
which can then be solved for the eigenmodes of the system
(an `exp(-i * wavenumber * theta)` theta-dependence is assumed for the fields).
(NOTE: See module docs and 10.1364/OL.33.001848)
Args:
omega: The angular frequency of the system
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
epsilon: Vectorized dielectric constant grid
rmin: Radius at the left edge of the simulation domain (minimum 'x')
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
Returns:
Sparse matrix representation of the operator
@ -62,9 +124,9 @@ def cylindrical_operator(
Ta, Tb = dxes2T(dxes=dxes, rmin=rmin)
eps_parts = numpy.split(epsilon, 3)
eps_x = sparse.diags(eps_parts[0])
eps_y = sparse.diags(eps_parts[1])
eps_z_inv = sparse.diags(1 / eps_parts[2])
eps_x = sparse.diags_array(eps_parts[0])
eps_y = sparse.diags_array(eps_parts[1])
eps_z_inv = sparse.diags_array(1 / eps_parts[2])
omega2 = omega * omega
diag = sparse.block_diag
@ -74,18 +136,6 @@ def cylindrical_operator(
lin0 = sparse.vstack((-Tb @ Dby, Ta @ Dbx)) @ Tb @ sparse.hstack((-Dfy, Dfx))
lin1 = sparse.vstack((Dfx, Dfy)) @ Ta @ eps_z_inv @ sparse.hstack((Dbx @ Tb @ eps_x,
Dby @ Ta @ eps_y))
# op = (
# # E
# omega * omega * mu_yx @ eps_xy
# + mu_yx @ sparse.vstack((-Dby, Dbx)) @ mu_z_inv @ sparse.hstack((-Dfy, Dfx))
# + sparse.vstack((Dfx, Dfy)) @ eps_z_inv @ sparse.hstack((Dbx, Dby)) @ eps_xy
# # H
# omega * omega * eps_yx @ mu_xy
# + eps_yx @ sparse.vstack((-Dfy, Dfx)) @ eps_z_inv @ sparse.hstack((-Dby, Dbx))
# + sparse.vstack((Dbx, Dby)) @ mu_z_inv @ sparse.hstack((Dfx, Dfy)) @ mu_xy
# )
op = sq0 + lin0 + lin1
return op
@ -99,7 +149,6 @@ def solve_modes(
mode_margin: int = 2,
) -> tuple[vcfdfield_t, NDArray[numpy.complex128]]:
"""
TODO: fixup
Given a 2d (r, y) slice of epsilon, attempts to solve for the eigenmode
of the bent waveguide with the specified mode number.
@ -142,7 +191,7 @@ def solve_modes(
# Wavenumbers assume the mode is at rmin, which is unlikely
# Instead, return the wavenumber in inverse radians
angular_wavenumbers = wavenumbers * rmin
angular_wavenumbers = wavenumbers * cast(complex, rmin)
order = angular_wavenumbers.argsort()[::-1]
e_xys = e_xys[order]
@ -168,7 +217,7 @@ def solve_mode(
(e_xy, angular_wavenumber)
"""
kwargs['mode_numbers'] = [mode_number]
e_xys, wavenumbers = solve_modes(*args, **kwargs)
e_xys, angular_wavenumbers = solve_modes(*args, **kwargs)
return e_xys[0], angular_wavenumbers[0]
@ -184,11 +233,13 @@ def linear_wavenumbers(
and the mode's energy distribution.
Args:
e_xys: Vectorized mode fields with shape [num_modes, 2 * x *y)
angular_wavenumbers: Angular wavenumbers corresponding to the fields in `e_xys`
e_xys: Vectorized mode fields with shape (num_modes, 2 * x *y)
angular_wavenumbers: Wavenumbers assuming fields have theta-dependence of
`exp(-i * angular_wavenumber * theta)`. They should satisfy
`operator_e() @ e_xy == (angular_wavenumber / rmin) ** 2 * e_xy`
epsilon: Vectorized dielectric constant grid with shape (3, x, y)
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
rmin: Radius at the left edge of the simulation domain (minimum 'x')
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
Returns:
NDArray containing the calculated linear (1/distance) wavenumbers
@ -211,3 +262,241 @@ def linear_wavenumbers(
return lin_wavenumbers
def exy2h(
angular_wavenumber: complex,
omega: float,
dxes: dx_lists_t,
rmin: float,
epsilon: vfdfield_t,
mu: vfdfield_t | None = None
) -> sparse.spmatrix:
"""
Operator which transforms the vector `e_xy` containing the vectorized E_x and E_y fields,
into a vectorized H containing all three H components
Args:
angular_wavenumber: Wavenumber assuming fields have theta-dependence of
`exp(-i * angular_wavenumber * theta)`. It should satisfy
`operator_e() @ e_xy == (angular_wavenumber / rmin) ** 2 * e_xy`
omega: The angular frequency of the system
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
epsilon: Vectorized dielectric constant grid
mu: Vectorized magnetic permeability grid (default 1 everywhere)
Returns:
Sparse matrix representing the operator.
"""
e2hop = e2h(angular_wavenumber=angular_wavenumber, omega=omega, dxes=dxes, rmin=rmin, mu=mu)
return e2hop @ exy2e(angular_wavenumber=angular_wavenumber, omega=omega, dxes=dxes, rmin=rmin, epsilon=epsilon)
def exy2e(
angular_wavenumber: complex,
omega: float,
dxes: dx_lists_t,
rmin: float,
epsilon: vfdfield_t,
) -> sparse.spmatrix:
"""
Operator which transforms the vector `e_xy` containing the vectorized E_x and E_y fields,
into a vectorized E containing all three E components
Unlike the straight waveguide case, the H_z components do not cancel and must be calculated
from E_x and E_y in order to then calculate E_z.
Args:
angular_wavenumber: Wavenumber assuming fields have theta-dependence of
`exp(-i * angular_wavenumber * theta)`. It should satisfy
`operator_e() @ e_xy == (angular_wavenumber / rmin) ** 2 * e_xy`
omega: The angular frequency of the system
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
epsilon: Vectorized dielectric constant grid
Returns:
Sparse matrix representing the operator.
"""
Dfx, Dfy = deriv_forward(dxes[0])
Dbx, Dby = deriv_back(dxes[1])
wavenumber = angular_wavenumber / rmin
Ta, Tb = dxes2T(dxes=dxes, rmin=rmin)
Tai = sparse.diags_array(1 / Ta.diagonal())
Tbi = sparse.diags_array(1 / Tb.diagonal())
epsilon_parts = numpy.split(epsilon, 3)
epsilon_x, epsilon_y = (sparse.diags_array(epsi) for epsi in epsilon_parts[:2])
epsilon_z_inv = sparse.diags_array(1 / epsilon_parts[2])
n_pts = dxes[0][0].size * dxes[0][1].size
zeros = sparse.coo_array((n_pts, n_pts))
keep_x = sparse.block_array([[sparse.eye_array(n_pts), None], [None, zeros]])
keep_y = sparse.block_array([[zeros, None], [None, sparse.eye_array(n_pts)]])
mu_z = numpy.ones(n_pts)
mu_z_inv = sparse.diags_array(1 / mu_z)
exy2hz = 1 / (-1j * omega) * mu_z_inv @ sparse.hstack((Dfy, -Dfx))
hxy2ez = 1 / (1j * omega) * epsilon_z_inv @ sparse.hstack((Dby, -Dbx))
exy2hy = Tb / (1j * wavenumber) @ (-1j * omega * sparse.hstack((epsilon_x, zeros)) - Dby @ exy2hz)
exy2hx = Tb / (1j * wavenumber) @ ( 1j * omega * sparse.hstack((zeros, epsilon_y)) - Tai @ Dbx @ Tb @ exy2hz)
exy2ez = hxy2ez @ sparse.vstack((exy2hx, exy2hy))
op = sparse.vstack((sparse.eye_array(2 * n_pts),
exy2ez))
return op
def e2h(
angular_wavenumber: complex,
omega: complex,
dxes: dx_lists_t,
rmin: float,
mu: vfdfield_t | None = None
) -> sparse.spmatrix:
r"""
Returns an operator which, when applied to a vectorized E eigenfield, produces
the vectorized H eigenfield.
This operator is created directly from the initial coordinate-transformed equations:
$$
\begin{aligned}
\imath \omega \epsilon_{xx} E_x &= \hat{\partial}_y H_z + \imath \beta \frac{H_y}{\hat{T}} \\
\imath \omega \epsilon_{yy} E_y &= -\imath \beta H_x - \{1}{\tilde{t}_x} \hat{\partial}_x \hat{t}_x} H_z \\
\imath \omega \epsilon_{zz} E_z &= \hat{\partial}_x H_y - \hat{\partial}_y H_x \\
\end{aligned}
$$
Args:
angular_wavenumber: Wavenumber assuming fields have theta-dependence of
`exp(-i * angular_wavenumber * theta)`. It should satisfy
`operator_e() @ e_xy == (angular_wavenumber / rmin) ** 2 * e_xy`
omega: The angular frequency of the system
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
mu: Vectorized magnetic permeability grid (default 1 everywhere)
Returns:
Sparse matrix representation of the operator.
"""
Dfx, Dfy = deriv_forward(dxes[0])
Ta, Tb = dxes2T(dxes=dxes, rmin=rmin)
Tai = sparse.diags_array(1 / Ta.diagonal())
Tbi = sparse.diags_array(1 / Tb.diagonal())
jB = 1j * angular_wavenumber / rmin
op = sparse.block_array([[ None, -jB * Tai, -Dfy],
[jB * Tbi, None, Tbi @ Dfx @ Ta],
[ Dfy, -Dfx, None]]) / (-1j * omega)
if mu is not None:
op = sparse.diags_array(1 / mu) @ op
return op
def dxes2T(
dxes: dx_lists_t,
rmin: float,
) -> tuple[NDArray[numpy.float64], NDArray[numpy.float64]]:
r"""
Returns the $T_a$ and $T_b$ diagonal matrices which are used to apply the cylindrical
coordinate transformation in various operators.
Args:
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
Returns:
Sparse matrix representations of the operators Ta and Tb
"""
ra = rmin + numpy.cumsum(dxes[0][0]) # Radius at Ey points
rb = rmin + dxes[0][0] / 2.0 + numpy.cumsum(dxes[1][0]) # Radius at Ex points
ta = ra / rmin
tb = rb / rmin
Ta = sparse.diags_array(vec(ta[:, None].repeat(dxes[0][1].size, axis=1)))
Tb = sparse.diags_array(vec(tb[:, None].repeat(dxes[1][1].size, axis=1)))
return Ta, Tb
def normalized_fields_e(
e_xy: ArrayLike,
angular_wavenumber: complex,
omega: complex,
dxes: dx_lists_t,
rmin: float,
epsilon: vfdfield_t,
mu: vfdfield_t | None = None,
prop_phase: float = 0,
) -> tuple[vcfdfield_t, vcfdfield_t]:
"""
Given a vector `e_xy` containing the vectorized E_x and E_y fields,
returns normalized, vectorized E and H fields for the system.
Args:
e_xy: Vector containing E_x and E_y fields
angular_wavenumber: Wavenumber assuming fields have theta-dependence of
`exp(-i * angular_wavenumber * theta)`. It should satisfy
`operator_e() @ e_xy == (angular_wavenumber / rmin) ** 2 * e_xy`
omega: The angular frequency of the system
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
rmin: Radius at the left edge of the simulation domain (at minimum 'x')
epsilon: Vectorized dielectric constant grid
mu: Vectorized magnetic permeability grid (default 1 everywhere)
prop_phase: Phase shift `(dz * corrected_wavenumber)` over 1 cell in propagation direction.
Default 0 (continuous propagation direction, i.e. dz->0).
Returns:
`(e, h)`, where each field is vectorized, normalized,
and contains all three vector components.
"""
e = exy2e(angular_wavenumber=angular_wavenumber, omega=omega, dxes=dxes, rmin=rmin, epsilon=epsilon) @ e_xy
h = exy2h(angular_wavenumber=angular_wavenumber, omega=omega, dxes=dxes, rmin=rmin, epsilon=epsilon, mu=mu) @ e_xy
e_norm, h_norm = _normalized_fields(e=e, h=h, omega=omega, dxes=dxes, rmin=rmin, epsilon=epsilon,
mu=mu, prop_phase=prop_phase)
return e_norm, h_norm
def _normalized_fields(
e: vcfdfield_t,
h: vcfdfield_t,
omega: complex,
dxes: dx_lists_t,
rmin: float,
epsilon: vfdfield_t,
mu: vfdfield_t | None = None,
prop_phase: float = 0,
) -> tuple[vcfdfield_t, vcfdfield_t]:
h *= -1
# TODO documentation for normalized_fields
shape = [s.size for s in dxes[0]]
dxes_real = [[numpy.real(d) for d in numpy.meshgrid(*dxes[v], indexing='ij')] for v in (0, 1)]
# Find time-averaged Sz and normalize to it
# H phase is adjusted by a half-cell forward shift for Yee cell, and 1-cell reverse shift for Poynting
phase = numpy.exp(-1j * -prop_phase / 2)
Sz_tavg = waveguide_2d.inner_product(e, h, dxes=dxes, prop_phase=prop_phase, conj_h=True).real # Note, using linear poynting vector
assert Sz_tavg > 0, f'Found a mode propagating in the wrong direction! {Sz_tavg=}'
energy = numpy.real(epsilon * e.conj() * e)
norm_amplitude = 1 / numpy.sqrt(Sz_tavg)
norm_angle = -numpy.angle(e[energy.argmax()]) # Will randomly add a negative sign when mode is symmetric
# Try to break symmetry to assign a consistent sign [experimental]
E_weighted = unvec(e * energy * numpy.exp(1j * norm_angle), shape)
sign = numpy.sign(E_weighted[:,
:max(shape[0] // 2, 1),
:max(shape[1] // 2, 1)].real.sum())
assert sign != 0
norm_factor = sign * norm_amplitude * numpy.exp(1j * norm_angle)
print('\nAAA\n', waveguide_2d.inner_product(e, h, dxes, prop_phase=prop_phase))
e *= norm_factor
h *= norm_factor
print(f'{sign=} {norm_amplitude=} {norm_angle=} {prop_phase=}')
print(waveguide_2d.inner_product(e, h, dxes, prop_phase=prop_phase))
return e, h

View File

@ -14,7 +14,7 @@ from .types import fdfield_t, fdfield_updater_t
def deriv_forward(
dx_e: Sequence[NDArray[floating]] | None = None,
dx_e: Sequence[NDArray[floating | complexfloating]] | None = None,
) -> tuple[fdfield_updater_t, fdfield_updater_t, fdfield_updater_t]:
"""
Utility operators for taking discretized derivatives (backward variant).
@ -38,7 +38,7 @@ def deriv_forward(
def deriv_back(
dx_h: Sequence[NDArray[floating]] | None = None,
dx_h: Sequence[NDArray[floating | complexfloating]] | None = None,
) -> tuple[fdfield_updater_t, fdfield_updater_t, fdfield_updater_t]:
"""
Utility operators for taking discretized derivatives (forward variant).
@ -65,7 +65,7 @@ TT = TypeVar('TT', bound='NDArray[floating | complexfloating]')
def curl_forward(
dx_e: Sequence[NDArray[floating]] | None = None,
dx_e: Sequence[NDArray[floating | complexfloating]] | None = None,
) -> Callable[[TT], TT]:
r"""
Curl operator for use with the E field.
@ -94,7 +94,7 @@ def curl_forward(
def curl_back(
dx_h: Sequence[NDArray[floating]] | None = None,
dx_h: Sequence[NDArray[floating | complexfloating]] | None = None,
) -> Callable[[TT], TT]:
r"""
Create a function which takes the backward curl of a field.
@ -123,7 +123,7 @@ def curl_back(
def curl_forward_parts(
dx_e: Sequence[NDArray[floating]] | None = None,
dx_e: Sequence[NDArray[floating | complexfloating]] | None = None,
) -> Callable:
Dx, Dy, Dz = deriv_forward(dx_e)
@ -136,7 +136,7 @@ def curl_forward_parts(
def curl_back_parts(
dx_h: Sequence[NDArray[floating]] | None = None,
dx_h: Sequence[NDArray[floating | complexfloating]] | None = None,
) -> Callable:
Dx, Dy, Dz = deriv_back(dx_h)

View File

@ -6,7 +6,7 @@ Basic discrete calculus etc.
from collections.abc import Sequence
import numpy
from numpy.typing import NDArray
from numpy import floating
from numpy import floating, complexfloating
from scipy import sparse
from .types import vfdfield_t
@ -97,7 +97,7 @@ def shift_with_mirror(
def deriv_forward(
dx_e: Sequence[NDArray[floating]],
dx_e: Sequence[NDArray[floating | complexfloating]],
) -> list[sparse.spmatrix]:
"""
Utility operators for taking discretized derivatives (forward variant).
@ -124,7 +124,7 @@ def deriv_forward(
def deriv_back(
dx_h: Sequence[NDArray[floating]],
dx_h: Sequence[NDArray[floating | complexfloating]],
) -> list[sparse.spmatrix]:
"""
Utility operators for taking discretized derivatives (backward variant).
@ -219,7 +219,7 @@ def avg_back(axis: int, shape: Sequence[int]) -> sparse.spmatrix:
def curl_forward(
dx_e: Sequence[NDArray[floating]],
dx_e: Sequence[NDArray[floating | complexfloating]],
) -> sparse.spmatrix:
"""
Curl operator for use with the E field.
@ -235,7 +235,7 @@ def curl_forward(
def curl_back(
dx_h: Sequence[NDArray[floating]],
dx_h: Sequence[NDArray[floating | complexfloating]],
) -> sparse.spmatrix:
"""
Curl operator for use with the H field.

View File

@ -49,15 +49,15 @@ def vec(
@overload
def unvec(v: None, shape: Sequence[int], nvdim: int) -> None:
def unvec(v: None, shape: Sequence[int], nvdim: int = 3) -> None:
pass
@overload
def unvec(v: vfdfield_t, shape: Sequence[int], nvdim: int) -> fdfield_t:
def unvec(v: vfdfield_t, shape: Sequence[int], nvdim: int = 3) -> fdfield_t:
pass
@overload
def unvec(v: vcfdfield_t, shape: Sequence[int], nvdim: int) -> cfdfield_t:
def unvec(v: vcfdfield_t, shape: Sequence[int], nvdim: int = 3) -> cfdfield_t:
pass
def unvec(