diff --git a/meanas/fdfd/waveguide_2d.py b/meanas/fdfd/waveguide_2d.py index eaae21c..cfda1af 100644 --- a/meanas/fdfd/waveguide_2d.py +++ b/meanas/fdfd/waveguide_2d.py @@ -185,7 +185,7 @@ from numpy.linalg import norm import scipy.sparse as sparse # type: ignore from ..fdmath.operators import deriv_forward, deriv_back, cross -from ..fdmath import unvec, dx_lists_t, vfdfield_t, vcfdfield_t +from ..fdmath import vec, unvec, dx_lists_t, vfdfield_t, vcfdfield_t from ..eigensolvers import signed_eigensolve, rayleigh_quotient_iteration @@ -718,6 +718,111 @@ def e_err( return float(norm(op) / norm(e)) +def sensitivity( + e_norm: vcfdfield_t, + h_norm: vcfdfield_t, + wavenumber: complex, + omega: complex, + dxes: dx_lists_t, + epsilon: vfdfield_t, + mu: vfdfield_t | None = None, + ) -> vcfdfield_t: + r""" + Given a waveguide structure (`dxes`, `epsilon`, `mu`) and mode fields + (`e_norm`, `h_norm`, `wavenumber`, `omega`), calculates the sensitivity of the wavenumber + $\beta$ to changes in the dielectric structure $\epsilon$. + + The output is a vector of the same size as `vec(epsilon)`, with each element specifying the + sensitivity of `wavenumber` to changes in the corresponding element in `vec(epsilon)`, i.e. + + $$sens_{i} = \frac{\partial\beta}{\partial\epsilon_i}$$ + + An adjoint approach is used to calculate the sensitivity; the derivation is provided here: + + Starting with the eigenvalue equation + + $$\beta^2 E_{xy} = A_E E_{xy}$$ + + where $A_E$ is the waveguide operator from `operator_e()`, and $E_{xy} = \begin{bmatrix} E_x \\ + E_y \end{bmatrix}$, + we can differentiate with respect to one of the $\epsilon$ elements (i.e. at one Yee grid point), $\epsilon_i$: + + $$ + (2 \beta) \partial_{\epsilon_i}(\beta) E_{xy} + \beta^2 \partial_{\epsilon_i} E_{xy} + = \partial_{\epsilon_i}(A_E) E_{xy} + A_E \partial_{\epsilon_i} E_{xy} + $$ + + We then multiply by $H_{yx}^\star = \begin{bmatrix}H_y^\star \\ -H_x^\star \end{bmatrix}$ from the left: + + $$ + (2 \beta) \partial_{\epsilon_i}(\beta) H_{yx}^\star E_{xy} + \beta^2 H_{yx}^\star \partial_{\epsilon_i} E_{xy} + = H_{yx}^\star \partial_{\epsilon_i}(A_E) E_{xy} + H_{yx}^\star A_E \partial_{\epsilon_i} E_{xy} + $$ + + However, $H_{yx}^\star$ is actually a left-eigenvector of $A_E$. This can be verified by inspecting + the form of `operator_h` ($A_H$) and comparing its conjugate transpose to `operator_e` ($A_E$). Also, note + $H_{yx}^\star \cdot E_{xy} = H^\star \times E$ recalls the mode orthogonality relation. See doi:10.5194/ars-9-85-201 + for a similar approach. Therefore, + + $$ + H_{yx}^\star A_E \partial_{\epsilon_i} E_{xy} = \beta^2 H_{yx}^\star \partial_{\epsilon_i} E_{xy} + $$ + + and we can simplify to + + $$ + \partial_{\epsilon_i}(\beta) + = \frac{1}{2 \beta} \frac{H_{yx}^\star \partial_{\epsilon_i}(A_E) E_{xy} }{H_{yx}^\star E_{xy}} + $$ + + This expression can be quickly calculated for all $i$ by writing out the various terms of + $\partial_{\epsilon_i} A_E$ and recognizing that the vector-matrix-vector products (i.e. scalars) + $sens_i = \vec{v}_{left} \partial_{\epsilon_i} (\epsilon_{xyz}) \vec{v}_{right}$, indexed by $i$, can be expressed as + elementwise multiplications $\vec{sens} = \vec{v}_{left} \star \vec{v}_{right}$ + + + Args: + e_norm: Normalized, vectorized E_xyz field for the mode. E.g. as returned by `normalized_fields_e`. + h_norm: Normalized, vectorized H_xyz field for the mode. E.g. as returned by `normalized_fields_e`. + wavenumber: Propagation constant for the mode. The z-axis is assumed to be continuous (i.e. without numerical dispersion). + omega: The angular frequency of the system. + dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D) + epsilon: Vectorized dielectric constant grid + mu: Vectorized magnetic permeability grid (default 1 everywhere) + + Returns: + Sparse matrix representation of the operator. + """ + if mu is None: + mu = numpy.ones_like(epsilon) + + Dfx, Dfy = deriv_forward(dxes[0]) + Dbx, Dby = deriv_back(dxes[1]) + + + eps_x, eps_y, eps_z = numpy.split(epsilon, 3) + eps_xy = sparse.diags(numpy.hstack((eps_x, eps_y))) + eps_z_inv = sparse.diags(1 / eps_z) + + mu_x, mu_y, mu_z = numpy.split(mu, 3) + mu_yx = sparse.diags(numpy.hstack((mu_y, mu_x))) + mu_z_inv = sparse.diags(1 / mu_z) + + da_exxhyy = vec(dxes[1][0][:, None] * dxes[0][1][None, :]) + da_eyyhxx = vec(dxes[1][1][None, :] * dxes[0][0][:, None]) + ev_xy = numpy.concatenate(numpy.split(e_norm, 3)[:2]) * numpy.concatenate([da_exxhyy, da_eyyhxx]) + hx, hy, hz = numpy.split(h_norm, 3) + hv_yx_conj = numpy.conj(numpy.concatenate([hy, -hx])) + + sens_xy1 = (hv_yx_conj @ (omega * omega * mu_yx)) * ev_xy + sens_xy2 = (hv_yx_conj @ sparse.vstack((Dfx, Dfy)) @ eps_z_inv @ sparse.hstack((Dbx, Dby))) * ev_xy + sens_z = (hv_yx_conj @ sparse.vstack((Dfx, Dfy)) @ (-eps_z_inv * eps_z_inv)) * (sparse.hstack((Dbx, Dby)) @ eps_xy @ ev_xy) + norm = hv_yx_conj @ ev_xy + + sens_tot = numpy.concatenate([sens_xy1 + sens_xy2, sens_z]) / (2 * wavenumber * norm) + return sens_tot + + def solve_modes( mode_numbers: list[int], omega: complex,