update fdtd and add some fdtd tests
This commit is contained in:
parent
ecaf9fa3d0
commit
dd4e6f294f
@ -3,6 +3,8 @@ import numpy
|
||||
|
||||
from . import dx_lists_t, field_t
|
||||
|
||||
#TODO fix pmls
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
@ -71,7 +73,7 @@ def maxwell_e(dt: float, dxes: dx_lists_t = None) -> functional_matrix:
|
||||
curl_h_fun = curl_h(dxes)
|
||||
|
||||
def me_fun(e: field_t, h: field_t, epsilon: field_t):
|
||||
e += dt * curl_h_fun(h)/ epsilon
|
||||
e += dt * curl_h_fun(h) / epsilon
|
||||
return e
|
||||
|
||||
return me_fun
|
||||
@ -150,7 +152,12 @@ def cpml(direction:int,
|
||||
dt: float,
|
||||
epsilon: field_t,
|
||||
thickness: int = 8,
|
||||
ln_R_per_layer: float = -1.6,
|
||||
epsilon_eff: float = 1,
|
||||
mu_eff: float = 1,
|
||||
m: float = 3.5,
|
||||
ma: float = 1,
|
||||
cfs_alpha: float = 0,
|
||||
dtype: numpy.dtype = numpy.float32,
|
||||
) -> Tuple[Callable, Callable, Dict[str, field_t]]:
|
||||
|
||||
@ -166,9 +173,9 @@ def cpml(direction:int,
|
||||
if epsilon_eff <= 0:
|
||||
raise Exception('epsilon_eff must be positive')
|
||||
|
||||
m = (3.5, 1)
|
||||
sigma_max = 0.8 * (m[0] + 1) / numpy.sqrt(epsilon_eff)
|
||||
alpha_max = 0 # TODO: Decide what to do about non-zero alpha
|
||||
sigma_max = -ln_R_per_layer / 2 * (m + 1)
|
||||
kappa_max = numpy.sqrt(epsilon_eff * mu_eff)
|
||||
alpha_max = cfs_alpha
|
||||
transverse = numpy.delete(range(3), direction)
|
||||
u, v = transverse
|
||||
|
||||
@ -187,14 +194,17 @@ def cpml(direction:int,
|
||||
expand_slice[direction] = slice(None)
|
||||
|
||||
def par(x):
|
||||
sigma = ((x / thickness) ** m[0]) * sigma_max
|
||||
alpha = ((1 - x / thickness) ** m[1]) * alpha_max
|
||||
p0 = numpy.exp(-(sigma + alpha) * dt)
|
||||
p1 = sigma / (sigma + alpha) * (p0 - 1)
|
||||
return p0[expand_slice], p1[expand_slice]
|
||||
scaling = (x / thickness) ** m
|
||||
sigma = scaling * sigma_max
|
||||
kappa = 1 + scaling * (kappa_max - 1)
|
||||
alpha = ((1 - x / thickness) ** ma) * alpha_max
|
||||
p0 = numpy.exp(-(sigma / kappa + alpha) * dt)
|
||||
p1 = sigma / (sigma + kappa * alpha) * (p0 - 1)
|
||||
p2 = 1 / kappa
|
||||
return p0[expand_slice], p1[expand_slice], p2[expand_slice]
|
||||
|
||||
p0e, p1e = par(xe)
|
||||
p0h, p1h = par(xh)
|
||||
p0e, p1e, p2e = par(xe)
|
||||
p0h, p1h, p2h = par(xh)
|
||||
|
||||
region = [slice(None)] * 3
|
||||
if polarity < 0:
|
||||
@ -204,12 +214,9 @@ def cpml(direction:int,
|
||||
else:
|
||||
raise Exception('Bad polarity!')
|
||||
|
||||
if direction == 1:
|
||||
se = 1
|
||||
else:
|
||||
se = -1
|
||||
se = 1 if direction == 1 else -1
|
||||
|
||||
# TODO check if epsilon is uniform?
|
||||
# TODO check if epsilon is uniform in pml region?
|
||||
shape = list(epsilon[0].shape)
|
||||
shape[direction] = thickness
|
||||
psi_e = [numpy.zeros(shape, dtype=dtype), numpy.zeros(shape, dtype=dtype)]
|
||||
@ -222,37 +229,107 @@ def cpml(direction:int,
|
||||
'psi_h_v': psi_h[1],
|
||||
}
|
||||
|
||||
# Note that this is kinda slow -- would be faster to reuse dHv*p2h for the original
|
||||
# H update, but then you have multiple arrays and a monolithic (field + pml) update operation
|
||||
def pml_e(e: field_t, h: field_t, epsilon: field_t) -> Tuple[field_t, field_t]:
|
||||
dHv = h[v][region] - numpy.roll(h[v], 1, axis=direction)[region]
|
||||
dHu = h[u][region] - numpy.roll(h[u], 1, axis=direction)[region]
|
||||
psi_e[0] *= p0e
|
||||
psi_e[0] += p1e * (h[v][region] - numpy.roll(h[v], 1, axis=direction)[region])
|
||||
psi_e[0] += p1e * dHv * p2e
|
||||
psi_e[1] *= p0e
|
||||
psi_e[1] += p1e * (h[u][region] - numpy.roll(h[u], 1, axis=direction)[region])
|
||||
e[u][region] += se * dt * psi_e[0] / epsilon[u][region]
|
||||
e[v][region] -= se * dt * psi_e[1] / epsilon[v][region]
|
||||
psi_e[1] += p1e * dHu * p2e
|
||||
e[u][region] += se * dt / epsilon[u][region] * (psi_e[0] + (p2e - 1) * dHv)
|
||||
e[v][region] -= se * dt / epsilon[v][region] * (psi_e[1] + (p2e - 1) * dHu)
|
||||
return e, h
|
||||
|
||||
def pml_h(e: field_t, h: field_t) -> Tuple[field_t, field_t]:
|
||||
dEv = (numpy.roll(e[v], -1, axis=direction)[region] - e[v][region])
|
||||
dEu = (numpy.roll(e[u], -1, axis=direction)[region] - e[u][region])
|
||||
psi_h[0] *= p0h
|
||||
psi_h[0] += p1h * (numpy.roll(e[v], -1, axis=direction)[region] - e[v][region])
|
||||
psi_h[0] += p1h * dEv * p2h
|
||||
psi_h[1] *= p0h
|
||||
psi_h[1] += p1h * (numpy.roll(e[u], -1, axis=direction)[region] - e[u][region])
|
||||
h[u][region] -= se * dt * psi_h[0]
|
||||
h[v][region] += se * dt * psi_h[1]
|
||||
psi_h[1] += p1h * dEu * p2h
|
||||
h[u][region] -= se * dt * (psi_h[0] + (p2h - 1) * dEv)
|
||||
h[v][region] += se * dt * (psi_h[1] + (p2h - 1) * dEu)
|
||||
return e, h
|
||||
|
||||
return pml_e, pml_h, fields
|
||||
|
||||
|
||||
def poynting(e, h):
|
||||
s = [numpy.roll(e[1], -1, axis=0) * h[2] - numpy.roll(e[2], -1, axis=0) * h[1],
|
||||
s = (numpy.roll(e[1], -1, axis=0) * h[2] - numpy.roll(e[2], -1, axis=0) * h[1],
|
||||
numpy.roll(e[2], -1, axis=1) * h[0] - numpy.roll(e[0], -1, axis=1) * h[2],
|
||||
numpy.roll(e[0], -1, axis=2) * h[1] - numpy.roll(e[1], -1, axis=2) * h[0]]
|
||||
numpy.roll(e[0], -1, axis=2) * h[1] - numpy.roll(e[1], -1, axis=2) * h[0])
|
||||
return numpy.array(s)
|
||||
|
||||
|
||||
def div_poyting(dt, dxes, e, h):
|
||||
def poynting_divergence(dt, dxes, s=None, *, e=None, h=None): # TODO dxes
|
||||
if s is None:
|
||||
s = poynting(e, h)
|
||||
ds = (s[0] - numpy.roll(s[0], 1, axis=0) +
|
||||
s[1] - numpy.roll(s[1], 1, axis=1) +
|
||||
s[2] - numpy.roll(s[2], 1, axis=2))
|
||||
ds = ((s[0] - numpy.roll(s[0], 1, axis=0)) / numpy.sqrt(dxes[0][0] * dxes[1][0])[:, None, None] +
|
||||
(s[1] - numpy.roll(s[1], 1, axis=1)) / numpy.sqrt(dxes[0][1] * dxes[1][1])[None, :, None] +
|
||||
(s[2] - numpy.roll(s[2], 1, axis=2)) / numpy.sqrt(dxes[0][2] * dxes[1][2])[None, None, :] )
|
||||
return ds
|
||||
|
||||
|
||||
def energy_hstep(e0, h1, e2, epsilon=None, mu=None, dxes=None):
|
||||
u = dxmul(e0 * e2, h1 * h1, epsilon, mu, dxes)
|
||||
return u
|
||||
|
||||
|
||||
def energy_estep(h0, e1, h2, epsilon=None, mu=None, dxes=None):
|
||||
u = dxmul(e1 * e1, h0 * h2, epsilon, mu, dxes)
|
||||
return u
|
||||
|
||||
|
||||
def delta_energy_h2e(dt, e0, h1, e2, h3, epsilon=None, mu=None, dxes=None):
|
||||
"""
|
||||
This is just from (e2 * e2 + h3 * h1) - (h1 * h1 + e0 * e2)
|
||||
"""
|
||||
de = e2 * (e2 - e0) / dt
|
||||
dh = h1 * (h3 - h1) / dt
|
||||
du = dt * dxmul(de, dh, epsilon, mu, dxes)
|
||||
return du
|
||||
|
||||
|
||||
def delta_energy_e2h(dt, h0, e1, h2, e3, epsilon=None, mu=None, dxes=None):
|
||||
"""
|
||||
This is just from (h2 * h2 + e3 * e1) - (e1 * e1 + h0 * h2)
|
||||
"""
|
||||
de = e1 * (e3 - e1) / dt
|
||||
dh = h2 * (h2 - h0) / dt
|
||||
du = dxmul(de, dh, epsilon, mu, dxes)
|
||||
return du
|
||||
|
||||
|
||||
def delta_energy_j(j0, e1, dxes=None):
|
||||
if dxes is None:
|
||||
dxes = tuple(tuple(numpy.ones(1) for _ in range(3)) for _ in range(2))
|
||||
|
||||
du = ((j0 * e1).sum(axis=0) *
|
||||
dxes[0][0][:, None, None] *
|
||||
dxes[0][1][None, :, None] *
|
||||
dxes[0][2][None, None, :])
|
||||
return du
|
||||
|
||||
|
||||
def dxmul(ee, hh, epsilon=None, mu=None, dxes=None):
|
||||
if epsilon is None:
|
||||
epsilon = 1
|
||||
if mu is None:
|
||||
mu = 1
|
||||
if dxes is None:
|
||||
dxes = tuple(tuple(numpy.ones(1) for _ in range(3)) for _ in range(2))
|
||||
|
||||
result = ((ee * epsilon).sum(axis=0) *
|
||||
dxes[0][0][:, None, None] *
|
||||
dxes[0][1][None, :, None] *
|
||||
dxes[0][2][None, None, :] +
|
||||
(hh * mu).sum(axis=0) *
|
||||
dxes[1][0][:, None, None] *
|
||||
dxes[1][1][None, :, None] *
|
||||
dxes[1][2][None, None, :])
|
||||
return result
|
||||
|
||||
|
||||
|
||||
|
68
fdfd_tools/test_fdtd.py
Normal file
68
fdfd_tools/test_fdtd.py
Normal file
@ -0,0 +1,68 @@
|
||||
import unittest
|
||||
import numpy
|
||||
|
||||
from fdfd_tools import fdtd
|
||||
|
||||
class TestBasic2D(unittest.TestCase):
|
||||
def setUp(self):
|
||||
shape = [3, 5, 5, 1]
|
||||
dt = 0.5
|
||||
epsilon = numpy.ones(shape, dtype=float)
|
||||
|
||||
src_mask = numpy.zeros_like(epsilon, dtype=bool)
|
||||
src_mask[1, 2, 2, 0] = True
|
||||
|
||||
e = numpy.zeros_like(epsilon)
|
||||
h = numpy.zeros_like(epsilon)
|
||||
e[src_mask] = 32
|
||||
es = [e]
|
||||
hs = [h]
|
||||
|
||||
eh2h = fdtd.maxwell_h(dt=dt)
|
||||
eh2e = fdtd.maxwell_e(dt=dt)
|
||||
for _ in range(9):
|
||||
e = e.copy()
|
||||
h = h.copy()
|
||||
eh2h(e, h)
|
||||
eh2e(e, h, epsilon)
|
||||
es.append(e)
|
||||
hs.append(h)
|
||||
|
||||
self.es = es
|
||||
self.hs = hs
|
||||
self.dt = dt
|
||||
self.epsilon = epsilon
|
||||
self.src_mask = src_mask
|
||||
|
||||
def test_initial_fields(self):
|
||||
# Make sure initial fields didn't change
|
||||
e0 = self.es[0]
|
||||
h0 = self.hs[0]
|
||||
self.assertEqual(e0[1, 2, 2, 0], 32)
|
||||
|
||||
self.assertFalse(e0[~self.src_mask].any())
|
||||
self.assertFalse(h0.any())
|
||||
|
||||
|
||||
def test_initial_energy(self):
|
||||
e0 = self.es[0]
|
||||
h0 = self.hs[0]
|
||||
h1 = self.hs[1]
|
||||
mask = self.src_mask[1]
|
||||
|
||||
# Make sure initial energy and E dot J are correct
|
||||
energy0 = fdtd.energy_estep(h0=h0, e1=e0, h2=self.hs[1])
|
||||
e_dot_j_0 = fdtd.delta_energy_j(j0=e0 - 0, e1=e0)
|
||||
self.assertEqual(energy0[mask], 32 * 32)
|
||||
self.assertFalse(energy0[~mask].any())
|
||||
self.assertEqual(e_dot_j_0[mask], 32 * 32)
|
||||
self.assertFalse(e_dot_j_0[~mask].any())
|
||||
|
||||
|
||||
def test_energy_conservation(self):
|
||||
for ii in range(1, 8):
|
||||
with self.subTest(i=ii):
|
||||
u_estep = fdtd.energy_estep(h0=self.hs[ii], e1=self.es[ii], h2=self.hs[ii + 1])
|
||||
u_hstep = fdtd.energy_hstep(e0=self.es[ii-1], h1=self.hs[ii], e2=self.es[ii])
|
||||
self.assertTrue(numpy.allclose(u_estep.sum(), 32 * 32))
|
||||
self.assertTrue(numpy.allclose(u_hstep.sum(), 32 * 32))
|
Loading…
Reference in New Issue
Block a user