Fix cylindrical waveguide module

- Properly account for rmin vs r0
- Change return values to match waveguide_2d
- Change operator definition to look more like waveguide_2d

remaining TODO:
- Fix docs
- Further consolidate operators vs waveguide_2d
- Figure out E/H field conversions
This commit is contained in:
Jan Petykiewicz 2025-01-07 00:10:15 -08:00
parent 4f2433320d
commit e54735d9c6

View File

@ -8,10 +8,14 @@ As the z-dependence is known, all the functions in this file assume a 2D grid
"""
# TODO update module docs
from typing import Any
from collections.abc import Sequence
import numpy
from numpy.typing import NDArray, ArrayLike
from scipy import sparse
from ..fdmath import vec, unvec, dx_lists_t, vfdfield_t, cfdfield_t
from ..fdmath import vec, unvec, dx_lists_t, vfdfield_t, vcfdfield_t
from ..fdmath.operators import deriv_forward, deriv_back
from ..eigensolvers import signed_eigensolve, rayleigh_quotient_iteration
@ -21,6 +25,7 @@ def cylindrical_operator(
dxes: dx_lists_t,
epsilon: vfdfield_t,
r0: float,
rmin: float,
) -> sparse.spmatrix:
"""
Cylindrical coordinate waveguide operator of the form
@ -42,8 +47,8 @@ def cylindrical_operator(
omega: The angular frequency of the system
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
epsilon: Vectorized dielectric constant grid
r0: Radius of curvature for the simulation. This should be the minimum value of
r within the simulation domain.
r0: Radius of curvature at x=0
rmin: Radius at the left edge of the simulation domain
Returns:
Sparse matrix representation of the operator
@ -52,44 +57,52 @@ def cylindrical_operator(
Dfx, Dfy = deriv_forward(dxes[0])
Dbx, Dby = deriv_back(dxes[1])
rx = r0 + numpy.cumsum(dxes[0][0])
ry = r0 + dxes[0][0] / 2.0 + numpy.cumsum(dxes[1][0])
tx = rx / r0
ty = ry / r0
ra = rmin + dxes[0][0] / 2.0 + numpy.cumsum(dxes[1][0]) # Radius at Ex points
rb = rmin + numpy.cumsum(dxes[0][0]) # Radius at Ey points
ta = ra / r0
tb = rb / r0
Tx = sparse.diags(vec(tx[:, None].repeat(dxes[0][1].size, axis=1)))
Ty = sparse.diags(vec(ty[:, None].repeat(dxes[1][1].size, axis=1)))
Ta = sparse.diags(vec(ta[:, None].repeat(dxes[0][1].size, axis=1)))
Tb = sparse.diags(vec(tb[:, None].repeat(dxes[1][1].size, axis=1)))
eps_parts = numpy.split(epsilon, 3)
eps_x = sparse.diags(eps_parts[0])
eps_y = sparse.diags(eps_parts[1])
eps_z_inv = sparse.diags(1 / eps_parts[2])
pa = sparse.vstack((Dfx, Dfy)) @ Tx @ eps_z_inv @ sparse.hstack((Dbx, Dby))
pb = sparse.vstack((Dfx, Dfy)) @ Tx @ eps_z_inv @ sparse.hstack((Dby, Dbx))
a0 = Ty @ eps_x + omega**-2 * Dby @ Ty @ Dfy
a1 = Tx @ eps_y + omega**-2 * Dbx @ Ty @ Dfx
b0 = Dbx @ Ty @ Dfy
b1 = Dby @ Ty @ Dfx
omega2 = omega * omega
diag = sparse.block_diag
omega2 = omega * omega
sq0 = omega2 * diag((Tb @ Tb @ eps_x,
Ta @ Ta @ eps_y))
lin0 = sparse.vstack((-Tb @ Dby, Ta @ Dbx)) @ Tb @ sparse.hstack((-Dfy, Dfx))
lin1 = sparse.vstack((Dfx, Dfy)) @ Ta @ eps_z_inv @ sparse.hstack((Dbx @ Tb @ eps_x,
Dby @ Ta @ eps_y))
# op = (
# # E
# omega * omega * mu_yx @ eps_xy
# + mu_yx @ sparse.vstack((-Dby, Dbx)) @ mu_z_inv @ sparse.hstack((-Dfy, Dfx))
# + sparse.vstack((Dfx, Dfy)) @ eps_z_inv @ sparse.hstack((Dbx, Dby)) @ eps_xy
op = (
(omega2 * diag((Tx, Ty)) + pa) @ diag((a0, a1))
- (sparse.bmat(((None, Ty), (Tx, None))) + pb / omega2) @ diag((b0, b1))
)
# # H
# omega * omega * eps_yx @ mu_xy
# + eps_yx @ sparse.vstack((-Dfy, Dfx)) @ eps_z_inv @ sparse.hstack((-Dby, Dbx))
# + sparse.vstack((Dbx, Dby)) @ mu_z_inv @ sparse.hstack((Dfx, Dfy)) @ mu_xy
# )
op = sq0 + lin0 + lin1
return op
def solve_mode(
mode_number: int,
def solve_modes(
mode_numbers: Sequence[int],
omega: complex,
dxes: dx_lists_t,
epsilon: vfdfield_t,
r0: float,
) -> dict[str, complex | cfdfield_t]:
rmin: float,
mode_margin: int = 2,
) -> tuple[vcfdfield_t, NDArray[numpy.complex64]]:
"""
TODO: fixup
Given a 2d (r, y) slice of epsilon, attempts to solve for the eigenmode
@ -105,44 +118,50 @@ def solve_mode(
r within the simulation domain.
Returns:
```
{
'E': list[NDArray[numpy.complex_]],
'H': list[NDArray[numpy.complex_]],
'wavenumber': complex,
}
```
e_xys: NDArray of vfdfield_t specifying fields. First dimension is mode number.
wavenumbers: list of wavenumbers
"""
'''
Solve for the largest-magnitude eigenvalue of the real operator
'''
#
# Solve for the largest-magnitude eigenvalue of the real operator
#
dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes]
A_r = cylindrical_operator(numpy.real(omega), dxes_real, numpy.real(epsilon), r0)
eigvals, eigvecs = signed_eigensolve(A_r, mode_number + 3)
e_xy = eigvecs[:, -(mode_number + 1)]
A_r = cylindrical_operator(numpy.real(omega), dxes_real, numpy.real(epsilon), r0=r0, rmin=rmin)
eigvals, eigvecs = signed_eigensolve(A_r, max(mode_numbers) + mode_margin)
e_xys = eigvecs[:, -(numpy.array(mode_numbers) + 1)].T
'''
Now solve for the eigenvector of the full operator, using the real operator's
eigenvector as an initial guess for Rayleigh quotient iteration.
'''
A = cylindrical_operator(omega, dxes, epsilon, r0)
eigval, e_xy = rayleigh_quotient_iteration(A, e_xy)
#
# Now solve for the eigenvector of the full operator, using the real operator's
# eigenvector as an initial guess for Rayleigh quotient iteration.
#
A = cylindrical_operator(omega, dxes, epsilon, r0=r0, rmin=rmin)
for nn in range(len(mode_numbers)):
eigvals[nn], e_xys[nn, :] = rayleigh_quotient_iteration(A, e_xys[nn, :])
# Calculate the wave-vector (force the real part to be positive)
wavenumber = numpy.sqrt(eigval)
wavenumber *= numpy.sign(numpy.real(wavenumber))
wavenumbers = numpy.sqrt(eigvals)
wavenumbers *= numpy.sign(numpy.real(wavenumbers))
# TODO: Perform correction on wavenumber to account for numerical dispersion.
return e_xys, wavenumbers
shape = [d.size for d in dxes[0]]
e_xy = numpy.hstack((e_xy, numpy.zeros(shape[0] * shape[1])))
fields = {
'wavenumber': wavenumber,
'E': unvec(e_xy, shape),
# 'E': unvec(e, shape),
# 'H': unvec(h, shape),
}
return fields
def solve_mode(
mode_number: int,
*args: Any,
**kwargs: Any,
) -> tuple[vcfdfield_t, complex]:
"""
Wrapper around `solve_modes()` that solves for a single mode.
Args:
mode_number: 0-indexed mode number to solve for
*args: passed to `solve_modes()`
**kwargs: passed to `solve_modes()`
Returns:
(e_xy, wavenumber)
"""
kwargs['mode_numbers'] = [mode_number]
e_xys, wavenumbers = solve_modes(*args, **kwargs)
return e_xys[0], wavenumbers[0]