fix parital -> partial

This commit is contained in:
Jan Petykiewicz 2020-02-08 17:43:51 -08:00
parent bae1155c59
commit eb586ea8b7

View File

@ -187,7 +187,7 @@ def operator_e(omega: complex,
\\begin{bmatrix} \\hat{\\partial}_x \\epsilon_{xx} & \\hat{\\partial}_y \\epsilon_{yy} \\end{bmatrix} \\begin{bmatrix} \\hat{\\partial}_x \\epsilon_{xx} & \\hat{\\partial}_y \\epsilon_{yy} \\end{bmatrix}
$$ $$
\\( \\tilde{\\parital}_x} \\) and \\( \\hat{\\partial}_x \\) are the forward and backward derivatives along x, \\( \\tilde{\\partial}_x \\) and \\( \\hat{\\partial}_x \\) are the forward and backward derivatives along x,
and each \\( \\epsilon_{xx}, \\mu_{yy}, \\) etc. is a diagonal matrix containing the vectorized material and each \\( \\epsilon_{xx}, \\mu_{yy}, \\) etc. is a diagonal matrix containing the vectorized material
property distribution. property distribution.
@ -253,7 +253,7 @@ def operator_h(omega: complex,
\\begin{bmatrix} \\tilde{\\partial}_x \\mu_{xx} & \\tilde{\\partial}_y \\mu_{yy} \\end{bmatrix} \\begin{bmatrix} \\tilde{\\partial}_x \\mu_{xx} & \\tilde{\\partial}_y \\mu_{yy} \\end{bmatrix}
$$ $$
\\( \\tilde{\\parital}_x} \\) and \\( \\hat{\\partial}_x \\) are the forward and backward derivatives along x, \\( \\tilde{\\partial}_x \\) and \\( \\hat{\\partial}_x \\) are the forward and backward derivatives along x,
and each \\( \\epsilon_{xx}, \\mu_{yy}, \\) etc. is a diagonal matrix containing the vectorized material and each \\( \\epsilon_{xx}, \\mu_{yy}, \\) etc. is a diagonal matrix containing the vectorized material
property distribution. property distribution.