fix fdtd pmls
integrate them into the update operations
This commit is contained in:
parent
01b4971388
commit
c0bbc1f46d
@ -3,7 +3,8 @@ Math functions for finite difference simulations
|
||||
|
||||
Basic discrete calculus etc.
|
||||
"""
|
||||
from typing import Sequence, Tuple, Optional
|
||||
from typing import Sequence, Tuple, Optional, Callable
|
||||
|
||||
import numpy # type: ignore
|
||||
|
||||
from .types import fdfield_t, fdfield_updater_t
|
||||
@ -109,3 +110,23 @@ def curl_back(dx_h: Optional[Sequence[numpy.ndarray]] = None) -> fdfield_updater
|
||||
return ch_fun
|
||||
|
||||
|
||||
def curl_forward_parts(dx_e: Optional[Sequence[numpy.ndarray]] = None) -> Callable:
|
||||
Dx, Dy, Dz = deriv_forward(dx_e)
|
||||
|
||||
def mkparts_fwd(e: fdfield_t) -> Tuple[Tuple[fdfield_t, ...]]:
|
||||
return ((-Dz(e[1]), Dy(e[2])),
|
||||
( Dz(e[0]), -Dx(e[2])),
|
||||
(-Dy(e[0]), Dx(e[1])))
|
||||
|
||||
return mkparts_fwd
|
||||
|
||||
|
||||
def curl_back_parts(dx_h: Optional[Sequence[numpy.ndarray]] = None) -> Callable:
|
||||
Dx, Dy, Dz = deriv_back(dx_e)
|
||||
|
||||
def mkparts_back(h: fdfield_t) -> Tuple[Tuple[fdfield_t, ...]]:
|
||||
return ((-Dz(h[1]), Dy(h[2])),
|
||||
( Dz(h[0]), -Dx(h[2])),
|
||||
(-Dy(h[0]), Dx(h[1])))
|
||||
|
||||
return mkparts_back
|
||||
|
@ -160,7 +160,7 @@ Boundary conditions
|
||||
"""
|
||||
|
||||
from .base import maxwell_e, maxwell_h
|
||||
from .pml import cpml
|
||||
from .pml import cpml_params, updates_with_cpml
|
||||
from .energy import (poynting, poynting_divergence, energy_hstep, energy_estep,
|
||||
delta_energy_h2e, delta_energy_j)
|
||||
from .boundaries import conducting_boundary
|
||||
|
@ -7,19 +7,20 @@ PML implementations
|
||||
"""
|
||||
# TODO retest pmls!
|
||||
|
||||
from typing import List, Callable, Tuple, Dict, Any
|
||||
from typing import List, Callable, Tuple, Dict, Sequence, Any, Optional
|
||||
import numpy # type: ignore
|
||||
|
||||
from ..fdmath import fdfield_t
|
||||
from ..fdmath import fdfield_t, dx_lists_t
|
||||
from ..fdmath.functional import deriv_forward, deriv_back
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
def cpml(direction: int,
|
||||
def cpml_params(
|
||||
axis: int,
|
||||
polarity: int,
|
||||
dt: float,
|
||||
epsilon: fdfield_t,
|
||||
thickness: int = 8,
|
||||
ln_R_per_layer: float = -1.6,
|
||||
epsilon_eff: float = 1,
|
||||
@ -27,11 +28,10 @@ def cpml(direction: int,
|
||||
m: float = 3.5,
|
||||
ma: float = 1,
|
||||
cfs_alpha: float = 0,
|
||||
dtype: numpy.dtype = numpy.float32,
|
||||
) -> Tuple[Callable, Callable, Dict[str, fdfield_t]]:
|
||||
) -> Dict[str, Any]:
|
||||
|
||||
if direction not in range(3):
|
||||
raise Exception('Invalid direction: {}'.format(direction))
|
||||
if axis not in range(3):
|
||||
raise Exception('Invalid axis: {}'.format(axis))
|
||||
|
||||
if polarity not in (-1, 1):
|
||||
raise Exception('Invalid polarity: {}'.format(polarity))
|
||||
@ -45,10 +45,8 @@ def cpml(direction: int,
|
||||
sigma_max = -ln_R_per_layer / 2 * (m + 1)
|
||||
kappa_max = numpy.sqrt(epsilon_eff * mu_eff)
|
||||
alpha_max = cfs_alpha
|
||||
transverse = numpy.delete(range(3), direction)
|
||||
u, v = transverse
|
||||
|
||||
xe = numpy.arange(1, thickness + 1, dtype=float)
|
||||
xe = numpy.arange(1, thickness + 1, dtype=float) # TODO: pass in dtype?
|
||||
xh = numpy.arange(1, thickness + 1, dtype=float)
|
||||
if polarity > 0:
|
||||
xe -= 0.5
|
||||
@ -59,8 +57,8 @@ def cpml(direction: int,
|
||||
else:
|
||||
raise Exception('Bad polarity!')
|
||||
|
||||
expand_slice_l: List[Any] = [None] * 3
|
||||
expand_slice_l[direction] = slice(None)
|
||||
expand_slice_l: List[Any] = [None, None, None]
|
||||
expand_slice_l[axis] = slice(None)
|
||||
expand_slice = tuple(expand_slice_l)
|
||||
|
||||
def par(x: numpy.ndarray) -> Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]:
|
||||
@ -76,52 +74,145 @@ def cpml(direction: int,
|
||||
p0e, p1e, p2e = par(xe)
|
||||
p0h, p1h, p2h = par(xh)
|
||||
|
||||
region_list = [slice(None)] * 3
|
||||
region_list = [slice(None), slice(None), slice(None)]
|
||||
if polarity < 0:
|
||||
region_list[direction] = slice(None, thickness)
|
||||
region_list[axis] = slice(None, thickness)
|
||||
elif polarity > 0:
|
||||
region_list[direction] = slice(-thickness, None)
|
||||
region_list[axis] = slice(-thickness, None)
|
||||
else:
|
||||
raise Exception('Bad polarity!')
|
||||
region = tuple(region_list)
|
||||
|
||||
se = 1 if direction == 1 else -1
|
||||
|
||||
# TODO check if epsilon is uniform in pml region?
|
||||
shape = list(epsilon[0].shape)
|
||||
shape[direction] = thickness
|
||||
psi_e = [numpy.zeros(shape, dtype=dtype), numpy.zeros(shape, dtype=dtype)]
|
||||
psi_h = [numpy.zeros(shape, dtype=dtype), numpy.zeros(shape, dtype=dtype)]
|
||||
|
||||
fields = {
|
||||
'psi_e_u': psi_e[0],
|
||||
'psi_e_v': psi_e[1],
|
||||
'psi_h_u': psi_h[0],
|
||||
'psi_h_v': psi_h[1],
|
||||
return {
|
||||
'param_e': (p0e, p1e, p2e),
|
||||
'param_h': (p0h, p1h, p2h),
|
||||
'region': region,
|
||||
}
|
||||
|
||||
# Note that this is kinda slow -- would be faster to reuse dHv*p2h for the original
|
||||
# H update, but then you have multiple arrays and a monolithic (field + pml) update operation
|
||||
def pml_e(e: fdfield_t, h: fdfield_t, epsilon: fdfield_t) -> Tuple[fdfield_t, fdfield_t]:
|
||||
dHv = h[v][region] - numpy.roll(h[v], 1, axis=direction)[region]
|
||||
dHu = h[u][region] - numpy.roll(h[u], 1, axis=direction)[region]
|
||||
psi_e[0] *= p0e
|
||||
psi_e[0] += p1e * dHv * p2e
|
||||
psi_e[1] *= p0e
|
||||
psi_e[1] += p1e * dHu * p2e
|
||||
e[u][region] += se * dt / epsilon[u][region] * (psi_e[0] + (p2e - 1) * dHv)
|
||||
e[v][region] -= se * dt / epsilon[v][region] * (psi_e[1] + (p2e - 1) * dHu)
|
||||
return e, h
|
||||
|
||||
def pml_h(e: fdfield_t, h: fdfield_t) -> Tuple[fdfield_t, fdfield_t]:
|
||||
dEv = (numpy.roll(e[v], -1, axis=direction)[region] - e[v][region])
|
||||
dEu = (numpy.roll(e[u], -1, axis=direction)[region] - e[u][region])
|
||||
psi_h[0] *= p0h
|
||||
psi_h[0] += p1h * dEv * p2h
|
||||
psi_h[1] *= p0h
|
||||
psi_h[1] += p1h * dEu * p2h
|
||||
h[u][region] -= se * dt * (psi_h[0] + (p2h - 1) * dEv)
|
||||
h[v][region] += se * dt * (psi_h[1] + (p2h - 1) * dEu)
|
||||
return e, h
|
||||
def updates_with_cpml(
|
||||
cpml_params: Sequence[Sequence[Optional[Dict[str, Any]]]],
|
||||
dt: float,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: fdfield_t,
|
||||
*,
|
||||
dtype: numpy.dtype = numpy.float32,
|
||||
) -> Tuple[Callable[[fdfield_t, fdfield_t], None],
|
||||
Callable[[fdfield_t, fdfield_t], None]]:
|
||||
|
||||
return pml_e, pml_h, fields
|
||||
Dfx, Dfy, Dfz = deriv_forward(dxes[1])
|
||||
Dbx, Dby, Dbz = deriv_back(dxes[1])
|
||||
|
||||
psi_E = [[None, None], [None, None], [None, None]]
|
||||
psi_H = [[None, None], [None, None], [None, None]]
|
||||
params_E = [[None, None], [None, None], [None, None]]
|
||||
params_H = [[None, None], [None, None], [None, None]]
|
||||
|
||||
for axis in range(3):
|
||||
for pp, polarity in enumerate((-1, 1)):
|
||||
if cpml_params[axis][pp] is None:
|
||||
psi_E[axis][pp] = (None, None)
|
||||
psi_H[axis][pp] = (None, None)
|
||||
continue
|
||||
|
||||
cpml_param = cpml_params[axis][pp]
|
||||
|
||||
region = cpml_param['region']
|
||||
region_shape = epsilon[0][region].shape
|
||||
|
||||
psi_E[axis][pp] = (numpy.zeros(region_shape, dtype=dtype),
|
||||
numpy.zeros(region_shape, dtype=dtype))
|
||||
psi_H[axis][pp] = (numpy.zeros(region_shape, dtype=dtype),
|
||||
numpy.zeros(region_shape, dtype=dtype))
|
||||
params_E[axis][pp] = cpml_param['param_e'] + (region,)
|
||||
params_H[axis][pp] = cpml_param['param_h'] + (region,)
|
||||
|
||||
|
||||
pE = numpy.empty_like(epsilon, dtype=dtype)
|
||||
pH = numpy.empty_like(epsilon, dtype=dtype)
|
||||
|
||||
def update_E(e: fdfield_t, h: fdfield_t, epsilon: fdfield_t) -> None:
|
||||
dyHx = Dby(h[0])
|
||||
dzHx = Dbz(h[0])
|
||||
dxHy = Dbx(h[1])
|
||||
dzHy = Dbz(h[1])
|
||||
dxHz = Dbx(h[2])
|
||||
dyHz = Dby(h[2])
|
||||
|
||||
dH = ((dxHy, dxHz),
|
||||
(dyHx, dyHz),
|
||||
(dzHx, dzHy))
|
||||
|
||||
pE.fill(0)
|
||||
|
||||
for axis in range(3):
|
||||
se = (-1, 1, -1)[axis]
|
||||
transverse = numpy.delete(range(3), axis)
|
||||
u, v = transverse
|
||||
dHu, dHv = dH[axis]
|
||||
|
||||
for pp in range(2):
|
||||
psi_Eu, psi_Ev = psi_E[axis][pp]
|
||||
|
||||
if psi_Eu is None:
|
||||
# No pml in this direction
|
||||
continue
|
||||
|
||||
p0e, p1e, p2e, region = params_E[axis][pp]
|
||||
|
||||
dHu[region] *= p2e
|
||||
dHv[region] *= p2e
|
||||
psi_Eu *= p0e
|
||||
psi_Ev *= p0e
|
||||
psi_Eu += p1e * dHv[region] # note reversed u,v mapping
|
||||
psi_Ev += p1e * dHu[region]
|
||||
pE[u][region] += +se * psi_Eu
|
||||
pE[v][region] += -se * psi_Ev
|
||||
|
||||
e[0] += dt / epsilon[0] * (dyHz - dzHy + pE[0])
|
||||
e[1] += dt / epsilon[1] * (dzHx - dxHz + pE[1])
|
||||
e[2] += dt / epsilon[2] * (dxHy - dyHx + pE[2])
|
||||
|
||||
|
||||
def update_H(e: fdfield_t, h: fdfield_t, mu: fdfield_t = (1, 1, 1)) -> None:
|
||||
dyEx = Dfy(e[0])
|
||||
dzEx = Dfz(e[0])
|
||||
dxEy = Dfx(e[1])
|
||||
dzEy = Dfz(e[1])
|
||||
dxEz = Dfx(e[2])
|
||||
dyEz = Dfy(e[2])
|
||||
|
||||
dE = ((dxEy, dxEz),
|
||||
(dyEx, dyEz),
|
||||
(dzEx, dzEy))
|
||||
|
||||
pH.fill(0)
|
||||
|
||||
for axis in range(3):
|
||||
se = (-1, 1, -1)[axis]
|
||||
transverse = numpy.delete(range(3), axis)
|
||||
u, v = transverse
|
||||
dEu, dEv = dE[axis]
|
||||
|
||||
for pp in range(2):
|
||||
psi_Hu, psi_Hv = psi_H[axis][pp]
|
||||
|
||||
if psi_Hu is None:
|
||||
# No pml here
|
||||
continue
|
||||
|
||||
p0h, p1h, p2h, region = params_H[axis][pp]
|
||||
|
||||
dEu[region] *= p2h # modifies d_E_
|
||||
dEv[region] *= p2h
|
||||
psi_Hu *= p0h
|
||||
psi_Hv *= p0h
|
||||
psi_Hu += p1h * dEv[region] # note reversed u,v mapping
|
||||
psi_Hv += p1h * dEu[region]
|
||||
pH[u][region] += +se * psi_Hu
|
||||
pH[v][region] += -se * psi_Hv
|
||||
|
||||
h[0] -= dt / mu[0] * (dyEz - dzEy + pH[0])
|
||||
h[1] -= dt / mu[1] * (dzEx - dxEz + pH[1])
|
||||
h[2] -= dt / mu[2] * (dxEy - dyEx + pH[2])
|
||||
return update_E, update_H
|
||||
|
Loading…
Reference in New Issue
Block a user