solve_waveguide_mode_2d -> vsolve_*
- return (e_xy. wavenumber) - vectorized inputs since we returned a vectorized output - exy -> e_xy
This commit is contained in:
parent
b5ad284966
commit
f04c0daf28
@ -1,4 +1,4 @@
|
||||
from typing import Dict, List
|
||||
from typing import Dict, List, Tuple
|
||||
import numpy
|
||||
import scipy.sparse as sparse
|
||||
|
||||
@ -7,13 +7,13 @@ from . import operators, waveguide, functional
|
||||
from ..eigensolvers import signed_eigensolve, rayleigh_quotient_iteration
|
||||
|
||||
|
||||
def solve_waveguide_mode_2d(mode_number: int,
|
||||
def vsolve_waveguide_mode_2d(mode_number: int,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: field_t,
|
||||
mu: field_t = None,
|
||||
epsilon: vfield_t,
|
||||
mu: vfield_t = None,
|
||||
mode_margin: int = 2,
|
||||
) -> Dict[str, complex or field_t]:
|
||||
) -> Tuple[vfield_t, complex]:
|
||||
"""
|
||||
Given a 2d region, attempts to solve for the eigenmode with the specified mode number.
|
||||
|
||||
@ -25,39 +25,31 @@ def solve_waveguide_mode_2d(mode_number: int,
|
||||
:param mode_margin: The eigensolver will actually solve for (mode_number + mode_margin)
|
||||
modes, but only return the target mode. Increasing this value can improve the solver's
|
||||
ability to find the correct mode. Default 2.
|
||||
:return: {'E': numpy.ndarray, 'H': numpy.ndarray, 'wavenumber': complex}
|
||||
:return: (e_xy, wavenumber)
|
||||
"""
|
||||
|
||||
'''
|
||||
Solve for the largest-magnitude eigenvalue of the real operator
|
||||
'''
|
||||
dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes]
|
||||
A_r = waveguide.operator_e(numpy.real(omega), dxes_real, vec(numpy.real(epsilon)), vec(numpy.real(mu)))
|
||||
A_r = waveguide.operator_e(numpy.real(omega), dxes_real, numpy.real(epsilon), numpy.real(mu))
|
||||
|
||||
eigvals, eigvecs = signed_eigensolve(A_r, mode_number + mode_margin)
|
||||
exy = eigvecs[:, -(mode_number + 1)]
|
||||
e_xy = eigvecs[:, -(mode_number + 1)]
|
||||
|
||||
'''
|
||||
Now solve for the eigenvector of the full operator, using the real operator's
|
||||
eigenvector as an initial guess for Rayleigh quotient iteration.
|
||||
'''
|
||||
A = waveguide.operator_e(omega, dxes, vec(epsilon), vec(mu))
|
||||
eigval, exy = rayleigh_quotient_iteration(A, exy)
|
||||
A = waveguide.operator_e(omega, dxes, epsilon, mu)
|
||||
eigval, e_xy = rayleigh_quotient_iteration(A, e_xy)
|
||||
|
||||
# Calculate the wave-vector (force the real part to be positive)
|
||||
wavenumber = numpy.sqrt(eigval)
|
||||
wavenumber *= numpy.sign(numpy.real(wavenumber))
|
||||
|
||||
e, h = waveguide.normalized_fields_e(exy, wavenumber, omega, dxes, vec(epsilon), vec(mu))
|
||||
return e_xy, wavenumber
|
||||
|
||||
shape = [d.size for d in dxes[0]]
|
||||
fields = {
|
||||
'wavenumber': wavenumber,
|
||||
'E': unvec(e, shape),
|
||||
'H': unvec(h, shape),
|
||||
}
|
||||
|
||||
return fields
|
||||
|
||||
|
||||
def solve_waveguide_mode(mode_number: int,
|
||||
@ -102,36 +94,42 @@ def solve_waveguide_mode(mode_number: int,
|
||||
|
||||
# Reduce to 2D and solve the 2D problem
|
||||
args_2d = {
|
||||
'omega': omega,
|
||||
'dxes': [[dx[i][slices[i]] for i in order[:2]] for dx in dxes],
|
||||
'epsilon': [epsilon[i][slices].transpose(order) for i in order],
|
||||
'mu': [mu[i][slices].transpose(order) for i in order],
|
||||
'epsilon': vec([epsilon[i][slices].transpose(order) for i in order]),
|
||||
'mu': vec([mu[i][slices].transpose(order) for i in order]),
|
||||
}
|
||||
fields_2d = solve_waveguide_mode_2d(mode_number, omega=omega, **args_2d)
|
||||
e_xy, wavenumber_2d = vsolve_waveguide_mode_2d(mode_number, **args_2d)
|
||||
|
||||
'''
|
||||
Apply corrections and expand to 3D
|
||||
'''
|
||||
# Correct wavenumber to account for numerical dispersion.
|
||||
print(fields_2d['wavenumber'] / (2/dx_prop * numpy.arcsin(fields_2d['wavenumber'] * dx_prop/2)))
|
||||
print(fields_2d['wavenumber'].real / (2/dx_prop * numpy.arcsin(fields_2d['wavenumber'].real * dx_prop/2)))
|
||||
fields_2d['wavenumber'] = 2/dx_prop * numpy.arcsin(fields_2d['wavenumber'] * dx_prop/2)
|
||||
wavenumber = 2/dx_prop * numpy.arcsin(wavenumber_2d * dx_prop/2)
|
||||
print(wavenumber_2d / wavenumber)
|
||||
|
||||
shape = [d.size for d in args_2d['dxes'][0]]
|
||||
ve, vh = waveguide.normalized_fields_e(e_xy, wavenumber=wavenumber_2d, **args_2d, prop_phase=dx_prop * wavenumber)
|
||||
e = unvec(ve, shape)
|
||||
h = unvec(vh, shape)
|
||||
|
||||
# Adjust for propagation direction
|
||||
fields_2d['H'] *= polarity
|
||||
h *= polarity
|
||||
|
||||
# Apply phase shift to H-field
|
||||
fields_2d['H'][:2] *= numpy.exp(-1j * polarity * 0.5 * fields_2d['wavenumber'] * dx_prop)
|
||||
fields_2d['E'][2] *= numpy.exp(-1j * polarity * 0.5 * fields_2d['wavenumber'] * dx_prop)
|
||||
h[:2] *= numpy.exp(-1j * polarity * 0.5 * wavenumber * dx_prop)
|
||||
e[2] *= numpy.exp(-1j * polarity * 0.5 * wavenumber * dx_prop)
|
||||
|
||||
# Expand E, H to full epsilon space we were given
|
||||
E = numpy.zeros_like(epsilon, dtype=complex)
|
||||
H = numpy.zeros_like(epsilon, dtype=complex)
|
||||
for a, o in enumerate(reverse_order):
|
||||
E[(a, *slices)] = fields_2d['E'][o][:, :, None].transpose(reverse_order)
|
||||
H[(a, *slices)] = fields_2d['H'][o][:, :, None].transpose(reverse_order)
|
||||
E[(a, *slices)] = e[o][:, :, None].transpose(reverse_order)
|
||||
H[(a, *slices)] = h[o][:, :, None].transpose(reverse_order)
|
||||
|
||||
results = {
|
||||
'wavenumber': fields_2d['wavenumber'],
|
||||
'wavenumber': wavenumber,
|
||||
'wavenumber_2d': wavenumber_2d,
|
||||
'H': H,
|
||||
'E': E,
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user