update fdtd and add some fdtd tests
This commit is contained in:
		
							parent
							
								
									ecaf9fa3d0
								
							
						
					
					
						commit
						dd4e6f294f
					
				| @ -3,6 +3,8 @@ import numpy | |||||||
| 
 | 
 | ||||||
| from . import dx_lists_t, field_t | from . import dx_lists_t, field_t | ||||||
| 
 | 
 | ||||||
|  | #TODO fix pmls | ||||||
|  | 
 | ||||||
| __author__ = 'Jan Petykiewicz' | __author__ = 'Jan Petykiewicz' | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| @ -71,7 +73,7 @@ def maxwell_e(dt: float, dxes: dx_lists_t = None) -> functional_matrix: | |||||||
|     curl_h_fun = curl_h(dxes) |     curl_h_fun = curl_h(dxes) | ||||||
| 
 | 
 | ||||||
|     def me_fun(e: field_t, h: field_t, epsilon: field_t): |     def me_fun(e: field_t, h: field_t, epsilon: field_t): | ||||||
|         e += dt * curl_h_fun(h)/ epsilon |         e += dt * curl_h_fun(h) / epsilon | ||||||
|         return e |         return e | ||||||
| 
 | 
 | ||||||
|     return me_fun |     return me_fun | ||||||
| @ -150,7 +152,12 @@ def cpml(direction:int, | |||||||
|          dt: float, |          dt: float, | ||||||
|          epsilon: field_t, |          epsilon: field_t, | ||||||
|          thickness: int = 8, |          thickness: int = 8, | ||||||
|  |          ln_R_per_layer: float = -1.6, | ||||||
|          epsilon_eff: float = 1, |          epsilon_eff: float = 1, | ||||||
|  |          mu_eff: float = 1, | ||||||
|  |          m: float = 3.5, | ||||||
|  |          ma: float = 1, | ||||||
|  |          cfs_alpha: float = 0, | ||||||
|          dtype: numpy.dtype = numpy.float32, |          dtype: numpy.dtype = numpy.float32, | ||||||
|          ) -> Tuple[Callable, Callable, Dict[str, field_t]]: |          ) -> Tuple[Callable, Callable, Dict[str, field_t]]: | ||||||
| 
 | 
 | ||||||
| @ -166,9 +173,9 @@ def cpml(direction:int, | |||||||
|     if epsilon_eff <= 0: |     if epsilon_eff <= 0: | ||||||
|         raise Exception('epsilon_eff must be positive') |         raise Exception('epsilon_eff must be positive') | ||||||
| 
 | 
 | ||||||
|     m = (3.5, 1) |     sigma_max = -ln_R_per_layer / 2 * (m + 1) | ||||||
|     sigma_max = 0.8 * (m[0] + 1) / numpy.sqrt(epsilon_eff) |     kappa_max = numpy.sqrt(epsilon_eff * mu_eff) | ||||||
|     alpha_max = 0  # TODO: Decide what to do about non-zero alpha |     alpha_max = cfs_alpha | ||||||
|     transverse = numpy.delete(range(3), direction) |     transverse = numpy.delete(range(3), direction) | ||||||
|     u, v = transverse |     u, v = transverse | ||||||
| 
 | 
 | ||||||
| @ -187,14 +194,17 @@ def cpml(direction:int, | |||||||
|     expand_slice[direction] = slice(None) |     expand_slice[direction] = slice(None) | ||||||
| 
 | 
 | ||||||
|     def par(x): |     def par(x): | ||||||
|         sigma = ((x / thickness) ** m[0]) * sigma_max |         scaling = (x / thickness) ** m | ||||||
|         alpha = ((1 - x / thickness) ** m[1]) * alpha_max |         sigma = scaling * sigma_max | ||||||
|         p0 = numpy.exp(-(sigma + alpha) * dt) |         kappa = 1 + scaling * (kappa_max - 1) | ||||||
|         p1 = sigma / (sigma + alpha) * (p0 - 1) |         alpha = ((1 - x / thickness) ** ma) * alpha_max | ||||||
|         return p0[expand_slice], p1[expand_slice] |         p0 = numpy.exp(-(sigma / kappa + alpha) * dt) | ||||||
|  |         p1 = sigma / (sigma + kappa * alpha) * (p0 - 1) | ||||||
|  |         p2 = 1 / kappa | ||||||
|  |         return p0[expand_slice], p1[expand_slice], p2[expand_slice] | ||||||
| 
 | 
 | ||||||
|     p0e, p1e = par(xe) |     p0e, p1e, p2e = par(xe) | ||||||
|     p0h, p1h = par(xh) |     p0h, p1h, p2h = par(xh) | ||||||
| 
 | 
 | ||||||
|     region = [slice(None)] * 3 |     region = [slice(None)] * 3 | ||||||
|     if polarity < 0: |     if polarity < 0: | ||||||
| @ -204,12 +214,9 @@ def cpml(direction:int, | |||||||
|     else: |     else: | ||||||
|         raise Exception('Bad polarity!') |         raise Exception('Bad polarity!') | ||||||
| 
 | 
 | ||||||
|     if direction == 1: |     se = 1 if direction == 1 else -1 | ||||||
|         se = 1 |  | ||||||
|     else: |  | ||||||
|         se = -1 |  | ||||||
| 
 | 
 | ||||||
|     # TODO check if epsilon is uniform? |     # TODO check if epsilon is uniform in pml region? | ||||||
|     shape = list(epsilon[0].shape) |     shape = list(epsilon[0].shape) | ||||||
|     shape[direction] = thickness |     shape[direction] = thickness | ||||||
|     psi_e = [numpy.zeros(shape, dtype=dtype), numpy.zeros(shape, dtype=dtype)] |     psi_e = [numpy.zeros(shape, dtype=dtype), numpy.zeros(shape, dtype=dtype)] | ||||||
| @ -222,37 +229,107 @@ def cpml(direction:int, | |||||||
|         'psi_h_v': psi_h[1], |         'psi_h_v': psi_h[1], | ||||||
|     } |     } | ||||||
| 
 | 
 | ||||||
|  |     # Note that this is kinda slow -- would be faster to reuse dHv*p2h for the original | ||||||
|  |     #  H update, but then you have multiple arrays and a monolithic (field + pml) update operation | ||||||
|     def pml_e(e: field_t, h: field_t, epsilon: field_t) -> Tuple[field_t, field_t]: |     def pml_e(e: field_t, h: field_t, epsilon: field_t) -> Tuple[field_t, field_t]: | ||||||
|  |         dHv = h[v][region] - numpy.roll(h[v], 1, axis=direction)[region] | ||||||
|  |         dHu = h[u][region] - numpy.roll(h[u], 1, axis=direction)[region] | ||||||
|         psi_e[0] *= p0e |         psi_e[0] *= p0e | ||||||
|         psi_e[0] += p1e * (h[v][region] - numpy.roll(h[v], 1, axis=direction)[region]) |         psi_e[0] += p1e * dHv * p2e | ||||||
|         psi_e[1] *= p0e |         psi_e[1] *= p0e | ||||||
|         psi_e[1] += p1e * (h[u][region] - numpy.roll(h[u], 1, axis=direction)[region]) |         psi_e[1] += p1e * dHu * p2e | ||||||
|         e[u][region] += se * dt * psi_e[0] / epsilon[u][region] |         e[u][region] += se * dt / epsilon[u][region] * (psi_e[0] + (p2e - 1) * dHv) | ||||||
|         e[v][region] -= se * dt * psi_e[1] / epsilon[v][region] |         e[v][region] -= se * dt / epsilon[v][region] * (psi_e[1] + (p2e - 1) * dHu) | ||||||
|         return e, h |         return e, h | ||||||
| 
 | 
 | ||||||
|     def pml_h(e: field_t, h: field_t) -> Tuple[field_t, field_t]: |     def pml_h(e: field_t, h: field_t) -> Tuple[field_t, field_t]: | ||||||
|  |         dEv = (numpy.roll(e[v], -1, axis=direction)[region] - e[v][region]) | ||||||
|  |         dEu = (numpy.roll(e[u], -1, axis=direction)[region] - e[u][region]) | ||||||
|         psi_h[0] *= p0h |         psi_h[0] *= p0h | ||||||
|         psi_h[0] += p1h * (numpy.roll(e[v], -1, axis=direction)[region] - e[v][region]) |         psi_h[0] += p1h * dEv * p2h | ||||||
|         psi_h[1] *= p0h |         psi_h[1] *= p0h | ||||||
|         psi_h[1] += p1h * (numpy.roll(e[u], -1, axis=direction)[region] - e[u][region]) |         psi_h[1] += p1h * dEu * p2h | ||||||
|         h[u][region] -= se * dt * psi_h[0] |         h[u][region] -= se * dt * (psi_h[0] + (p2h - 1) * dEv) | ||||||
|         h[v][region] += se * dt * psi_h[1] |         h[v][region] += se * dt * (psi_h[1] + (p2h - 1) * dEu) | ||||||
|         return e, h |         return e, h | ||||||
| 
 | 
 | ||||||
|     return pml_e, pml_h, fields |     return pml_e, pml_h, fields | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| def poynting(e, h): | def poynting(e, h): | ||||||
|     s = [numpy.roll(e[1], -1, axis=0) * h[2] - numpy.roll(e[2], -1, axis=0) * h[1], |     s = (numpy.roll(e[1], -1, axis=0) * h[2] - numpy.roll(e[2], -1, axis=0) * h[1], | ||||||
|          numpy.roll(e[2], -1, axis=1) * h[0] - numpy.roll(e[0], -1, axis=1) * h[2], |          numpy.roll(e[2], -1, axis=1) * h[0] - numpy.roll(e[0], -1, axis=1) * h[2], | ||||||
|          numpy.roll(e[0], -1, axis=2) * h[1] - numpy.roll(e[1], -1, axis=2) * h[0]] |          numpy.roll(e[0], -1, axis=2) * h[1] - numpy.roll(e[1], -1, axis=2) * h[0]) | ||||||
|     return numpy.array(s) |     return numpy.array(s) | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| def div_poyting(dt, dxes, e, h): | def poynting_divergence(dt, dxes, s=None, *, e=None, h=None): # TODO dxes | ||||||
|  |     if s is None: | ||||||
|         s = poynting(e, h) |         s = poynting(e, h) | ||||||
|     ds = (s[0] - numpy.roll(s[0], 1, axis=0) + |     ds = ((s[0] - numpy.roll(s[0], 1, axis=0)) / numpy.sqrt(dxes[0][0] * dxes[1][0])[:, None, None] + | ||||||
|           s[1] - numpy.roll(s[1], 1, axis=1) + |           (s[1] - numpy.roll(s[1], 1, axis=1)) / numpy.sqrt(dxes[0][1] * dxes[1][1])[None, :, None] + | ||||||
|           s[2] - numpy.roll(s[2], 1, axis=2)) |           (s[2] - numpy.roll(s[2], 1, axis=2)) / numpy.sqrt(dxes[0][2] * dxes[1][2])[None, None, :] ) | ||||||
|     return ds |     return ds | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def energy_hstep(e0, h1, e2, epsilon=None, mu=None, dxes=None): | ||||||
|  |     u = dxmul(e0 * e2, h1 * h1, epsilon, mu, dxes) | ||||||
|  |     return u | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def energy_estep(h0, e1, h2, epsilon=None, mu=None, dxes=None): | ||||||
|  |     u = dxmul(e1 * e1, h0 * h2, epsilon, mu, dxes) | ||||||
|  |     return u | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def delta_energy_h2e(dt, e0, h1, e2, h3, epsilon=None, mu=None, dxes=None): | ||||||
|  |     """ | ||||||
|  |     This is just from (e2 * e2 + h3 * h1) - (h1 * h1 + e0 * e2) | ||||||
|  |     """ | ||||||
|  |     de = e2 * (e2 - e0) / dt | ||||||
|  |     dh = h1 * (h3 - h1) / dt | ||||||
|  |     du = dt * dxmul(de, dh, epsilon, mu, dxes) | ||||||
|  |     return du | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def delta_energy_e2h(dt, h0, e1, h2, e3, epsilon=None, mu=None, dxes=None): | ||||||
|  |     """ | ||||||
|  |     This is just from (h2 * h2 + e3 * e1) - (e1 * e1 + h0 * h2) | ||||||
|  |     """ | ||||||
|  |     de = e1 * (e3 - e1) / dt | ||||||
|  |     dh = h2 * (h2 - h0) / dt | ||||||
|  |     du = dxmul(de, dh, epsilon, mu, dxes) | ||||||
|  |     return du | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def delta_energy_j(j0, e1, dxes=None): | ||||||
|  |     if dxes is None: | ||||||
|  |         dxes = tuple(tuple(numpy.ones(1) for _ in range(3)) for _ in range(2)) | ||||||
|  | 
 | ||||||
|  |     du = ((j0 * e1).sum(axis=0) * | ||||||
|  |           dxes[0][0][:, None, None] * | ||||||
|  |           dxes[0][1][None, :, None] * | ||||||
|  |           dxes[0][2][None, None, :]) | ||||||
|  |     return du | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def dxmul(ee, hh, epsilon=None, mu=None, dxes=None): | ||||||
|  |     if epsilon is None: | ||||||
|  |         epsilon = 1 | ||||||
|  |     if mu is None: | ||||||
|  |         mu = 1 | ||||||
|  |     if dxes is None: | ||||||
|  |         dxes = tuple(tuple(numpy.ones(1) for _ in range(3)) for _ in range(2)) | ||||||
|  | 
 | ||||||
|  |     result = ((ee * epsilon).sum(axis=0) * | ||||||
|  |               dxes[0][0][:, None, None] * | ||||||
|  |               dxes[0][1][None, :, None] * | ||||||
|  |               dxes[0][2][None, None, :] + | ||||||
|  |               (hh * mu).sum(axis=0) * | ||||||
|  |               dxes[1][0][:, None, None] * | ||||||
|  |               dxes[1][1][None, :, None] * | ||||||
|  |               dxes[1][2][None, None, :]) | ||||||
|  |     return result | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | |||||||
							
								
								
									
										68
									
								
								fdfd_tools/test_fdtd.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										68
									
								
								fdfd_tools/test_fdtd.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,68 @@ | |||||||
|  | import unittest | ||||||
|  | import numpy | ||||||
|  | 
 | ||||||
|  | from fdfd_tools import fdtd | ||||||
|  | 
 | ||||||
|  | class TestBasic2D(unittest.TestCase): | ||||||
|  |     def setUp(self): | ||||||
|  |         shape = [3, 5, 5, 1] | ||||||
|  |         dt = 0.5 | ||||||
|  |         epsilon = numpy.ones(shape, dtype=float) | ||||||
|  | 
 | ||||||
|  |         src_mask = numpy.zeros_like(epsilon, dtype=bool) | ||||||
|  |         src_mask[1, 2, 2, 0] = True | ||||||
|  | 
 | ||||||
|  |         e = numpy.zeros_like(epsilon) | ||||||
|  |         h = numpy.zeros_like(epsilon) | ||||||
|  |         e[src_mask] = 32 | ||||||
|  |         es = [e] | ||||||
|  |         hs = [h] | ||||||
|  | 
 | ||||||
|  |         eh2h = fdtd.maxwell_h(dt=dt) | ||||||
|  |         eh2e = fdtd.maxwell_e(dt=dt) | ||||||
|  |         for _ in range(9): | ||||||
|  |             e = e.copy() | ||||||
|  |             h = h.copy() | ||||||
|  |             eh2h(e, h) | ||||||
|  |             eh2e(e, h, epsilon) | ||||||
|  |             es.append(e) | ||||||
|  |             hs.append(h) | ||||||
|  | 
 | ||||||
|  |         self.es = es | ||||||
|  |         self.hs = hs | ||||||
|  |         self.dt = dt | ||||||
|  |         self.epsilon = epsilon | ||||||
|  |         self.src_mask = src_mask | ||||||
|  | 
 | ||||||
|  |     def test_initial_fields(self): | ||||||
|  |         # Make sure initial fields didn't change | ||||||
|  |         e0 = self.es[0] | ||||||
|  |         h0 = self.hs[0] | ||||||
|  |         self.assertEqual(e0[1, 2, 2, 0], 32) | ||||||
|  | 
 | ||||||
|  |         self.assertFalse(e0[~self.src_mask].any()) | ||||||
|  |         self.assertFalse(h0.any()) | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  |     def test_initial_energy(self): | ||||||
|  |         e0 = self.es[0] | ||||||
|  |         h0 = self.hs[0] | ||||||
|  |         h1 = self.hs[1] | ||||||
|  |         mask = self.src_mask[1] | ||||||
|  | 
 | ||||||
|  |         # Make sure initial energy and E dot J are correct | ||||||
|  |         energy0 = fdtd.energy_estep(h0=h0, e1=e0, h2=self.hs[1]) | ||||||
|  |         e_dot_j_0 = fdtd.delta_energy_j(j0=e0 - 0, e1=e0) | ||||||
|  |         self.assertEqual(energy0[mask], 32 * 32) | ||||||
|  |         self.assertFalse(energy0[~mask].any()) | ||||||
|  |         self.assertEqual(e_dot_j_0[mask], 32 * 32) | ||||||
|  |         self.assertFalse(e_dot_j_0[~mask].any()) | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  |     def test_energy_conservation(self): | ||||||
|  |         for ii in range(1, 8): | ||||||
|  |             with self.subTest(i=ii): | ||||||
|  |                 u_estep = fdtd.energy_estep(h0=self.hs[ii], e1=self.es[ii], h2=self.hs[ii + 1]) | ||||||
|  |                 u_hstep = fdtd.energy_hstep(e0=self.es[ii-1], h1=self.hs[ii], e2=self.es[ii]) | ||||||
|  |                 self.assertTrue(numpy.allclose(u_estep.sum(), 32 * 32)) | ||||||
|  |                 self.assertTrue(numpy.allclose(u_hstep.sum(), 32 * 32)) | ||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user