Use raw strings to eliminate repeated backslashes
This commit is contained in:
parent
b47dec0317
commit
4c8a07bf20
@ -1,4 +1,4 @@
|
|||||||
"""
|
r"""
|
||||||
Operators and helper functions for waveguides with unchanging cross-section.
|
Operators and helper functions for waveguides with unchanging cross-section.
|
||||||
|
|
||||||
The propagation direction is chosen to be along the z axis, and all fields
|
The propagation direction is chosen to be along the z axis, and all fields
|
||||||
@ -12,166 +12,166 @@ As the z-dependence is known, all the functions in this file assume a 2D grid
|
|||||||
|
|
||||||
Consider Maxwell's equations in continuous space, in the frequency domain. Assuming
|
Consider Maxwell's equations in continuous space, in the frequency domain. Assuming
|
||||||
a structure with some (x, y) cross-section extending uniformly into the z dimension,
|
a structure with some (x, y) cross-section extending uniformly into the z dimension,
|
||||||
with a diagonal $\\epsilon$ tensor, we have
|
with a diagonal $\epsilon$ tensor, we have
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\\begin{aligned}
|
\begin{aligned}
|
||||||
\\nabla \\times \\vec{E}(x, y, z) &= -\\imath \\omega \\mu \\vec{H} \\\\
|
\nabla \times \vec{E}(x, y, z) &= -\imath \omega \mu \vec{H} \\
|
||||||
\\nabla \\times \\vec{H}(x, y, z) &= \\imath \\omega \\epsilon \\vec{E} \\\\
|
\nabla \times \vec{H}(x, y, z) &= \imath \omega \epsilon \vec{E} \\
|
||||||
\\vec{E}(x,y,z) = (\\vec{E}_t(x, y) + E_z(x, y)\\vec{z}) e^{-\\gamma z} \\\\
|
\vec{E}(x,y,z) &= (\vec{E}_t(x, y) + E_z(x, y)\vec{z}) e^{-\gamma z} \\
|
||||||
\\vec{H}(x,y,z) = (\\vec{H}_t(x, y) + H_z(x, y)\\vec{z}) e^{-\\gamma z} \\\\
|
\vec{H}(x,y,z) &= (\vec{H}_t(x, y) + H_z(x, y)\vec{z}) e^{-\gamma z} \\
|
||||||
\\end{aligned}
|
\end{aligned}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
Expanding the first two equations into vector components, we get
|
Expanding the first two equations into vector components, we get
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\\begin{aligned}
|
\begin{aligned}
|
||||||
-\\imath \\omega \\mu_{xx} H_x &= \\partial_y E_z - \\partial_z E_y \\\\
|
-\imath \omega \mu_{xx} H_x &= \partial_y E_z - \partial_z E_y \\
|
||||||
-\\imath \\omega \\mu_{yy} H_y &= \\partial_z E_x - \\partial_x E_z \\\\
|
-\imath \omega \mu_{yy} H_y &= \partial_z E_x - \partial_x E_z \\
|
||||||
-\\imath \\omega \\mu_{zz} H_z &= \\partial_x E_y - \\partial_y E_x \\\\
|
-\imath \omega \mu_{zz} H_z &= \partial_x E_y - \partial_y E_x \\
|
||||||
\\imath \\omega \\epsilon_{xx} E_x &= \\partial_y H_z - \\partial_z H_y \\\\
|
\imath \omega \epsilon_{xx} E_x &= \partial_y H_z - \partial_z H_y \\
|
||||||
\\imath \\omega \\epsilon_{yy} E_y &= \\partial_z H_x - \\partial_x H_z \\\\
|
\imath \omega \epsilon_{yy} E_y &= \partial_z H_x - \partial_x H_z \\
|
||||||
\\imath \\omega \\epsilon_{zz} E_z &= \\partial_x H_y - \\partial_y H_x \\\\
|
\imath \omega \epsilon_{zz} E_z &= \partial_x H_y - \partial_y H_x \\
|
||||||
\\end{aligned}
|
\end{aligned}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
Substituting in our expressions for $\\vec{E}$, $\\vec{H}$ and discretizing:
|
Substituting in our expressions for $\vec{E}$, $\vec{H}$ and discretizing:
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\\begin{aligned}
|
\begin{aligned}
|
||||||
-\\imath \\omega \\mu_{xx} H_x &= \\tilde{\\partial}_y E_z + \\gamma E_y \\\\
|
-\imath \omega \mu_{xx} H_x &= \tilde{\partial}_y E_z + \gamma E_y \\
|
||||||
-\\imath \\omega \\mu_{yy} H_y &= -\\gamma E_x - \\tilde{\\partial}_x E_z \\\\
|
-\imath \omega \mu_{yy} H_y &= -\gamma E_x - \tilde{\partial}_x E_z \\
|
||||||
-\\imath \\omega \\mu_{zz} H_z &= \\tilde{\\partial}_x E_y - \\tilde{\\partial}_y E_x \\\\
|
-\imath \omega \mu_{zz} H_z &= \tilde{\partial}_x E_y - \tilde{\partial}_y E_x \\
|
||||||
\\imath \\omega \\epsilon_{xx} E_x &= \\hat{\\partial}_y H_z + \\gamma H_y \\\\
|
\imath \omega \epsilon_{xx} E_x &= \hat{\partial}_y H_z + \gamma H_y \\
|
||||||
\\imath \\omega \\epsilon_{yy} E_y &= -\\gamma H_x - \\hat{\\partial}_x H_z \\\\
|
\imath \omega \epsilon_{yy} E_y &= -\gamma H_x - \hat{\partial}_x H_z \\
|
||||||
\\imath \\omega \\epsilon_{zz} E_z &= \\hat{\\partial}_x H_y - \\hat{\\partial}_y H_x \\\\
|
\imath \omega \epsilon_{zz} E_z &= \hat{\partial}_x H_y - \hat{\partial}_y H_x \\
|
||||||
\\end{aligned}
|
\end{aligned}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
Rewrite the last three equations as
|
Rewrite the last three equations as
|
||||||
$$
|
$$
|
||||||
\\begin{aligned}
|
\begin{aligned}
|
||||||
\\gamma H_y &= \\imath \\omega \\epsilon_{xx} E_x - \\hat{\\partial}_y H_z \\\\
|
\gamma H_y &= \imath \omega \epsilon_{xx} E_x - \hat{\partial}_y H_z \\
|
||||||
\\gamma H_x &= -\\imath \\omega \\epsilon_{yy} E_y - \\hat{\\partial}_x H_z \\\\
|
\gamma H_x &= -\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z \\
|
||||||
\\imath \\omega E_z &= \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_x H_y - \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_y H_x \\\\
|
\imath \omega E_z &= \frac{1}{\epsilon_{zz}} \hat{\partial}_x H_y - \frac{1}{\epsilon_{zz}} \hat{\partial}_y H_x \\
|
||||||
\\end{aligned}
|
\end{aligned}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
Now apply $\\gamma \\tilde{\\partial}_x$ to the last equation,
|
Now apply $\gamma \tilde{\partial}_x$ to the last equation,
|
||||||
then substitute in for $\\gamma H_x$ and $\\gamma H_y$:
|
then substitute in for $\gamma H_x$ and $\gamma H_y$:
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\\begin{aligned}
|
\begin{aligned}
|
||||||
\\gamma \\tilde{\\partial}_x \\imath \\omega E_z &= \\gamma \\tilde{\\partial}_x \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_x H_y
|
\gamma \tilde{\partial}_x \imath \omega E_z &= \gamma \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x H_y
|
||||||
- \\gamma \\tilde{\\partial}_x \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_y H_x \\\\
|
- \gamma \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y H_x \\
|
||||||
&= \\tilde{\\partial}_x \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_x ( \\imath \\omega \\epsilon_{xx} E_x - \\hat{\\partial}_y H_z)
|
&= \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x ( \imath \omega \epsilon_{xx} E_x - \hat{\partial}_y H_z)
|
||||||
- \\tilde{\\partial}_x \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_y (-\\imath \\omega \\epsilon_{yy} E_y - \\hat{\\partial}_x H_z) \\\\
|
- \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y (-\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z) \\
|
||||||
&= \\tilde{\\partial}_x \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_x ( \\imath \\omega \\epsilon_{xx} E_x)
|
&= \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x ( \imath \omega \epsilon_{xx} E_x)
|
||||||
- \\tilde{\\partial}_x \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_y (-\\imath \\omega \\epsilon_{yy} E_y) \\\\
|
- \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y (-\imath \omega \epsilon_{yy} E_y) \\
|
||||||
\\gamma \\tilde{\\partial}_x E_z &= \\tilde{\\partial}_x \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_x (\\epsilon_{xx} E_x)
|
\gamma \tilde{\partial}_x E_z &= \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
|
||||||
+ \\tilde{\\partial}_x \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_y (\\epsilon_{yy} E_y) \\\\
|
+ \tilde{\partial}_x \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y) \\
|
||||||
\\end{aligned}
|
\end{aligned}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
With a similar approach (but using $\\gamma \\tilde{\\partial}_y$ instead), we can get
|
With a similar approach (but using $\gamma \tilde{\partial}_y$ instead), we can get
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\\begin{aligned}
|
\begin{aligned}
|
||||||
\\gamma \\tilde{\\partial}_y E_z &= \\tilde{\\partial}_y \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_x (\\epsilon_{xx} E_x)
|
\gamma \tilde{\partial}_y E_z &= \tilde{\partial}_y \frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
|
||||||
+ \\tilde{\\partial}_y \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_y (\\epsilon_{yy} E_y) \\\\
|
+ \tilde{\partial}_y \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y) \\
|
||||||
\\end{aligned}
|
\end{aligned}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
We can combine this equation for $\\gamma \\tilde{\\partial}_y E_z$ with
|
We can combine this equation for $\gamma \tilde{\partial}_y E_z$ with
|
||||||
the unused $\\imath \\omega \\mu_{xx} H_x$ and $\\imath \\omega \\mu_{yy} H_y$ equations to get
|
the unused $\imath \omega \mu_{xx} H_x$ and $\imath \omega \mu_{yy} H_y$ equations to get
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\\begin{aligned}
|
\begin{aligned}
|
||||||
-\\imath \\omega \\mu_{xx} \\gamma H_x &= \\gamma^2 E_y + \\gamma \\tilde{\\partial}_y E_z \\\\
|
-\imath \omega \mu_{xx} \gamma H_x &= \gamma^2 E_y + \gamma \tilde{\partial}_y E_z \\
|
||||||
-\\imath \\omega \\mu_{xx} \\gamma H_x &= \\gamma^2 E_y + \\tilde{\\partial}_y (
|
-\imath \omega \mu_{xx} \gamma H_x &= \gamma^2 E_y + \tilde{\partial}_y (
|
||||||
\\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_x (\\epsilon_{xx} E_x)
|
\frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
|
||||||
+ \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_y (\\epsilon_{yy} E_y)
|
+ \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y)
|
||||||
)\\\\
|
)\\
|
||||||
\\end{aligned}
|
\end{aligned}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
and
|
and
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\\begin{aligned}
|
\begin{aligned}
|
||||||
-\\imath \\omega \\mu_{yy} \\gamma H_y &= -\\gamma^2 E_x - \\gamma \\tilde{\\partial}_x E_z \\\\
|
-\imath \omega \mu_{yy} \gamma H_y &= -\gamma^2 E_x - \gamma \tilde{\partial}_x E_z \\
|
||||||
-\\imath \\omega \\mu_{yy} \\gamma H_y &= -\\gamma^2 E_x - \\tilde{\\partial}_x (
|
-\imath \omega \mu_{yy} \gamma H_y &= -\gamma^2 E_x - \tilde{\partial}_x (
|
||||||
\\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_x (\\epsilon_{xx} E_x)
|
\frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
|
||||||
+ \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_y (\\epsilon_{yy} E_y)
|
+ \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y)
|
||||||
)\\\\
|
)\\
|
||||||
\\end{aligned}
|
\end{aligned}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
However, based on our rewritten equation for $\\gamma H_x$ and the so-far unused
|
However, based on our rewritten equation for $\gamma H_x$ and the so-far unused
|
||||||
equation for $\\imath \\omega \\mu_{zz} H_z$ we can also write
|
equation for $\imath \omega \mu_{zz} H_z$ we can also write
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\\begin{aligned}
|
\begin{aligned}
|
||||||
-\\imath \\omega \\mu_{xx} (\\gamma H_x) &= -\\imath \\omega \\mu_{xx} (-\\imath \\omega \\epsilon_{yy} E_y - \\hat{\\partial}_x H_z) \\\\
|
-\imath \omega \mu_{xx} (\gamma H_x) &= -\imath \omega \mu_{xx} (-\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z) \\
|
||||||
&= -\\omega^2 \\mu_{xx} \\epsilon_{yy} E_y
|
&= -\omega^2 \mu_{xx} \epsilon_{yy} E_y
|
||||||
+\\imath \\omega \\mu_{xx} \\hat{\\partial}_x (
|
+\imath \omega \mu_{xx} \hat{\partial}_x (
|
||||||
\\frac{1}{-\\imath \\omega \\mu_{zz}} (\\tilde{\\partial}_x E_y - \\tilde{\\partial}_y E_x)) \\\\
|
\frac{1}{-\imath \omega \mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x)) \\
|
||||||
&= -\\omega^2 \\mu_{xx} \\epsilon_{yy} E_y
|
&= -\omega^2 \mu_{xx} \epsilon_{yy} E_y
|
||||||
-\\mu_{xx} \\hat{\\partial}_x \\frac{1}{\\mu_{zz}} (\\tilde{\\partial}_x E_y - \\tilde{\\partial}_y E_x) \\\\
|
-\mu_{xx} \hat{\partial}_x \frac{1}{\mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x) \\
|
||||||
\\end{aligned}
|
\end{aligned}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
and, similarly,
|
and, similarly,
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\\begin{aligned}
|
\begin{aligned}
|
||||||
-\\imath \\omega \\mu_{yy} (\\gamma H_y) &= \\omega^2 \\mu_{yy} \\epsilon_{xx} E_x
|
-\imath \omega \mu_{yy} (\gamma H_y) &= \omega^2 \mu_{yy} \epsilon_{xx} E_x
|
||||||
+\\mu_{yy} \\hat{\\partial}_y \\frac{1}{\\mu_{zz}} (\\tilde{\\partial}_x E_y - \\tilde{\\partial}_y E_x) \\\\
|
+\mu_{yy} \hat{\partial}_y \frac{1}{\mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x) \\
|
||||||
\\end{aligned}
|
\end{aligned}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
By combining both pairs of expressions, we get
|
By combining both pairs of expressions, we get
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\\begin{aligned}
|
\begin{aligned}
|
||||||
-\\gamma^2 E_x - \\tilde{\\partial}_x (
|
-\gamma^2 E_x - \tilde{\partial}_x (
|
||||||
\\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_x (\\epsilon_{xx} E_x)
|
\frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
|
||||||
+ \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_y (\\epsilon_{yy} E_y)
|
+ \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y)
|
||||||
) &= \\omega^2 \\mu_{yy} \\epsilon_{xx} E_x
|
) &= \omega^2 \mu_{yy} \epsilon_{xx} E_x
|
||||||
+\\mu_{yy} \\hat{\\partial}_y \\frac{1}{\\mu_{zz}} (\\tilde{\\partial}_x E_y - \\tilde{\\partial}_y E_x) \\\\
|
+\mu_{yy} \hat{\partial}_y \frac{1}{\mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x) \\
|
||||||
\\gamma^2 E_y + \\tilde{\\partial}_y (
|
\gamma^2 E_y + \tilde{\partial}_y (
|
||||||
\\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_x (\\epsilon_{xx} E_x)
|
\frac{1}{\epsilon_{zz}} \hat{\partial}_x (\epsilon_{xx} E_x)
|
||||||
+ \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_y (\\epsilon_{yy} E_y)
|
+ \frac{1}{\epsilon_{zz}} \hat{\partial}_y (\epsilon_{yy} E_y)
|
||||||
) &= -\\omega^2 \\mu_{xx} \\epsilon_{yy} E_y
|
) &= -\omega^2 \mu_{xx} \epsilon_{yy} E_y
|
||||||
-\\mu_{xx} \\hat{\\partial}_x \\frac{1}{\\mu_{zz}} (\\tilde{\\partial}_x E_y - \\tilde{\\partial}_y E_x) \\\\
|
-\mu_{xx} \hat{\partial}_x \frac{1}{\mu_{zz}} (\tilde{\partial}_x E_y - \tilde{\partial}_y E_x) \\
|
||||||
\\end{aligned}
|
\end{aligned}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
Using these, we can construct the eigenvalue problem
|
Using these, we can construct the eigenvalue problem
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\\beta^2 \\begin{bmatrix} E_x \\\\
|
\beta^2 \begin{bmatrix} E_x \\
|
||||||
E_y \\end{bmatrix} =
|
E_y \end{bmatrix} =
|
||||||
(\\omega^2 \\begin{bmatrix} \\mu_{yy} \\epsilon_{xx} & 0 \\\\
|
(\omega^2 \begin{bmatrix} \mu_{yy} \epsilon_{xx} & 0 \\
|
||||||
0 & \\mu_{xx} \\epsilon_{yy} \\end{bmatrix} +
|
0 & \mu_{xx} \epsilon_{yy} \end{bmatrix} +
|
||||||
\\begin{bmatrix} -\\mu_{yy} \\hat{\\partial}_y \\\\
|
\begin{bmatrix} -\mu_{yy} \hat{\partial}_y \\
|
||||||
\\mu_{xx} \\hat{\\partial}_x \\end{bmatrix} \\mu_{zz}^{-1}
|
\mu_{xx} \hat{\partial}_x \end{bmatrix} \mu_{zz}^{-1}
|
||||||
\\begin{bmatrix} -\\tilde{\\partial}_y & \\tilde{\\partial}_x \\end{bmatrix} +
|
\begin{bmatrix} -\tilde{\partial}_y & \tilde{\partial}_x \end{bmatrix} +
|
||||||
\\begin{bmatrix} \\tilde{\\partial}_x \\\\
|
\begin{bmatrix} \tilde{\partial}_x \\
|
||||||
\\tilde{\\partial}_y \\end{bmatrix} \\epsilon_{zz}^{-1}
|
\tilde{\partial}_y \end{bmatrix} \epsilon_{zz}^{-1}
|
||||||
\\begin{bmatrix} \\hat{\\partial}_x \\epsilon_{xx} & \\hat{\\partial}_y \\epsilon_{yy} \\end{bmatrix})
|
\begin{bmatrix} \hat{\partial}_x \epsilon_{xx} & \hat{\partial}_y \epsilon_{yy} \end{bmatrix})
|
||||||
\\begin{bmatrix} E_x \\\\
|
\begin{bmatrix} E_x \\
|
||||||
E_y \\end{bmatrix}
|
E_y \end{bmatrix}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
where $\\gamma = \\imath\\beta$. In the literature, $\\beta$ is usually used to denote
|
where $\gamma = \imath\beta$. In the literature, $\beta$ is usually used to denote
|
||||||
the lossless/real part of the propagation constant, but in `meanas` it is allowed to
|
the lossless/real part of the propagation constant, but in `meanas` it is allowed to
|
||||||
be complex.
|
be complex.
|
||||||
|
|
||||||
An equivalent eigenvalue problem can be formed using the $H_x$ and $H_y$ fields, if those are more convenient.
|
An equivalent eigenvalue problem can be formed using the $H_x$ and $H_y$ fields, if those are more convenient.
|
||||||
|
|
||||||
Note that $E_z$ was never discretized, so $\\gamma$ and $\\beta$ will need adjustment
|
Note that $E_z$ was never discretized, so $\gamma$ and $\beta$ will need adjustment
|
||||||
to account for numerical dispersion if the result is introduced into a space with a discretized z-axis.
|
to account for numerical dispersion if the result is introduced into a space with a discretized z-axis.
|
||||||
|
|
||||||
|
|
||||||
@ -198,7 +198,7 @@ def operator_e(
|
|||||||
epsilon: vfdfield_t,
|
epsilon: vfdfield_t,
|
||||||
mu: vfdfield_t | None = None,
|
mu: vfdfield_t | None = None,
|
||||||
) -> sparse.spmatrix:
|
) -> sparse.spmatrix:
|
||||||
"""
|
r"""
|
||||||
Waveguide operator of the form
|
Waveguide operator of the form
|
||||||
|
|
||||||
omega**2 * mu * epsilon +
|
omega**2 * mu * epsilon +
|
||||||
@ -210,18 +210,18 @@ def operator_e(
|
|||||||
More precisely, the operator is
|
More precisely, the operator is
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\\omega^2 \\begin{bmatrix} \\mu_{yy} \\epsilon_{xx} & 0 \\\\
|
\omega^2 \begin{bmatrix} \mu_{yy} \epsilon_{xx} & 0 \\
|
||||||
0 & \\mu_{xx} \\epsilon_{yy} \\end{bmatrix} +
|
0 & \mu_{xx} \epsilon_{yy} \end{bmatrix} +
|
||||||
\\begin{bmatrix} -\\mu_{yy} \\hat{\\partial}_y \\\\
|
\begin{bmatrix} -\mu_{yy} \hat{\partial}_y \\
|
||||||
\\mu_{xx} \\hat{\\partial}_x \\end{bmatrix} \\mu_{zz}^{-1}
|
\mu_{xx} \hat{\partial}_x \end{bmatrix} \mu_{zz}^{-1}
|
||||||
\\begin{bmatrix} -\\tilde{\\partial}_y & \\tilde{\\partial}_x \\end{bmatrix} +
|
\begin{bmatrix} -\tilde{\partial}_y & \tilde{\partial}_x \end{bmatrix} +
|
||||||
\\begin{bmatrix} \\tilde{\\partial}_x \\\\
|
\begin{bmatrix} \tilde{\partial}_x \\
|
||||||
\\tilde{\\partial}_y \\end{bmatrix} \\epsilon_{zz}^{-1}
|
\tilde{\partial}_y \end{bmatrix} \epsilon_{zz}^{-1}
|
||||||
\\begin{bmatrix} \\hat{\\partial}_x \\epsilon_{xx} & \\hat{\\partial}_y \\epsilon_{yy} \\end{bmatrix}
|
\begin{bmatrix} \hat{\partial}_x \epsilon_{xx} & \hat{\partial}_y \epsilon_{yy} \end{bmatrix}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
$\\tilde{\\partial}_x$ and $\\hat{\\partial}_x$ are the forward and backward derivatives along x,
|
$\tilde{\partial}_x$ and $\hat{\partial}_x$ are the forward and backward derivatives along x,
|
||||||
and each $\\epsilon_{xx}$, $\\mu_{yy}$, etc. is a diagonal matrix containing the vectorized material
|
and each $\epsilon_{xx}$, $\mu_{yy}$, etc. is a diagonal matrix containing the vectorized material
|
||||||
property distribution.
|
property distribution.
|
||||||
|
|
||||||
This operator can be used to form an eigenvalue problem of the form
|
This operator can be used to form an eigenvalue problem of the form
|
||||||
@ -265,7 +265,7 @@ def operator_h(
|
|||||||
epsilon: vfdfield_t,
|
epsilon: vfdfield_t,
|
||||||
mu: vfdfield_t | None = None,
|
mu: vfdfield_t | None = None,
|
||||||
) -> sparse.spmatrix:
|
) -> sparse.spmatrix:
|
||||||
"""
|
r"""
|
||||||
Waveguide operator of the form
|
Waveguide operator of the form
|
||||||
|
|
||||||
omega**2 * epsilon * mu +
|
omega**2 * epsilon * mu +
|
||||||
@ -277,18 +277,18 @@ def operator_h(
|
|||||||
More precisely, the operator is
|
More precisely, the operator is
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\\omega^2 \\begin{bmatrix} \\epsilon_{yy} \\mu_{xx} & 0 \\\\
|
\omega^2 \begin{bmatrix} \epsilon_{yy} \mu_{xx} & 0 \\
|
||||||
0 & \\epsilon_{xx} \\mu_{yy} \\end{bmatrix} +
|
0 & \epsilon_{xx} \mu_{yy} \end{bmatrix} +
|
||||||
\\begin{bmatrix} -\\epsilon_{yy} \\tilde{\\partial}_y \\\\
|
\begin{bmatrix} -\epsilon_{yy} \tilde{\partial}_y \\
|
||||||
\\epsilon_{xx} \\tilde{\\partial}_x \\end{bmatrix} \\epsilon_{zz}^{-1}
|
\epsilon_{xx} \tilde{\partial}_x \end{bmatrix} \epsilon_{zz}^{-1}
|
||||||
\\begin{bmatrix} -\\hat{\\partial}_y & \\hat{\\partial}_x \\end{bmatrix} +
|
\begin{bmatrix} -\hat{\partial}_y & \hat{\partial}_x \end{bmatrix} +
|
||||||
\\begin{bmatrix} \\hat{\\partial}_x \\\\
|
\begin{bmatrix} \hat{\partial}_x \\
|
||||||
\\hat{\\partial}_y \\end{bmatrix} \\mu_{zz}^{-1}
|
\hat{\partial}_y \end{bmatrix} \mu_{zz}^{-1}
|
||||||
\\begin{bmatrix} \\tilde{\\partial}_x \\mu_{xx} & \\tilde{\\partial}_y \\mu_{yy} \\end{bmatrix}
|
\begin{bmatrix} \tilde{\partial}_x \mu_{xx} & \tilde{\partial}_y \mu_{yy} \end{bmatrix}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
$\\tilde{\\partial}_x$ and $\\hat{\\partial}_x$ are the forward and backward derivatives along x,
|
$\tilde{\partial}_x$ and $\hat{\partial}_x$ are the forward and backward derivatives along x,
|
||||||
and each $\\epsilon_{xx}$, $\\mu_{yy}$, etc. is a diagonal matrix containing the vectorized material
|
and each $\epsilon_{xx}$, $\mu_{yy}$, etc. is a diagonal matrix containing the vectorized material
|
||||||
property distribution.
|
property distribution.
|
||||||
|
|
||||||
This operator can be used to form an eigenvalue problem of the form
|
This operator can be used to form an eigenvalue problem of the form
|
||||||
|
Loading…
Reference in New Issue
Block a user