Add experimental source types

This commit is contained in:
Jan Petykiewicz 2019-07-09 20:13:31 -07:00
parent 4c2035c882
commit 8e634e35df

View File

@ -343,3 +343,142 @@ def solve_waveguide_mode_cylindrical(mode_number: int,
} }
return fields return fields
def compute_source_q(E: field_t,
H: field_t,
wavenumber: complex,
omega: complex,
dxes: dx_lists_t,
axis: int,
polarity: int,
slices: List[slice],
mu: field_t = None,
) -> field_t:
A1f = functional.curl_h(dxes)
A2f = functional.curl_e(dxes)
J = A1f(H)
M = A2f([-E[i] for i in range(3)])
m2j = functional.m2j(omega, dxes, mu)
Jm = m2j(M)
Jtot = [ji + jmi for ji, jmi in zip(J, Jm)]
return Jtot, J, M
def compute_source_e(QE: field_t,
omega: complex,
dxes: dx_lists_t,
axis: int,
polarity: int,
slices: List[slice],
epsilon: field_t,
mu: field_t = None,
) -> field_t:
"""
Want (AQ-QA) E = -iwj, where Q is a mask
If E is an eigenmode, AE = 0 so just AQE = -iwJ
Really only need E in 4 cells along axis (0, 0, Emode1, Emode2), find AE (1 fdtd step), then use center 2 cells as src
"""
slices = tuple(slices)
# Trim a cell from each end of the propagation axis
slices_reduced = list(slices)
slices_reduced[axis] = slice(slices[axis].start + 1, slices[axis].stop - 1)
slices_reduced = tuple(slices)
# Don't actually need to mask out E here since it needs to be pre-masked (QE)
A = functional.e_full(omega, dxes, epsilon, mu)
J4 = [ji / (-1j * omega) for ji in A(QE)] #J4 is 4-cell result of -iwJ = A QE
J = numpy.zeros_like(J4)
for a in range(3):
J[a][slices_reduced] = J4[a][slices_reduced]
return J
def compute_source_wg(E: field_t,
wavenumber: complex,
omega: complex,
dxes: dx_lists_t,
axis: int,
polarity: int,
slices: List[slice],
epsilon: field_t,
mu: field_t = None,
) -> field_t:
slices = tuple(slices)
Etgt, _slices2 = compute_overlap_ce(E=E, wavenumber=wavenumber,
dxes=dxes, axis=axis, polarity=polarity,
slices=slices)
slices4 = list(slices)
slices4[axis] = slice(slices[axis].start - 4 * polarity, slices[axis].start)
slices4 = tuple(slices4)
J = compute_source_e(QE=Etgt,
omega=omega, dxes=dxes, axis=axis,
polarity=polarity, slices=slices4,
epsilon=epsilon, mu=mu)
def compute_overlap_ce(E: field_t,
wavenumber: complex,
dxes: dx_lists_t,
axis: int,
polarity: int,
slices: List[slice],
) -> field_t:
slices = tuple(slices)
Ee = expand_wgmode_e(E=E, wavenumber=wavenumber,
dxes=dxes, axis=axis, polarity=polarity,
slices=slices)
start, stop = sorted((slices[axis].start, slices[axis].start - 2 * polarity))
slices2 = list(slices)
slices2[axis] = slice(start, stop)
slices2 = tuple(slices2)
Etgt = numpy.zeros_like(Ee)
for a in range(3):
Etgt[a][slices2] = Ee[a][slices2]
Etgt /= (Etgt.conj() * Etgt).sum()
return Etgt, slices2
def expand_wgmode_e(E: field_t,
wavenumber: complex,
dxes: dx_lists_t,
axis: int,
polarity: int,
slices: List[slice],
) -> field_t:
slices = tuple(slices)
# Determine phase factors for parallel slices
a_shape = numpy.roll([1, -1, 1, 1], axis)
a_E = numpy.real(dxes[0][axis]).cumsum()
r_E = a_E - a_E[slices[axis]]
iphi = polarity * 1j * wavenumber
phase_E = numpy.exp(iphi * r_E).reshape(a_shape)
# Expand our slice to the entire grid using the phase factors
Ee = numpy.zeros_like(E)
slices_exp = list(slices)
slices_exp[axis] = slice(E[0].shape[axis])
slices_exp = (slice(3), *slices_exp)
Ee[slices_exp] = phase_E * numpy.array(E)[slices_Exp]
return Ee