comment out some eme notes

This commit is contained in:
Jan Petykiewicz 2024-03-18 10:54:51 -07:00
parent 99461dc129
commit ce3e47daa9

View File

@ -1,169 +1,173 @@
from simphony.elements import Model
from simphony.netlist import Subcircuit
from simphony.simulation import SweepSimulation
from matplotlib import pyplot as plt
import scipy
import numpy
from numpy.typing import ArrayLike, NDarray
class PeriodicLayer(Model):
def __init__(self, left_modes, right_modes, s_params):
self.left_modes = left_modes
self.right_modes = right_modes
self.left_ports = len(self.left_modes)
self.right_ports = len(self.right_modes)
self.normalize_fields()
self.s_params = s_params
def normalize_fields(self):
for mode in range(len(self.left_modes)):
self.left_modes[mode].normalize()
for mode in range(len(self.right_modes)):
self.right_modes[mode].normalize()
class PeriodicEME:
def __init__(self, layers=[], num_periods=1):
self.layers = layers
self.num_periods = num_periods
self.wavelength = wavelength
def propagate(self):
wl = self.wavelength
if not len(self.layers):
raise Exception("Must place layers before propagating")
num_modes = max([l.num_modes for l in self.layers])
iface = InterfaceSingleMode if num_modes == 1 else InterfaceMultiMode
eme = EME(layers=self.layers)
left, right = eme.propagate()
self.single_period = eme.s_matrix
period_layer = PeriodicLayer(left.modes, right.modes, self.single_period)
current_layer = PeriodicLayer(left.modes, right.modes, self.single_period)
interface = iface(right, left)
for _ in range(self.num_periods - 1):
current_layer.s_params = cascade(current_layer, interface, wl)
current_layer.s_params = cascade(current_layer, period_layer, wl)
self.s_params = current_layer.s_params
class EME:
def __init__(self, layers=[]):
self.layers = layers
self.wavelength = None
def propagate(self):
layers = self.layers
wl = layers[0].wavelength if self.wavelength is None else self.wavelength
if not len(layers):
raise Exception("Must place layers before propagating")
num_modes = max([l.num_modes for l in layers])
iface = InterfaceSingleMode if num_modes == 1 else InterfaceMultiMode
first_layer = layers[0]
current = Current(wl, first_layer)
interface = iface(first_layer, layers[1])
current.s = cascade(current, interface, wl)
current.right_pins = interface.right_pins
for index in range(1, len(layers) - 1):
layer1 = layers[index]
layer2 = layers[index + 1]
interface = iface(layer1, layer2)
current.s = cascade(current, layer1, wl)
current.right_pins = layer1.right_pins
current.s = cascade(current, interface, wl)
current.right_pins = interface.right_pins
last_layer = layers[-1]
current.s = cascade(current, last_layer, wl)
current.right_pins = last_layer.right_pins
self.s_matrix = current.s
return first_layer, last_layer
def stack(sa, sb):
qab = numpy.eye() - sa.r11 @ sb.r11
qba = numpy.eye() - sa.r11 @ sb.r11
#s.t12 = sa.t12 @ numpy.pinv(qab) @ sb.t12
#s.r21 = sa.t12 @ numpy.pinv(qab) @ sb.r22 @ sa.t21 + sa.r22
#s.r12 = sb.t21 @ numpy.pinv(qba) @ sa.r11 @ sb.t12 + sb.r11
#s.t21 = sb.t21 @ numpy.pinv(qba) @ sa.t21
s.t12 = sa.t12 @ numpy.linalg.solve(qab, sb.t12)
s.r21 = sa.t12 @ numpy.linalg.solve(qab, sb.r22 @ sa.t21) + sa.r22
s.r12 = sb.t21 @ numpy.linalg.solve(qba, sa.r11 @ sb.t12) + sb.r11
s.t21 = sb.t21 @ numpy.linalg.solve(qba, sa.t21)
return s
def cascade(first, second, wavelength):
circuit = Subcircuit("Device")
circuit.add([(first, "first"), (second, "second")])
for port in range(first.right_ports):
circuit.connect("first", "right" + str(port), "second", "left" + str(port))
simulation = SweepSimulation(circuit, wavelength, wavelength, num=1)
result = simulation.simulate()
return result.s
class InterfaceSingleMode(Model):
def __init__(self, layer1, layer2, num_modes=1):
self.num_modes = num_modes
self.num_ports = 2 * num_modes
self.s = self.solve(layer1, layer2, num_modes)
def solve(self, layer1, layer2, num_modes):
nm = num_modes
s = numpy.zeros((2 * nm, 2 * nm), dtype=complex)
for ii, left_mode in enumerate(layer1.modes):
for oo, right_mode in enumerate(layer2.modes):
r, t = get_rt(left_mode, right_mode)
s[ oo, ii] = r
s[nm + oo, ii] = t
for ii, right_mode in enumerate(layer2.modes):
for oo, left_mode in enumerate(layer1.modes):
r, t = get_rt(right_mode, left_mode)
s[ oo, nm + ii] = t
s[nm + oo, nm + ii] = r
return s
class InterfaceMultiMode(Model):
def __init__(self, layer1, layer2):
self.s = self.solve(layer1, layer2)
def solve(self, layer1, layer2):
n1p = layer1.num_modes
n2p = layer2.num_modes
num_ports = n1p + n2p
s = numpy.zeros((num_ports, num_ports), dtype=complex)
for l1p in range(n1p):
ts = get_t(l1p, layer1, layer2)
rs = get_r(l1p, layer1, layer2, ts)
s[n1p:, l1p] = ts
s[:n1p, l1p] = rs
for l2p in range(n2p):
ts = get_t(l2p, layer2, layer1)
rs = get_r(l2p, layer2, layer1, ts)
s[:n1p, n1p + l2p] = ts
s[n1p:, n1p + l2p] = rs
return s
#from simphony.elements import Model
#from simphony.netlist import Subcircuit
#from simphony.simulation import SweepSimulation
#
#from matplotlib import pyplot as plt
#
#
#class PeriodicLayer(Model):
# def __init__(self, left_modes, right_modes, s_params):
# self.left_modes = left_modes
# self.right_modes = right_modes
# self.left_ports = len(self.left_modes)
# self.right_ports = len(self.right_modes)
# self.normalize_fields()
# self.s_params = s_params
#
# def normalize_fields(self):
# for mode in range(len(self.left_modes)):
# self.left_modes[mode].normalize()
# for mode in range(len(self.right_modes)):
# self.right_modes[mode].normalize()
#
#
#class PeriodicEME:
# def __init__(self, layers=[], num_periods=1):
# self.layers = layers
# self.num_periods = num_periods
# self.wavelength = wavelength
#
# def propagate(self):
# wl = self.wavelength
# if not len(self.layers):
# raise Exception("Must place layers before propagating")
#
# num_modes = max([l.num_modes for l in self.layers])
# iface = InterfaceSingleMode if num_modes == 1 else InterfaceMultiMode
#
# eme = EME(layers=self.layers)
# left, right = eme.propagate()
# self.single_period = eme.s_matrix
#
# period_layer = PeriodicLayer(left.modes, right.modes, self.single_period)
# current_layer = PeriodicLayer(left.modes, right.modes, self.single_period)
# interface = iface(right, left)
#
# for _ in range(self.num_periods - 1):
# current_layer.s_params = cascade(current_layer, interface, wl)
# current_layer.s_params = cascade(current_layer, period_layer, wl)
#
# self.s_params = current_layer.s_params
#
#
#class EME:
# def __init__(self, layers=[]):
# self.layers = layers
# self.wavelength = None
#
# def propagate(self):
# layers = self.layers
# wl = layers[0].wavelength if self.wavelength is None else self.wavelength
# if not len(layers):
# raise Exception("Must place layers before propagating")
#
# num_modes = max([l.num_modes for l in layers])
# iface = InterfaceSingleMode if num_modes == 1 else InterfaceMultiMode
#
# first_layer = layers[0]
# current = Current(wl, first_layer)
# interface = iface(first_layer, layers[1])
#
# current.s = cascade(current, interface, wl)
# current.right_pins = interface.right_pins
#
# for index in range(1, len(layers) - 1):
# layer1 = layers[index]
# layer2 = layers[index + 1]
# interface = iface(layer1, layer2)
#
# current.s = cascade(current, layer1, wl)
# current.right_pins = layer1.right_pins
#
# current.s = cascade(current, interface, wl)
# current.right_pins = interface.right_pins
#
# last_layer = layers[-1]
# current.s = cascade(current, last_layer, wl)
# current.right_pins = last_layer.right_pins
#
# self.s_matrix = current.s
# return first_layer, last_layer
#
#
#def stack(sa, sb):
# qab = numpy.eye() - sa.r11 @ sb.r11
# qba = numpy.eye() - sa.r11 @ sb.r11
# #s.t12 = sa.t12 @ numpy.pinv(qab) @ sb.t12
# #s.r21 = sa.t12 @ numpy.pinv(qab) @ sb.r22 @ sa.t21 + sa.r22
# #s.r12 = sb.t21 @ numpy.pinv(qba) @ sa.r11 @ sb.t12 + sb.r11
# #s.t21 = sb.t21 @ numpy.pinv(qba) @ sa.t21
# s.t12 = sa.t12 @ numpy.linalg.solve(qab, sb.t12)
# s.r21 = sa.t12 @ numpy.linalg.solve(qab, sb.r22 @ sa.t21) + sa.r22
# s.r12 = sb.t21 @ numpy.linalg.solve(qba, sa.r11 @ sb.t12) + sb.r11
# s.t21 = sb.t21 @ numpy.linalg.solve(qba, sa.t21)
# return s
#
#
#def cascade(first, second, wavelength):
# circuit = Subcircuit("Device")
#
# circuit.add([(first, "first"), (second, "second")])
# for port in range(first.right_ports):
# circuit.connect("first", "right" + str(port), "second", "left" + str(port))
#
# simulation = SweepSimulation(circuit, wavelength, wavelength, num=1)
# result = simulation.simulate()
# return result.s
#
#
#class InterfaceSingleMode(Model):
# def __init__(self, layer1, layer2, num_modes=1):
# self.num_modes = num_modes
# self.num_ports = 2 * num_modes
# self.s = self.solve(layer1, layer2, num_modes)
#
# def solve(self, layer1, layer2, num_modes):
# nm = num_modes
# s = numpy.zeros((2 * nm, 2 * nm), dtype=complex)
#
# for ii, left_mode in enumerate(layer1.modes):
# for oo, right_mode in enumerate(layer2.modes):
# r, t = get_rt(left_mode, right_mode)
# s[ oo, ii] = r
# s[nm + oo, ii] = t
#
# for ii, right_mode in enumerate(layer2.modes):
# for oo, left_mode in enumerate(layer1.modes):
# r, t = get_rt(right_mode, left_mode)
# s[ oo, nm + ii] = t
# s[nm + oo, nm + ii] = r
# return s
#
#
#class InterfaceMultiMode(Model):
# def __init__(self, layer1, layer2):
# self.s = self.solve(layer1, layer2)
#
# def solve(self, layer1, layer2):
# n1p = layer1.num_modes
# n2p = layer2.num_modes
# num_ports = n1p + n2p
# s = numpy.zeros((num_ports, num_ports), dtype=complex)
#
# for l1p in range(n1p):
# ts = get_t(l1p, layer1, layer2)
# rs = get_r(l1p, layer1, layer2, ts)
# s[n1p:, l1p] = ts
# s[:n1p, l1p] = rs
#
# for l2p in range(n2p):
# ts = get_t(l2p, layer2, layer1)
# rs = get_r(l2p, layer2, layer1, ts)
# s[:n1p, n1p + l2p] = ts
# s[n1p:, n1p + l2p] = rs
#
# return s
def get_t(p, left, right):