Alternate approach to poynting matrices
This commit is contained in:
parent
9cd2dd131b
commit
a1a7aa5511
@ -456,9 +456,8 @@ def poynting_e_cross(e: vfield_t, dxes: dx_lists_t) -> sparse.spmatrix:
|
|||||||
bx, by, bz = [rotation(i, shape, -1) for i in range(3)]
|
bx, by, bz = [rotation(i, shape, -1) for i in range(3)]
|
||||||
|
|
||||||
dxag = [dx.ravel(order='C') for dx in numpy.meshgrid(*dxes[0], indexing='ij')]
|
dxag = [dx.ravel(order='C') for dx in numpy.meshgrid(*dxes[0], indexing='ij')]
|
||||||
dbgx, dbgy, dbgz = [sparse.diags(dx.ravel(order='C'))
|
dxbg = [dx.ravel(order='C') for dx in numpy.meshgrid(*dxes[1], indexing='ij')]
|
||||||
for dx in numpy.meshgrid(*dxes[1], indexing='ij')]
|
dbgx, dbgy, dbgz = [sparse.diags(dx) for dx in dxbg]
|
||||||
|
|
||||||
Ex, Ey, Ez = [sparse.diags(ei * da) for ei, da in zip(numpy.split(e, 3), dxag)]
|
Ex, Ey, Ez = [sparse.diags(ei * da) for ei, da in zip(numpy.split(e, 3), dxag)]
|
||||||
|
|
||||||
n = numpy.prod(shape)
|
n = numpy.prod(shape)
|
||||||
@ -467,6 +466,9 @@ def poynting_e_cross(e: vfield_t, dxes: dx_lists_t) -> sparse.spmatrix:
|
|||||||
[[ None, -bx @ Ez @ dbgy, bx @ Ey @ dbgz],
|
[[ None, -bx @ Ez @ dbgy, bx @ Ey @ dbgz],
|
||||||
[ by @ Ez @ dbgx, None, -by @ Ex @ dbgz],
|
[ by @ Ez @ dbgx, None, -by @ Ex @ dbgz],
|
||||||
[-bz @ Ey @ dbgx, bz @ Ex @ dbgy, None]])
|
[-bz @ Ey @ dbgx, bz @ Ex @ dbgy, None]])
|
||||||
|
#TODO
|
||||||
|
P2 = sparse.block_diag((bx, by, bz)) @ cross([Ex, Ey, Ez]) @ sparse.diags(numpy.concatenate(dxbg))
|
||||||
|
print(sparse.linalg.norm((P-P2)), sparse.linalg.norm(P), sparse.linalg.norm(P2))
|
||||||
return P
|
return P
|
||||||
|
|
||||||
|
|
||||||
@ -490,12 +492,11 @@ def poynting_h_cross(h: vfield_t, dxes: dx_lists_t) -> sparse.spmatrix:
|
|||||||
Hx, Hy, Hz = [sparse.diags(hi * db) for hi, db in zip(numpy.split(h, 3), dxbg)]
|
Hx, Hy, Hz = [sparse.diags(hi * db) for hi, db in zip(numpy.split(h, 3), dxbg)]
|
||||||
|
|
||||||
n = numpy.prod(shape)
|
n = numpy.prod(shape)
|
||||||
zero = sparse.csr_matrix((n, n))
|
|
||||||
|
|
||||||
P = sparse.bmat(
|
P = sparse.bmat(
|
||||||
[[ zero, -by @ Hz @ fx @ dagy, bz @ Hy @ fx @ dagz],
|
[[ None, Hz @ bx @ dagy, Hy @ bx @ dagz],
|
||||||
[ bx @ Hz @ fy @ dagx, zero, -bz @ Hx @ fy @ dagz],
|
[ Hz @ by @ dagx, None, -Hx @ by @ dagz],
|
||||||
[-bx @ Hy @ fz @ dagx, by @ Hx @ fz @ dagy, zero]])
|
[-Hy @ bz @ dagx, Hx @ bz @ dagy, None]])
|
||||||
return P
|
return P
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user