From 9eb0e28bcbcf0bb32d36e94749f836a207f6dd7e Mon Sep 17 00:00:00 2001 From: Jan Petykiewicz Date: Wed, 12 Mar 2025 23:40:00 -0700 Subject: [PATCH] [meanas.fdtd.misc] add basic pulse and beam shapes --- meanas/fdtd/misc.py | 167 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 167 insertions(+) create mode 100644 meanas/fdtd/misc.py diff --git a/meanas/fdtd/misc.py b/meanas/fdtd/misc.py new file mode 100644 index 0000000..160682d --- /dev/null +++ b/meanas/fdtd/misc.py @@ -0,0 +1,167 @@ +from typing import Callable +from collections.abc import Sequence +import logging + +import numpy +from numpy.typing import NDArray, ArrayLike +from numpy import pi + + +logger = logging.getLogger(__name__) + + +pulse_fn_t = Callable[[int | NDArray], tuple[float, float, float]] + + +def gaussian_packet( + wl: float, + dwl: float, + dt: float, + turn_on: float = 1e-10, + one_sided: bool = False, + ) -> tuple[pulse_fn_t, float]: + """ + Gaussian pulse (or gaussian ramp) for FDTD excitation + + exp(-a*t*t) ==> exp(-omega * omega / (4 * a)) [fourier, ignoring leading const.] + + FWHM_time is 2 * sqrt(2 * log(2)) * sqrt(2 / a) + FWHM_omega is 2 * sqrt(2 * log(2)) * sqrt(2 * a) = 4 * sqrt(log(2) * a) + + Args: + wl: wavelength + dwl: Gaussian's FWHM in wavelength space + dt: Timestep + turn_on: Max allowable amplitude at t=0 + one_sided: If `True`, source amplitude never decreases after reaching max + + Returns: + Source function: src(timestep) -> (envelope[tt], cos[... * tt], sin[... * tt]) + Delay: number of initial timesteps for which envelope[tt] will be 0 + """ + logger.warning('meanas.fdtd.misc functions are still very WIP!') # TODO + # dt * dw = 4 * ln(2) + + omega = 2 * pi / wl + freq = 1 / wl + fwhm_omega = dwl * omega * omega / (2 * pi) # dwl -> d_omega (approx) + alpha = (fwhm_omega * fwhm_omega) * numpy.log(2) / 8 + delay = numpy.sqrt(-numpy.log(turn_on) / alpha) + delay = numpy.ceil(delay * freq) / freq # force delay to integer number of periods to maintain phase + logger.info(f'src_time {2 * delay / dt}') + + def source_phasor(ii: int | NDArray) -> tuple[float, float, float]: + t0 = ii * dt - delay + envelope = numpy.sqrt(numpy.sqrt(2 * alpha / pi)) * numpy.exp(-alpha * t0 * t0) + + if one_sided and t0 > 0: + envelope = 1 + + cc = numpy.cos(omega * t0) + ss = numpy.sin(omega * t0) + + return envelope, cc, ss + + # nrm = numpy.exp(-omega * omega / alpha) / 2 + + return source_phasor, delay + + +def ricker_pulse( + wl: float, + dt: float, + turn_on: float = 1e-10, + ) -> tuple[pulse_fn_t, float]: + """ + Ricker wavelet (second derivative of a gaussian pulse) + + t0 = ii * dt - delay + R = w_peak * t0 / 2 + f(t) = (1 - 2 * (pi * f_peak * t0) ** 2) * exp(-(pi * f_peak * t0)**2 + = (1 - (w_peak * t0)**2 / 2 exp(-(w_peak * t0 / 2) **2) + = (1 - 2 * R * R) * exp(-R * R) + + # NOTE: don't use cosine/sine for J, just for phasor readout + + Args: + wl: wavelength + dt: Timestep + turn_on: Max allowable amplitude at t=0 + + Returns: + Source function: src(timestep) -> (envelope[tt], cos[... * tt], sin[... * tt]) + Delay: number of initial timesteps for which envelope[tt] will be 0 + """ + logger.warning('meanas.fdtd.misc functions are still very WIP!') # TODO + omega = 2 * pi / wl + freq = 1 / wl + r0 = omega / 2 + + from scipy.optimize import root_scalar + delay_results = root_scalar(lambda xx: (1 - omega * omega * tt * tt / 2) * numpy.exp(-omega * omega / 4 * tt * tt) - turn_on, x0=0, x1=-2 / omega) + delay = delay_results.root + delay = numpy.ceil(delay * freq) / freq # force delay to integer number of periods to maintain phase + + def source_phasor(ii: int | NDArray) -> tuple[float, float, float]: + t0 = ii * dt - delay + rr = omega * t0 / 2 + ff = (1 - 2 * rr * rr) * numpy.exp(-rr * rr) + + cc = numpy.cos(omega * t0) + ss = numpy.sin(omega * t0) + + return ff, cc, ss + + return source_phasor, delay + + +def gaussian_beam( + xyz: list[NDArray], + center: ArrayLike, + waist_radius: float, + wl: float, + tilt: float = 0, + ) -> NDArray[numpy.complex128]: + """ + Gaussian beam + (solution to paraxial Helmholtz equation) + + Default (no tilt) corresponds to a beam propagating in the -z direction. + + Args: + xyz: List of [[x0, x1, ...], [y0, ...], [z0, ...]] positions specifying grid + locations at which the field will be sampled. + center: [x, y, z] location of beam waist + waist_radius: Beam radius at the waist + wl: Wavelength + tilt: Rotation around y axis. Default (0) has beam propagating in -z direction. + """ + logger.warning('meanas.fdtd.misc functions are still very WIP!') # TODO + w0 = waist_radius + grids = numpy.asarray(numpy.meshgrid(*xyz, indexing='ij')) + grids -= numpy.asarray(center)[:, None, None, None] + + rot = numpy.array([ + [ numpy.cos(tilt), 0, numpy.sin(tilt)], + [ 0, 1, 0], + [-numpy.sin(tilt), 0, numpy.cos(tilt)], + ]) + + xx, yy, zz = numpy.einsum('ij,jxyz->ixyz', rot, grids) + r2 = xx * xx + yy * yy + z2 = zz * zz + + zr = pi * w0 * w0 / wl + zr2 = zr * zr + wz2 = w0 * w0 * (1 + z2 / zr2) + wz = numpy.sqrt(wz2) # == fwhm(z) / sqrt(2 * ln(2)) + + kk = 2 * pi / wl + Rz = zz * (1 + zr2 / z2) + gouy = numpy.arctan(zz / zr) + + gaussian = w0 / wz * numpy.exp(-r2 / wz2) * numpy.exp(1j * (kk * zz + kk * r2 / 2 / Rz - gouy)) + + row = gaussian[:, :, gaussian.shape[2] // 2] + norm = numpy.sqrt((row * row.conj()).sum()) + return gaussian / norm