Compare commits

...

4 Commits

Author SHA1 Message Date
e54735d9c6 Fix cylindrical waveguide module
- Properly account for rmin vs r0
- Change return values to match waveguide_2d
- Change operator definition to look more like waveguide_2d

remaining TODO:
- Fix docs
- Further consolidate operators vs waveguide_2d
- Figure out E/H field conversions
2025-01-07 00:10:15 -08:00
4f2433320d fix zip(strict=True) for 2D problems 2025-01-07 00:05:19 -08:00
47415a0beb Return list-of-vectors from waveguide mode solve 2025-01-07 00:04:53 -08:00
e459b5e61f clean up comments and some types 2025-01-07 00:04:01 -08:00
7 changed files with 103 additions and 83 deletions

View File

@ -40,7 +40,7 @@ __author__ = 'Jan Petykiewicz'
def e_full(
omega: complex,
dxes: dx_lists_t,
epsilon: vfdfield_t,
epsilon: vfdfield_t | vcfdfield_t,
mu: vfdfield_t | None = None,
pec: vfdfield_t | None = None,
pmc: vfdfield_t | None = None,

View File

@ -35,9 +35,9 @@ def _scipy_qmr(
Guess for solution (returned even if didn't converge)
"""
'''
Report on our progress
'''
#
#Report on our progress
#
ii = 0
def log_residual(xk: ArrayLike) -> None:
@ -56,10 +56,9 @@ def _scipy_qmr(
else:
kwargs['callback'] = log_residual
'''
Run the actual solve
'''
#
# Run the actual solve
#
x, _ = scipy.sparse.linalg.qmr(A, b, **kwargs)
return x

View File

@ -179,6 +179,7 @@ to account for numerical dispersion if the result is introduced into a space wit
# TODO update module docs
from typing import Any
from collections.abc import Sequence
import numpy
from numpy.typing import NDArray, ArrayLike
from numpy.linalg import norm
@ -845,13 +846,13 @@ def solve_modes(
ability to find the correct mode. Default 2.
Returns:
e_xys: list of vfdfield_t specifying fields
e_xys: NDArray of vfdfield_t specifying fields. First dimension is mode number.
wavenumbers: list of wavenumbers
"""
'''
Solve for the largest-magnitude eigenvalue of the real operator
'''
#
# Solve for the largest-magnitude eigenvalue of the real operator
#
dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes]
mu_real = None if mu is None else numpy.real(mu)
A_r = operator_e(numpy.real(omega), dxes_real, numpy.real(epsilon), mu_real)
@ -859,10 +860,10 @@ def solve_modes(
eigvals, eigvecs = signed_eigensolve(A_r, max(mode_numbers) + mode_margin)
e_xys = eigvecs[:, -(numpy.array(mode_numbers) + 1)]
'''
Now solve for the eigenvector of the full operator, using the real operator's
eigenvector as an initial guess for Rayleigh quotient iteration.
'''
#
# Now solve for the eigenvector of the full operator, using the real operator's
# eigenvector as an initial guess for Rayleigh quotient iteration.
#
A = operator_e(omega, dxes, epsilon, mu)
for nn in range(len(mode_numbers)):
eigvals[nn], e_xys[:, nn] = rayleigh_quotient_iteration(A, e_xys[:, nn])
@ -871,7 +872,7 @@ def solve_modes(
wavenumbers = numpy.sqrt(eigvals)
wavenumbers *= numpy.sign(numpy.real(wavenumbers))
return e_xys, wavenumbers
return e_xys.T, wavenumbers
def solve_mode(
@ -892,4 +893,4 @@ def solve_mode(
"""
kwargs['mode_numbers'] = [mode_number]
e_xys, wavenumbers = solve_modes(*args, **kwargs)
return e_xys[:, 0], wavenumbers[0]
return e_xys[0], wavenumbers[0]

View File

@ -53,9 +53,9 @@ def solve_mode(
slices = tuple(slices)
'''
Solve the 2D problem in the specified plane
'''
#
# Solve the 2D problem in the specified plane
#
# Define rotation to set z as propagation direction
order = numpy.roll(range(3), 2 - axis)
reverse_order = numpy.roll(range(3), axis - 2)
@ -73,9 +73,10 @@ def solve_mode(
}
e_xy, wavenumber_2d = waveguide_2d.solve_mode(mode_number, **args_2d)
'''
Apply corrections and expand to 3D
'''
#
# Apply corrections and expand to 3D
#
# Correct wavenumber to account for numerical dispersion.
wavenumber = 2 / dx_prop * numpy.arcsin(wavenumber_2d * dx_prop / 2)

View File

@ -8,10 +8,14 @@ As the z-dependence is known, all the functions in this file assume a 2D grid
"""
# TODO update module docs
from typing import Any
from collections.abc import Sequence
import numpy
from numpy.typing import NDArray, ArrayLike
from scipy import sparse
from ..fdmath import vec, unvec, dx_lists_t, vfdfield_t, cfdfield_t
from ..fdmath import vec, unvec, dx_lists_t, vfdfield_t, vcfdfield_t
from ..fdmath.operators import deriv_forward, deriv_back
from ..eigensolvers import signed_eigensolve, rayleigh_quotient_iteration
@ -21,6 +25,7 @@ def cylindrical_operator(
dxes: dx_lists_t,
epsilon: vfdfield_t,
r0: float,
rmin: float,
) -> sparse.spmatrix:
"""
Cylindrical coordinate waveguide operator of the form
@ -42,8 +47,8 @@ def cylindrical_operator(
omega: The angular frequency of the system
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
epsilon: Vectorized dielectric constant grid
r0: Radius of curvature for the simulation. This should be the minimum value of
r within the simulation domain.
r0: Radius of curvature at x=0
rmin: Radius at the left edge of the simulation domain
Returns:
Sparse matrix representation of the operator
@ -52,44 +57,52 @@ def cylindrical_operator(
Dfx, Dfy = deriv_forward(dxes[0])
Dbx, Dby = deriv_back(dxes[1])
rx = r0 + numpy.cumsum(dxes[0][0])
ry = r0 + dxes[0][0] / 2.0 + numpy.cumsum(dxes[1][0])
tx = rx / r0
ty = ry / r0
ra = rmin + dxes[0][0] / 2.0 + numpy.cumsum(dxes[1][0]) # Radius at Ex points
rb = rmin + numpy.cumsum(dxes[0][0]) # Radius at Ey points
ta = ra / r0
tb = rb / r0
Tx = sparse.diags(vec(tx[:, None].repeat(dxes[0][1].size, axis=1)))
Ty = sparse.diags(vec(ty[:, None].repeat(dxes[1][1].size, axis=1)))
Ta = sparse.diags(vec(ta[:, None].repeat(dxes[0][1].size, axis=1)))
Tb = sparse.diags(vec(tb[:, None].repeat(dxes[1][1].size, axis=1)))
eps_parts = numpy.split(epsilon, 3)
eps_x = sparse.diags(eps_parts[0])
eps_y = sparse.diags(eps_parts[1])
eps_z_inv = sparse.diags(1 / eps_parts[2])
pa = sparse.vstack((Dfx, Dfy)) @ Tx @ eps_z_inv @ sparse.hstack((Dbx, Dby))
pb = sparse.vstack((Dfx, Dfy)) @ Tx @ eps_z_inv @ sparse.hstack((Dby, Dbx))
a0 = Ty @ eps_x + omega**-2 * Dby @ Ty @ Dfy
a1 = Tx @ eps_y + omega**-2 * Dbx @ Ty @ Dfx
b0 = Dbx @ Ty @ Dfy
b1 = Dby @ Ty @ Dfx
omega2 = omega * omega
diag = sparse.block_diag
omega2 = omega * omega
sq0 = omega2 * diag((Tb @ Tb @ eps_x,
Ta @ Ta @ eps_y))
lin0 = sparse.vstack((-Tb @ Dby, Ta @ Dbx)) @ Tb @ sparse.hstack((-Dfy, Dfx))
lin1 = sparse.vstack((Dfx, Dfy)) @ Ta @ eps_z_inv @ sparse.hstack((Dbx @ Tb @ eps_x,
Dby @ Ta @ eps_y))
# op = (
# # E
# omega * omega * mu_yx @ eps_xy
# + mu_yx @ sparse.vstack((-Dby, Dbx)) @ mu_z_inv @ sparse.hstack((-Dfy, Dfx))
# + sparse.vstack((Dfx, Dfy)) @ eps_z_inv @ sparse.hstack((Dbx, Dby)) @ eps_xy
op = (
(omega2 * diag((Tx, Ty)) + pa) @ diag((a0, a1))
- (sparse.bmat(((None, Ty), (Tx, None))) + pb / omega2) @ diag((b0, b1))
)
# # H
# omega * omega * eps_yx @ mu_xy
# + eps_yx @ sparse.vstack((-Dfy, Dfx)) @ eps_z_inv @ sparse.hstack((-Dby, Dbx))
# + sparse.vstack((Dbx, Dby)) @ mu_z_inv @ sparse.hstack((Dfx, Dfy)) @ mu_xy
# )
op = sq0 + lin0 + lin1
return op
def solve_mode(
mode_number: int,
def solve_modes(
mode_numbers: Sequence[int],
omega: complex,
dxes: dx_lists_t,
epsilon: vfdfield_t,
r0: float,
) -> dict[str, complex | cfdfield_t]:
rmin: float,
mode_margin: int = 2,
) -> tuple[vcfdfield_t, NDArray[numpy.complex64]]:
"""
TODO: fixup
Given a 2d (r, y) slice of epsilon, attempts to solve for the eigenmode
@ -105,44 +118,50 @@ def solve_mode(
r within the simulation domain.
Returns:
```
{
'E': list[NDArray[numpy.complex_]],
'H': list[NDArray[numpy.complex_]],
'wavenumber': complex,
}
```
e_xys: NDArray of vfdfield_t specifying fields. First dimension is mode number.
wavenumbers: list of wavenumbers
"""
'''
Solve for the largest-magnitude eigenvalue of the real operator
'''
#
# Solve for the largest-magnitude eigenvalue of the real operator
#
dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes]
A_r = cylindrical_operator(numpy.real(omega), dxes_real, numpy.real(epsilon), r0)
eigvals, eigvecs = signed_eigensolve(A_r, mode_number + 3)
e_xy = eigvecs[:, -(mode_number + 1)]
A_r = cylindrical_operator(numpy.real(omega), dxes_real, numpy.real(epsilon), r0=r0, rmin=rmin)
eigvals, eigvecs = signed_eigensolve(A_r, max(mode_numbers) + mode_margin)
e_xys = eigvecs[:, -(numpy.array(mode_numbers) + 1)].T
'''
Now solve for the eigenvector of the full operator, using the real operator's
eigenvector as an initial guess for Rayleigh quotient iteration.
'''
A = cylindrical_operator(omega, dxes, epsilon, r0)
eigval, e_xy = rayleigh_quotient_iteration(A, e_xy)
#
# Now solve for the eigenvector of the full operator, using the real operator's
# eigenvector as an initial guess for Rayleigh quotient iteration.
#
A = cylindrical_operator(omega, dxes, epsilon, r0=r0, rmin=rmin)
for nn in range(len(mode_numbers)):
eigvals[nn], e_xys[nn, :] = rayleigh_quotient_iteration(A, e_xys[nn, :])
# Calculate the wave-vector (force the real part to be positive)
wavenumber = numpy.sqrt(eigval)
wavenumber *= numpy.sign(numpy.real(wavenumber))
wavenumbers = numpy.sqrt(eigvals)
wavenumbers *= numpy.sign(numpy.real(wavenumbers))
# TODO: Perform correction on wavenumber to account for numerical dispersion.
return e_xys, wavenumbers
shape = [d.size for d in dxes[0]]
e_xy = numpy.hstack((e_xy, numpy.zeros(shape[0] * shape[1])))
fields = {
'wavenumber': wavenumber,
'E': unvec(e_xy, shape),
# 'E': unvec(e, shape),
# 'H': unvec(h, shape),
}
return fields
def solve_mode(
mode_number: int,
*args: Any,
**kwargs: Any,
) -> tuple[vcfdfield_t, complex]:
"""
Wrapper around `solve_modes()` that solves for a single mode.
Args:
mode_number: 0-indexed mode number to solve for
*args: passed to `solve_modes()`
**kwargs: passed to `solve_modes()`
Returns:
(e_xy, wavenumber)
"""
kwargs['mode_numbers'] = [mode_number]
e_xys, wavenumbers = solve_modes(*args, **kwargs)
return e_xys[0], wavenumbers[0]

View File

@ -34,7 +34,7 @@ def shift_circ(
if axis not in range(len(shape)):
raise Exception(f'Invalid direction: {axis}, shape is {shape}')
shifts = [abs(shift_distance) if a == axis else 0 for a in range(3)]
shifts = [abs(shift_distance) if a == axis else 0 for a in range(len(shape))]
shifted_diags = [(numpy.arange(n) + s) % n for n, s in zip(shape, shifts, strict=True)]
ijk = numpy.meshgrid(*shifted_diags, indexing='ij')
@ -82,7 +82,7 @@ def shift_with_mirror(
v = numpy.where(v < 0, - 1 - v, v)
return v
shifts = [shift_distance if a == axis else 0 for a in range(3)]
shifts = [shift_distance if a == axis else 0 for a in range(len(shape))]
shifted_diags = [mirrored_range(n, s) for n, s in zip(shape, shifts, strict=True)]
ijk = numpy.meshgrid(*shifted_diags, indexing='ij')

View File

@ -20,7 +20,7 @@ vcfdfield_t = NDArray[complexfloating]
"""Linearized complex vector field (single vector of length 3*X*Y*Z)"""
dx_lists_t = Sequence[Sequence[NDArray[floating]]]
dx_lists_t = Sequence[Sequence[NDArray[floating | complexfloating]]]
"""
'dxes' datastructure which contains grid cell width information in the following format:
@ -31,7 +31,7 @@ dx_lists_t = Sequence[Sequence[NDArray[floating]]]
and `dy_h[0]` is the y-width of the `y=0` cells, as used when calculating dH/dy, etc.
"""
dx_lists_mut = MutableSequence[MutableSequence[NDArray[floating]]]
dx_lists_mut = MutableSequence[MutableSequence[NDArray[floating | complexfloating]]]
"""Mutable version of `dx_lists_t`"""