wip junk
This commit is contained in:
parent
1b3d322fc6
commit
2c5c40c1e7
350
nom-eme.py
Normal file
350
nom-eme.py
Normal file
@ -0,0 +1,350 @@
|
|||||||
|
|
||||||
|
from simphony.elements import Model
|
||||||
|
from simphony.netlist import Subcircuit
|
||||||
|
from simphony.simulation import SweepSimulation
|
||||||
|
|
||||||
|
from matplotlib import pyplot as plt
|
||||||
|
|
||||||
|
|
||||||
|
class PeriodicLayer(Model):
|
||||||
|
def __init__(self, left_modes, right_modes, s_params):
|
||||||
|
self.left_modes = left_modes
|
||||||
|
self.right_modes = right_modes
|
||||||
|
self.left_ports = len(self.left_modes)
|
||||||
|
self.right_ports = len(self.right_modes)
|
||||||
|
self.normalize_fields()
|
||||||
|
self.s_params = s_params
|
||||||
|
|
||||||
|
def normalize_fields(self):
|
||||||
|
for mode in range(len(self.left_modes)):
|
||||||
|
self.left_modes[mode].normalize()
|
||||||
|
for mode in range(len(self.right_modes)):
|
||||||
|
self.right_modes[mode].normalize()
|
||||||
|
|
||||||
|
|
||||||
|
class PeriodicEME:
|
||||||
|
def __init__(self, layers=[], num_periods=1):
|
||||||
|
self.layers = layers
|
||||||
|
self.num_periods = num_periods
|
||||||
|
self.wavelength = wavelength
|
||||||
|
|
||||||
|
def propagate(self):
|
||||||
|
wl = self.wavelength
|
||||||
|
if not len(self.layers):
|
||||||
|
raise Exception("Must place layers before propagating")
|
||||||
|
|
||||||
|
num_modes = max([l.num_modes for l in self.layers])
|
||||||
|
iface = InterfaceSingleMode if num_modes == 1 else InterfaceMultiMode
|
||||||
|
|
||||||
|
eme = EME(layers=self.layers)
|
||||||
|
left, right = eme.propagate()
|
||||||
|
self.single_period = eme.s_matrix
|
||||||
|
|
||||||
|
period_layer = PeriodicLayer(left.modes, right.modes, self.single_period)
|
||||||
|
current_layer = PeriodicLayer(left.modes, right.modes, self.single_period)
|
||||||
|
interface = iface(right, left)
|
||||||
|
|
||||||
|
for _ in range(self.num_periods - 1):
|
||||||
|
current_layer.s_params = cascade(current_layer, interface, wl)
|
||||||
|
current_layer.s_params = cascade(current_layer, period_layer, wl)
|
||||||
|
|
||||||
|
self.s_params = current_layer.s_params
|
||||||
|
|
||||||
|
|
||||||
|
class EME:
|
||||||
|
def __init__(self, layers=[]):
|
||||||
|
self.layers = layers
|
||||||
|
self.wavelength = None
|
||||||
|
|
||||||
|
def propagate(self):
|
||||||
|
layers = self.layers
|
||||||
|
wl = layers[0].wavelength if self.wavelength is None else self.wavelength
|
||||||
|
if not len(layers):
|
||||||
|
raise Exception("Must place layers before propagating")
|
||||||
|
|
||||||
|
num_modes = max([l.num_modes for l in layers])
|
||||||
|
iface = InterfaceSingleMode if num_modes == 1 else InterfaceMultiMode
|
||||||
|
|
||||||
|
first_layer = layers[0]
|
||||||
|
current = Current(wl, first_layer)
|
||||||
|
interface = iface(first_layer, layers[1])
|
||||||
|
|
||||||
|
current.s = cascade(current, interface, wl)
|
||||||
|
current.right_pins = interface.right_pins
|
||||||
|
|
||||||
|
for index in range(1, len(layers) - 1):
|
||||||
|
layer1 = layers[index]
|
||||||
|
layer2 = layers[index + 1]
|
||||||
|
interface = iface(layer1, layer2)
|
||||||
|
|
||||||
|
current.s = cascade(current, layer1, wl)
|
||||||
|
current.right_pins = layer1.right_pins
|
||||||
|
|
||||||
|
current.s = cascade(current, interface, wl)
|
||||||
|
current.right_pins = interface.right_pins
|
||||||
|
|
||||||
|
last_layer = layers[-1]
|
||||||
|
current.s = cascade(current, last_layer, wl)
|
||||||
|
current.right_pins = last_layer.right_pins
|
||||||
|
|
||||||
|
self.s_matrix = current.s
|
||||||
|
return first_layer, last_layer
|
||||||
|
|
||||||
|
|
||||||
|
def stack(sa, sb):
|
||||||
|
qab = numpy.eye() - sa.r11 @ sb.r11
|
||||||
|
qba = numpy.eye() - sa.r11 @ sb.r11
|
||||||
|
#s.t12 = sa.t12 @ numpy.pinv(qab) @ sb.t12
|
||||||
|
#s.r21 = sa.t12 @ numpy.pinv(qab) @ sb.r22 @ sa.t21 + sa.r22
|
||||||
|
#s.r12 = sb.t21 @ numpy.pinv(qba) @ sa.r11 @ sb.t12 + sb.r11
|
||||||
|
#s.t21 = sb.t21 @ numpy.pinv(qba) @ sa.t21
|
||||||
|
s.t12 = sa.t12 @ numpy.linalg.solve(qab, sb.t12)
|
||||||
|
s.r21 = sa.t12 @ numpy.linalg.solve(qab, sb.r22 @ sa.t21) + sa.r22
|
||||||
|
s.r12 = sb.t21 @ numpy.linalg.solve(qba, sa.r11 @ sb.t12) + sb.r11
|
||||||
|
s.t21 = sb.t21 @ numpy.linalg.solve(qba, sa.t21)
|
||||||
|
return s
|
||||||
|
|
||||||
|
|
||||||
|
def cascade(first, second, wavelength):
|
||||||
|
circuit = Subcircuit("Device")
|
||||||
|
|
||||||
|
circuit.add([(first, "first"), (second, "second")])
|
||||||
|
for port in range(first.right_ports):
|
||||||
|
circuit.connect("first", "right" + str(port), "second", "left" + str(port))
|
||||||
|
|
||||||
|
simulation = SweepSimulation(circuit, wavelength, wavelength, num=1)
|
||||||
|
result = simulation.simulate()
|
||||||
|
return result.s
|
||||||
|
|
||||||
|
|
||||||
|
class InterfaceSingleMode(Model):
|
||||||
|
def __init__(self, layer1, layer2, num_modes=1):
|
||||||
|
self.num_modes = num_modes
|
||||||
|
self.num_ports = 2 * num_modes
|
||||||
|
self.s = self.solve(layer1, layer2, num_modes)
|
||||||
|
|
||||||
|
def solve(self, layer1, layer2, num_modes):
|
||||||
|
nm = num_modes
|
||||||
|
s = numpy.zeros((2 * nm, 2 * nm), dtype=complex)
|
||||||
|
|
||||||
|
for ii, left_mode in enumerate(layer1.modes):
|
||||||
|
for oo, right_mode in enumerate(layer2.modes):
|
||||||
|
r, t = get_rt(left_mode, right_mode)
|
||||||
|
s[ oo, ii] = r
|
||||||
|
s[nm + oo, ii] = t
|
||||||
|
|
||||||
|
for ii, right_mode in enumerate(layer2.modes):
|
||||||
|
for oo, left_mode in enumerate(layer1.modes):
|
||||||
|
r, t = get_rt(right_mode, left_mode)
|
||||||
|
s[ oo, nm + ii] = t
|
||||||
|
s[nm + oo, nm + ii] = r
|
||||||
|
return s
|
||||||
|
|
||||||
|
|
||||||
|
class InterfaceMultiMode(Model):
|
||||||
|
def __init__(self, layer1, layer2):
|
||||||
|
self.s = self.solve(layer1, layer2)
|
||||||
|
|
||||||
|
def solve(self, layer1, layer2):
|
||||||
|
n1p = layer1.num_modes
|
||||||
|
n2p = layer2.num_modes
|
||||||
|
num_ports = n1p + n2p
|
||||||
|
s = numpy.zeros((num_ports, num_ports), dtype=complex)
|
||||||
|
|
||||||
|
for l1p in range(n1p):
|
||||||
|
ts = get_t(l1p, layer1, layer2)
|
||||||
|
rs = get_r(l1p, layer1, layer2, ts)
|
||||||
|
s[n1p:, l1p] = ts
|
||||||
|
s[:n1p, l1p] = rs
|
||||||
|
|
||||||
|
for l2p in range(n2p):
|
||||||
|
ts = get_t(l2p, layer2, layer1)
|
||||||
|
rs = get_r(l2p, layer2, layer1, ts)
|
||||||
|
s[:n1p, n1p + l2p] = ts
|
||||||
|
s[n1p:, n1p + l2p] = rs
|
||||||
|
|
||||||
|
return s
|
||||||
|
|
||||||
|
|
||||||
|
def get_t(p, left, right):
|
||||||
|
A = numpy.empty(left.num_modes, right.num_modes, dtype=complex)
|
||||||
|
for i in range(left.num_modes):
|
||||||
|
for k in range(right.num_modes):
|
||||||
|
# TODO optimize loop
|
||||||
|
A[i, k] = inner_product(right[k], left[i]) + inner_product(left[i], right[k])
|
||||||
|
|
||||||
|
b = numpy.zeros(left.num_modes)
|
||||||
|
b[p] = 2 * inner_product(left[p], left[p])
|
||||||
|
|
||||||
|
x = numpy.linalg.solve(A, b)
|
||||||
|
# NOTE: `A` does not depend on `p`, so it might make sense to partially precompute
|
||||||
|
# the solution (pinv(A), or LU decomposition?)
|
||||||
|
# Actually solve() can take multiple vectors, so just pass it something with the full diagonal?
|
||||||
|
|
||||||
|
xx = numpy.matmul(numpy.linalg.pinv(A), b) #TODO verify
|
||||||
|
assert numpy.allclose(xx, x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def get_r(p, left, right, t):
|
||||||
|
r = numpy.empty(left.num_modes, dtype=complex)
|
||||||
|
for ii in range(left.num_modes):
|
||||||
|
r[ii] = sum((inner_product(right[kk], left[ii]) - inner_product(left[ii], right[kk])) * t[kk]
|
||||||
|
for kk in range(right.num_modes)
|
||||||
|
) / (2 * inner_product(left[ii], left[ii]))
|
||||||
|
return r
|
||||||
|
|
||||||
|
|
||||||
|
def get_rt(left, right):
|
||||||
|
a = 0.5 * (inner_product(left, right) + inner_product(right, left))
|
||||||
|
b = 0.5 * (inner_product(left, right) - inner_product(right, left))
|
||||||
|
t = (a ** 2 - b ** 2) / a
|
||||||
|
r = 1 - t / (a + b)
|
||||||
|
return -r, t
|
||||||
|
|
||||||
|
|
||||||
|
def inner_product(left_E, right_H, dxes):
|
||||||
|
# ExHy' - EyHx'
|
||||||
|
cross_z = left_E[0] * right_H[1].conj() - left_E[1] * right_H[0].conj()
|
||||||
|
# cross_z = numpy.cross(left_E, numpy.conj(right_H), axisa=0, axisb=0, axisc=0)[2]
|
||||||
|
return numpy.trapz(numpy.trapz(cross_z, dxes[0][0]), dxes[0][1]) / 2 # TODO might need cumsum on dxes
|
||||||
|
|
||||||
|
|
||||||
|
def propagation_matrix(mode_neffs: ArrayLike, wavelength: float, distance: float):
|
||||||
|
eigenv = numpy.array(mode_neffs, copy=False) * 2 * numpy.pi / wavelength
|
||||||
|
prop_diag = numpy.diag(numpy.exp(distance * 1j * numpy.hstack((eigenv, eigenv))))
|
||||||
|
prop_matrix = numpy.roll(prop_diag, len(eigenv), axis=0)
|
||||||
|
return prop_matrix
|
||||||
|
|
||||||
|
|
||||||
|
def connect_s(
|
||||||
|
A: NDArray[numpy.complex128],
|
||||||
|
k: int,
|
||||||
|
B: NDArray[numpy.complex128],
|
||||||
|
l: int,
|
||||||
|
) -> NDArray[numpy.complex128]:
|
||||||
|
"""
|
||||||
|
TODO
|
||||||
|
connect two n-port networks' s-matrices together.
|
||||||
|
specifically, connect port `k` on network `A` to port `l` on network
|
||||||
|
`B`. The resultant network has nports = (A.rank + B.rank-2); first
|
||||||
|
(A.rank - 1) ports are from `A`, remainder are from B.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
A: S-parameter matrix of `A`, shape is fxnxn
|
||||||
|
k: port index on `A` (port indices start from 0)
|
||||||
|
B: S-parameter matrix of `B`, shape is fxnxn
|
||||||
|
l: port index on `B`
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
C: new S-parameter matrix
|
||||||
|
"""
|
||||||
|
if k > A.shape[-1] - 1 or l > B.shape[-1] - 1:
|
||||||
|
raise ValueError("port indices are out of range")
|
||||||
|
|
||||||
|
C = scipy.sparse.block_diag((A, B), dtype=complex)
|
||||||
|
return innerconnect_s(C, k, A.shape[0] + l)
|
||||||
|
|
||||||
|
|
||||||
|
def innerconnect_s(
|
||||||
|
S: NDArray[numpy.complex128],
|
||||||
|
k: int,
|
||||||
|
l: int,
|
||||||
|
) -> NDArray[numpy.complex128]:
|
||||||
|
"""
|
||||||
|
TODO
|
||||||
|
n x n x freq
|
||||||
|
connect two ports of a single n-port network's s-matrix.
|
||||||
|
Specifically, connect port `k` to port `l` on `S`. This results in
|
||||||
|
a (n-2)-port network.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
S: S-parameter matrix of `S`, shape is fxnxn
|
||||||
|
k: port index on `S` (port indices start from 0)
|
||||||
|
l: port index on `S`
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
new S-parameter matrix
|
||||||
|
|
||||||
|
Notes:
|
||||||
|
- Compton, R.C., "Perspectives in microwave circuit analysis",
|
||||||
|
doi:10.1109/MWSCAS.1989.101955
|
||||||
|
- Filipsson, G., "A New General Computer Algorithm for S-Matrix Calculation
|
||||||
|
of Interconnected Multiports",
|
||||||
|
doi:10.1109/EUMA.1981.332972
|
||||||
|
"""
|
||||||
|
if k > S.shape[-1] - 1 or l > S.shape[-1] - 1:
|
||||||
|
raise ValueError("port indices are out of range")
|
||||||
|
|
||||||
|
l = [l]
|
||||||
|
k = [k]
|
||||||
|
|
||||||
|
mkl = 1 - S[k, l]
|
||||||
|
mlk = 1 - S[l, k]
|
||||||
|
C = S + (
|
||||||
|
S[k, :] * S[:, l] * mlk
|
||||||
|
+ S[l, :] * S[:, k] * mkl
|
||||||
|
+ S[k, :] * S[l, l] * S[:, k]
|
||||||
|
+ S[l, :] * S[k, k] * S[:, l]
|
||||||
|
) / (
|
||||||
|
mlk * mkl - S[k, k] * S[l, l]
|
||||||
|
)
|
||||||
|
|
||||||
|
# remove connected ports
|
||||||
|
C = npy.delete(C, (k, l), 1)
|
||||||
|
C = npy.delete(C, (k, l), 2)
|
||||||
|
|
||||||
|
return C
|
||||||
|
|
||||||
|
|
||||||
|
def s2abcd(
|
||||||
|
S: NDArray[numpy.complex128],
|
||||||
|
z0: NDArray[numpy.complex128],
|
||||||
|
) -> NDArray[numpy.complex128]:
|
||||||
|
assert numpy.array_equal(S.shape[:2] == (2, 2))
|
||||||
|
Z1, Z2 = z0
|
||||||
|
cross = S[0, 1] * S[1, 0]
|
||||||
|
|
||||||
|
T = numpy.empty_like(S, dtype=complex)
|
||||||
|
T[0, 0, :] = (Z1.conj() + S[0, 0] * Z1) * (1 - S[1, 1]) + cross * Z1 # A numerator
|
||||||
|
T[0, 1, :] = (Z1.conj() + S[0, 0] * Z1) * (Z1.conj() + S[1, 1] * Z2) - cross * Z1 * Z2 # B numerator
|
||||||
|
T[1, 0, :] = (1 - S[0, 0]) * (1 - S[1, 1]) - cross # C numerator
|
||||||
|
T[1, 1, :] = (1 - S[0, 0]) * (Z2.conj() + S[1, 1] * Z2) + cross * Z2 # D numerator
|
||||||
|
det = 2 * S[1, 0] * numpy.sqrt(Z1.real * Z2.real)
|
||||||
|
T /= det
|
||||||
|
return T
|
||||||
|
|
||||||
|
|
||||||
|
def generalize_S(
|
||||||
|
S: NDArray[numpy.complex128],
|
||||||
|
r0: float,
|
||||||
|
z0: NDArray[numpy.complex128],
|
||||||
|
) -> NDArray[numpy.complex128]:
|
||||||
|
g = (z0 - r0) / (z0 + r0)
|
||||||
|
D = numpy.diag((1 - g) / numpy.abs(1 - g.conj()) * numpy.sqrt(1 - numpy.abs(g * g.conj())))
|
||||||
|
G = numpy.diag(g)
|
||||||
|
U = numpy.eye(S.shape[0])
|
||||||
|
S_gen = pinv(D.conj()) @ (S - G.conj()) @ pinv(U - G @ S) @ D
|
||||||
|
return S_gen
|
||||||
|
|
||||||
|
|
||||||
|
def change_R0(
|
||||||
|
S: NDArray[numpy.complex128],
|
||||||
|
r1: float,
|
||||||
|
r2: float,
|
||||||
|
) -> NDArray[numpy.complex128]:
|
||||||
|
g = (r2 - r1) / (r2 + r1)
|
||||||
|
U = numpy.eye(S.shape[0])
|
||||||
|
G = U * g
|
||||||
|
S_r2 = (S - G) @ pinv(U - G @ S)
|
||||||
|
return S_r2
|
||||||
|
|
||||||
|
# Zc = numpy.sqrt(B / C)
|
||||||
|
# gamma = numpy.arccosh(A) / L_TL
|
||||||
|
# n_eff = -1j * gamma * c_light / (2 * pi * f)
|
||||||
|
# n_eff_grp = n_eff + f * diff(n_eff) / diff(f)
|
||||||
|
# attenuation = (1 - S[0, 0] * S[0, 0].conj()) / (S[1, 0] * S[1, 0].conj())
|
||||||
|
# R = numpy.real(gamma * Zc)
|
||||||
|
# C = numpy.real(gamma / Zc)
|
||||||
|
# L = numpy.imag(gamma * Zc) / (-1j * 2 * pi * f)
|
||||||
|
# G = numpy.imag(gamma / Zc) / (-1j * 2 * pi * f)
|
387
spar.py
Normal file
387
spar.py
Normal file
@ -0,0 +1,387 @@
|
|||||||
|
# Based on scripts from Andy H. va rfcafe
|
||||||
|
|
||||||
|
# IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. VOL 42, NO 2. FEBRUARY 1994
|
||||||
|
# Conversions Between S, Z, Y, h, ABCD, and T Parameters which are Valid for Complex Source and Load Impedances
|
||||||
|
# Dean A. Frickey, Member, EEE
|
||||||
|
# Tables I and II
|
||||||
|
|
||||||
|
import numpy
|
||||||
|
|
||||||
|
|
||||||
|
def s_to_z(s, z0):
|
||||||
|
"""
|
||||||
|
Scattering (S) to Impedance (Z)
|
||||||
|
|
||||||
|
Args:
|
||||||
|
s: The scattering matrix.
|
||||||
|
z0: The port impedances (Ohms).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The impedance matrix.
|
||||||
|
"""
|
||||||
|
z0c = numpy.conj(z0)
|
||||||
|
|
||||||
|
z = numpy.empty([2, 2], dtype=complex)
|
||||||
|
z[0, 0] = (z0c[0] + s[0, 0] * z0[0]) * (1 - s[1, 1]) + s[0, 1] * s[1, 0] * z0[0]
|
||||||
|
z[0, 1] = 2 * s[0, 1] * numpy.sqrt(z0[0].real * z0[1].real)
|
||||||
|
z[1, 0] = 2 * s[1, 0] * numpy.sqrt(z0[0].real * z0[1].real)
|
||||||
|
z[1, 1] = (1 - s[0, 0]) * (z0c[1] + s[1, 1] * z0[1]) + s[0, 1] * s[1, 0] * z0[1]
|
||||||
|
|
||||||
|
z /= (1 - s[0, 0]) * (1 - s[1, 1]) - s[0, 1] * s[1, 0]
|
||||||
|
return z
|
||||||
|
|
||||||
|
|
||||||
|
def z_to_s(z, z0):
|
||||||
|
"""
|
||||||
|
Impedance (Z) to Scattering (S)
|
||||||
|
|
||||||
|
Args:
|
||||||
|
z: The impedance matrix.
|
||||||
|
z0: The port impedances (Ohms).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The scattering matrix.
|
||||||
|
"""
|
||||||
|
z0c = numpy.conj(z0)
|
||||||
|
|
||||||
|
s = numpy.empty([2, 2], dtype=complex)
|
||||||
|
s[0, 0] = (z[0, 0] - z0c[0]) * (z[1, 1] + z0[1]) - z[0, 1] * z[1, 0]
|
||||||
|
s[0, 1] = 2 * z[0, 1] * numpy.sqrt(z0[0].real * z0[1].real)
|
||||||
|
s[1, 0] = 2 * z[1, 0] * numpy.sqrt(z0[0].real * z0[1].real)
|
||||||
|
s[1, 1] = (z[0, 0] + z0[0]) * (z[1, 1] - z0c[1]) - z[0, 1] * z[1, 0]
|
||||||
|
|
||||||
|
s /= (z[0, 0] + z0[0]) * (z[1, 1] + z0[1]) - z[0, 1] * z[1, 0]
|
||||||
|
return s
|
||||||
|
|
||||||
|
|
||||||
|
def s_to_y(s, z0):
|
||||||
|
"""
|
||||||
|
Scattering (S) to Admittance (Y)
|
||||||
|
|
||||||
|
Args:
|
||||||
|
s: The scattering matrix.
|
||||||
|
z0: The port impedances (Ohms).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The admittance matrix.
|
||||||
|
"""
|
||||||
|
z0c = numpy.conj(z0)
|
||||||
|
|
||||||
|
y = numpy.empty([2, 2], dtype=complex)
|
||||||
|
y[0, 0] = (1 - s[0, 0]) * (z0c[1] + s[1, 1] * z0[1]) + s[0,1] * s[1, 0] * z0[1]
|
||||||
|
y[0, 1] = -2 * s[0,1] * numpy.sqrt(z0[0].real * z0[1].real)
|
||||||
|
y[1, 0] = -2 * s[1, 0] * numpy.sqrt(z0[0].real * z0[1].real)
|
||||||
|
y[1, 1] = (z0c[0] + s[0, 0] * z0[0]) * (1 - s[1,1]) + s[0,1] * s[1, 0] * z0[0]
|
||||||
|
|
||||||
|
y /= (z0c[0] + s[0, 0] * z0[0]) * (z0c[1] + s[1, 1] * z0[1]) - s[0,1] * s[1, 0] * z0[0] * z0[1]
|
||||||
|
return y
|
||||||
|
|
||||||
|
|
||||||
|
def y_to_s(y, z0):
|
||||||
|
"""
|
||||||
|
Admittance (Y) to Scattering (S)
|
||||||
|
|
||||||
|
Args:
|
||||||
|
y: The admittance matrix.
|
||||||
|
z0: The port impedances (Ohms).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The scattering matrix.
|
||||||
|
"""
|
||||||
|
z0c = numpy.conj(z0)
|
||||||
|
|
||||||
|
s = numpy.empty([2, 2], dtype=complex)
|
||||||
|
s[0, 0] = (1 - y[0, 0] * z0c[0]) * (1 + y[1, 1] * z0[1]) + y[0,1] * y[1, 0] * z0c[0] * z0[1]
|
||||||
|
s[0, 1] = -2 * y[0,1] * numpy.sqrt(z0[0].real * z0[1].real)
|
||||||
|
s[1, 0] = -2 * y[1, 0] * numpy.sqrt(z0[0].real * z0[1].real)
|
||||||
|
s[1, 1] = (1 + y[0, 0] * z0[0]) * (1 - y[1,1] * z0c[1]) + y[0,1] * y[1, 0] * z0[0] * z0c[1]
|
||||||
|
|
||||||
|
s /= (1 + y[0, 0] * z0[0]) * (1 + y[1, 1] * z0[1]) - y[0,1] * y[1, 0] * z0[0] * z0[1]
|
||||||
|
return s
|
||||||
|
|
||||||
|
|
||||||
|
def s_to_h(s, z0):
|
||||||
|
"""
|
||||||
|
Scattering (S) to Hybrid (H)
|
||||||
|
|
||||||
|
Args:
|
||||||
|
s: The scattering matrix.
|
||||||
|
z0: The port impedances (Ohms).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The hybrid matrix.
|
||||||
|
"""
|
||||||
|
z0c = numpy.conj(z0)
|
||||||
|
|
||||||
|
h = numpy.empty([2, 2], dtype=complex)
|
||||||
|
h[0, 0] = (z0c[0] + s[0, 0] * z0[0]) * (z0c[1] + s[1, 1] * z0[1]) - s[0,1] * s[1, 0] * z0[0] * z0[1]
|
||||||
|
h[0, 1] = 2 * s[0,1] * numpy.sqrt(z0[0].real * z0[1].real)
|
||||||
|
h[1, 0] = -2 * s[1, 0] * numpy.sqrt(z0[0].real * z0[1].real)
|
||||||
|
h[1, 1] = (1 - s[0, 0]) * (1 - s[1,1]) - s[0,1] * s[1, 0]
|
||||||
|
|
||||||
|
h /= (1 - s[0, 0]) * (z0c[1] + s[1, 1] * z0[1]) + s[0,1] * s[1, 0] * z0[1]
|
||||||
|
return h
|
||||||
|
|
||||||
|
|
||||||
|
def h_to_s(h, z0):
|
||||||
|
"""
|
||||||
|
Hybrid (H) to Scattering (S)
|
||||||
|
|
||||||
|
Args:
|
||||||
|
h: The hybrid matrix.
|
||||||
|
z0: The port impedances (Ohms).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The scattering matrix.
|
||||||
|
"""
|
||||||
|
z0c = numpy.conj(z0)
|
||||||
|
|
||||||
|
s = numpy.empty([2, 2], dtype=complex)
|
||||||
|
s[0, 0] = (h[0, 0] - z0c[0]) * (1 + h[1, 1] * z0[1]) - h[0,1] * h[1, 0] * z0[1]
|
||||||
|
s[0, 1] = 2 * h[0,1] * numpy.sqrt(z0[0].real * z0[1].real)
|
||||||
|
s[1, 0] = -2 * h[1, 0] * numpy.sqrt(z0[0].real * z0[1].real)
|
||||||
|
s[1, 1] = (z0[0] + h[0, 0]) * (1 - h[1,1] * z0c[1]) + h[0,1] * h[1, 0] * z0c[1]
|
||||||
|
|
||||||
|
s /= (z0[0] + h[0, 0]) * (1 + h[1, 1] * z0[1]) - h[0,1] * h[1, 0] * z0[1]
|
||||||
|
return s
|
||||||
|
|
||||||
|
|
||||||
|
def s_to_abcd(s, z0):
|
||||||
|
"""
|
||||||
|
Scattering to Chain (ABCD)
|
||||||
|
|
||||||
|
Args:
|
||||||
|
s: The scattering matrix.
|
||||||
|
z0: The port impedances (Ohms).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The chain matrix.
|
||||||
|
"""
|
||||||
|
z0c = numpy.conj(z0)
|
||||||
|
|
||||||
|
ans = numpy.empty([2, 2], dtype=complex)
|
||||||
|
ans[0, 0] = (z0c[0] + s[0, 0] * z0[0]) * (1 - s[1, 1]) + s[0,1] * s[1, 0] * z0[0]
|
||||||
|
ans[0, 1] = (z0c[0] + s[0, 0] * z0[0]) * (z0c[1] + s[1,1] * z0[1]) - s[0,1] * s[1, 0] * z0[0] * z0[1]
|
||||||
|
ans[1, 0] = (1 - s[0, 0]) * (1 - s[1, 1]) - s[0,1] * s[1, 0]
|
||||||
|
ans[1, 1] = (1 - s[0, 0]) * (z0c[1] + s[1,1] * z0[1]) + s[0,1] * s[1, 0] * z0[1]
|
||||||
|
|
||||||
|
ans /= 2 * s[1, 0] * numpy.sqrt(z0[0].real * z0[1].real)
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def abcd_to_s(abcd, z0):
|
||||||
|
"""
|
||||||
|
Chain (ABCD) to Scattering (S)
|
||||||
|
|
||||||
|
Args:
|
||||||
|
abcd: The chain matrix.
|
||||||
|
z0: The port impedances (Ohms).
|
||||||
|
|
||||||
|
Return:
|
||||||
|
The scattering matrix.
|
||||||
|
"""
|
||||||
|
A = abcd[0, 0]
|
||||||
|
B = abcd[0, 1]
|
||||||
|
C = abcd[1, 0]
|
||||||
|
D = abcd[1, 1]
|
||||||
|
|
||||||
|
z0c = numpy.conj(z0)
|
||||||
|
|
||||||
|
s = numpy.empty([2, 2], dtype=complex)
|
||||||
|
s[0, 0] = A * z0[1] + B - C * z0c[0] * z0[1] - D * z0c[0]
|
||||||
|
s[0, 1] = 2 * (A * D - B * C) * numpy.sqrt(z0[0].real * z0[1].real)
|
||||||
|
s[1, 0] = 2 * numpy.sqrt(z0[0].real * z0[1].real)
|
||||||
|
s[1, 1] = -A * z0c[1] + B - C * z0[0] * z0c[1] + D * z0[0]
|
||||||
|
|
||||||
|
s /= A * z0[1] + B + C * z0[0] * z0[1] + D * z0[0]
|
||||||
|
return s
|
||||||
|
|
||||||
|
|
||||||
|
def t_to_z(t, z0):
|
||||||
|
"""
|
||||||
|
Chain Transfer (T) to Impedance (Z)
|
||||||
|
|
||||||
|
Args:
|
||||||
|
t: The chain transfer matrix.
|
||||||
|
z0: The port impedances (Ohms).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The impedance matrix.
|
||||||
|
"""
|
||||||
|
z0c = numpy.conj(z0)
|
||||||
|
|
||||||
|
z = numpy.empty([2, 2], dtype=complex)
|
||||||
|
z[0, 0] = z0c[0] * (t[0, 0] + t[0, 1]) + z0[0] * (t[1, 0] + t[1,1])
|
||||||
|
z[0, 1] = 2 * numpy.sqrt(z0[0].real * z0[1].real) * (t[0, 0] * t[1,1] - t[0,1] * t[1, 0])
|
||||||
|
z[1, 0] = 2 * numpy.sqrt(z0[0].real * z0[1].real)
|
||||||
|
z[1, 1] = z0c[1] * (t[0, 0] - t[1, 0]) - z0[1] * (t[0,1] - t[1,1])
|
||||||
|
|
||||||
|
z /= t[0, 0] + t[0, 1] - t[1, 0] - t[1,1]
|
||||||
|
return z
|
||||||
|
|
||||||
|
|
||||||
|
def z_to_t(z, z0):
|
||||||
|
"""
|
||||||
|
Impedance (Z) to Chain Transfer (T)
|
||||||
|
|
||||||
|
Args:
|
||||||
|
z: The impedance matrix.
|
||||||
|
z0: The port impedances (Ohms).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The chain transfer matrix.
|
||||||
|
"""
|
||||||
|
z0c = numpy.conj(z0)
|
||||||
|
|
||||||
|
t = numpy.empty([2, 2], dtype=complex)
|
||||||
|
t[0, 0] = (z[0, 0] + z0[0]) * (z[1, 1] + z0[1]) - z[0,1] * z[1, 0]
|
||||||
|
t[0, 1] = (z[0, 0] + z0[0]) * (z0c[1] - z[1,1]) + z[0,1] * z[1, 0]
|
||||||
|
t[1, 0] = (z[0, 0] - z0c[0]) * (z[1, 1] + z0[1]) - z[0,1] * z[1, 0]
|
||||||
|
t[1, 1] = (z0c[0] - z[0, 0]) * (z[1,1] - z0c[1]) + z[0,1] * z[1, 0]
|
||||||
|
|
||||||
|
t /= 2 * z[1, 0] * numpy.sqrt(z0[0].real * z0[1].real)
|
||||||
|
return t
|
||||||
|
|
||||||
|
|
||||||
|
def t_to_y(t, z0):
|
||||||
|
"""
|
||||||
|
Chain Transfer (T) to Admittance (Y)
|
||||||
|
|
||||||
|
Args:
|
||||||
|
t: The chain transfer matrix.
|
||||||
|
z0: The port impedances (Ohms).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The admittance matrix.
|
||||||
|
"""
|
||||||
|
z0c = numpy.conj(z0)
|
||||||
|
|
||||||
|
y = numpy.empty([2, 2], dtype=complex)
|
||||||
|
y[0, 0] = z0c[1] * (t[0, 0] - t[1, 0]) - z0[1] * (t[0, 1] - t[1,1])
|
||||||
|
y[0, 1] = -2 * numpy.sqrt(z0[0].real * z0[1].real) * (t[0, 0] * t[1,1] - t[0,1] * t[1, 0])
|
||||||
|
y[1, 0] = -2 * numpy.sqrt(z0[0].real * z0[1].real)
|
||||||
|
y[1, 1] = z0c[0] * (t[0, 0] + t[0,1]) + z0[0] * (t[1, 0] + t[1,1])
|
||||||
|
|
||||||
|
y /= t[0, 0] * z0c[0] * z0c[1] - t[0, 1] * z0c[0] * z0[1] + t[1, 0] * z0[0] * z0c[1] - t[1,1] * z0[0] * z0[1]
|
||||||
|
return y
|
||||||
|
|
||||||
|
|
||||||
|
def y_to_t(y, z0):
|
||||||
|
"""
|
||||||
|
Admittance (Y) to Chain Transfer (T)
|
||||||
|
|
||||||
|
Args:
|
||||||
|
y: The admittance matrix.
|
||||||
|
z0: The port impedances (Ohms).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The chain transfer matrix.
|
||||||
|
"""
|
||||||
|
z0c = numpy.conj(z0)
|
||||||
|
|
||||||
|
t = numpy.empty([2, 2], dtype=complex)
|
||||||
|
t[0, 0] = (-1 - y[0, 0] * z0[0]) * (1 + y[1, 1] * z0[1]) + y[0,1] * y[1, 0] * z0[0] * z0[1]
|
||||||
|
t[0, 1] = (1 + y[0, 0] * z0[0]) * (1 - y[1,1] * z0c[1]) + y[0,1] * y[1, 0] * z0[0] * z0c[1]
|
||||||
|
t[1, 0] = (y[0, 0] * z0c[0] - 1) * (1 + y[1, 1] * z0[1]) - y[0,1] * y[1, 0] * z0c[0] * z0[1]
|
||||||
|
t[1, 1] = (1 - y[0, 0] * z0c[0]) * (1 - y[1,1] * z0c[1]) - y[0,1] * y[1, 0] * z0c[0] * z0c[1]
|
||||||
|
|
||||||
|
t /= 2 * y[1, 0] * numpy.sqrt(z0[0].real * z0[1].real)
|
||||||
|
return t
|
||||||
|
|
||||||
|
|
||||||
|
def t_to_h(t, z0):
|
||||||
|
"""
|
||||||
|
Chain Transfer (T) to Hybrid (H)
|
||||||
|
|
||||||
|
Args:
|
||||||
|
t: The chain transfer matrix.
|
||||||
|
z0: The port impedances (Ohms).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The hybrid matrix.
|
||||||
|
"""
|
||||||
|
z0c = numpy.conj(z0)
|
||||||
|
|
||||||
|
|
||||||
|
h = numpy.empty([2, 2], dtype=complex)
|
||||||
|
h[0, 0] = z0c[1]*(t[0, 0] * z0c[0] + t[1, 0] * z0[0]) - z0[1] * (t[0, 1] * z0c[0] + t[1,1] * z0[0])
|
||||||
|
h[0, 1] = 2 * numpy.sqrt(z0[0].real * z0[1].real) * (t[0, 0] * t[1,1] - t[0,1] * t[1, 0])
|
||||||
|
h[1, 0] = -2 * numpy.sqrt(z0[0].real * z0[1].real)
|
||||||
|
h[1, 1] = t[0, 0] + t[0,1] - t[1, 0] - t[1,1]
|
||||||
|
|
||||||
|
h /= z0c[1] * (t[0, 0] - t[1, 0]) - z0[1] * (t[0, 1] - t[1,1])
|
||||||
|
return h
|
||||||
|
|
||||||
|
|
||||||
|
def h_to_t(h, z0):
|
||||||
|
"""
|
||||||
|
Hybrid (H) to Chain Transfer (T)
|
||||||
|
|
||||||
|
Args:
|
||||||
|
t: The hybrid matrix.
|
||||||
|
z0: The port impedances (Ohms).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The chain transfer matrix.
|
||||||
|
"""
|
||||||
|
z0c = numpy.conj(z0)
|
||||||
|
|
||||||
|
t = numpy.empty([2, 2], dtype=complex)
|
||||||
|
t[0, 0] = (-h[0, 0] - z0[0]) * (1 + h[1, 1] * z0[1]) + h[0,1] * h[1, 0] * z0[1]
|
||||||
|
t[0, 1] = (h[0, 0] + z0[0]) * (1 - h[1,1] * z0c[1]) + h[0,1] * h[1, 0] * z0c[1]
|
||||||
|
t[1, 0] = (z0c[0] - h[0, 0]) * (1 + h[1, 1] * z0[1]) + h[0,1] * h[1, 0] * z0[1]
|
||||||
|
t[1, 1] = (h[0, 0] - z0c[0]) * (1 - h[1,1] * z0c[1]) + h[0,1] * h[1, 0] * z0c[1]
|
||||||
|
|
||||||
|
t /= 2 * h[1, 0] * numpy.sqrt(z0[0].real * z0[1].real)
|
||||||
|
return t
|
||||||
|
|
||||||
|
|
||||||
|
def t_to_abcd(t, z0):
|
||||||
|
"""
|
||||||
|
Chain Transfer (T) to Chain (ABCD)
|
||||||
|
|
||||||
|
Args:
|
||||||
|
t: The chain transfer matrix.
|
||||||
|
z0: The port impedances (Ohms).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The chain matrix.
|
||||||
|
"""
|
||||||
|
z0c = numpy.conj(z0)
|
||||||
|
ans = numpy.empty([2, 2], dtype=complex)
|
||||||
|
ans[0, 0] = z0c[0] * (t[0, 0] + t[0, 1]) + z0[0] * (t[1, 0] + t[1, 1])
|
||||||
|
ans[0, 1] = z0c[1] * (t[0, 0] * z0c[0] + t[1, 0] * z0[0]) - z0[1] * (t[0, 1] * z0c[0] + t[1, 1] * z0[0])
|
||||||
|
ans[1, 0] = t[0, 0] + t[0, 1] - t[1, 0] - t[1, 1]
|
||||||
|
ans[1, 1] = z0c[1] * (t[0, 0] - t[1, 0]) - z0[1] * (t[0, 1] - t[1, 1])
|
||||||
|
|
||||||
|
ans /= 2 * numpy.sqrt(z0[0].real * z0[1].real)
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def abcd_to_t(abcd, z0):
|
||||||
|
"""
|
||||||
|
Chain (ABCD) to Chain Transfer (T)
|
||||||
|
|
||||||
|
Args:
|
||||||
|
abcd: The chain matrix.
|
||||||
|
z0: The port impedances (Ohms).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The chain transfer matrix.
|
||||||
|
"""
|
||||||
|
# Break out the components
|
||||||
|
A = abcd[0, 0]
|
||||||
|
B = abcd[0, 1]
|
||||||
|
C = abcd[1, 0]
|
||||||
|
D = abcd[1, 1]
|
||||||
|
|
||||||
|
z0c = numpy.conj(z0)
|
||||||
|
|
||||||
|
t = numpy.empty([2, 2], dtype=complex)
|
||||||
|
t[0, 0] = A * z0[1] + B + C * z0[0] * z0[1] + D * z0[0]
|
||||||
|
t[0, 1] = A * z0c[1] - B + C * z0[0] * z0c[1] - D * z0[0]
|
||||||
|
t[1, 0] = A * z0[1] + B - C * z0c[0] * z0[1] - D * z0c[0]
|
||||||
|
t[1, 1] = A * z0c[1] - B - C * z0c[0] * z0c[1] + D * z0c[0]
|
||||||
|
|
||||||
|
t /= 2 * numpy.sqrt(z0[0].real * z0[1].real)
|
||||||
|
return t
|
58
spar_tests.py
Normal file
58
spar_tests.py
Normal file
@ -0,0 +1,58 @@
|
|||||||
|
# IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. VOL 42, NO 2. FEBRUARY 1994
|
||||||
|
# Conversions Between S, Z, Y, h, ABCD, and T Parameters which are Valid for Complex Source and Load Impedances
|
||||||
|
# Dean A. Frickey, Member, EEE
|
||||||
|
|
||||||
|
# Tables I and II
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from two_port_conversions import *
|
||||||
|
|
||||||
|
""" Testing """
|
||||||
|
# Analog Devices - HMC455LP3 - S parameters
|
||||||
|
# High output IP3 GaAs InGaP Heterojunction Bipolar Transistor
|
||||||
|
|
||||||
|
# MHz S (Magntidue and Angle (deg))
|
||||||
|
# 1487.273 0.409 160.117 4.367 163.864 0.063 115.967 0.254 -132.654
|
||||||
|
|
||||||
|
s11 = 0.409 * np.exp(1j * np.radians(160.117))
|
||||||
|
s12 = 4.367 * np.exp(1j * np.radians(163.864))
|
||||||
|
s21 = 0.063 * np.exp(1j * np.radians(115.967))
|
||||||
|
s22 = 0.254 * np.exp(1j * np.radians(-132.654))
|
||||||
|
|
||||||
|
s_orig = np.array([[s11, s12], [s21, s22]])
|
||||||
|
|
||||||
|
# Data specified at 50 Ohms (adding small complex component to test conversions)
|
||||||
|
z1, z2 = 50 + 0.01j, 50 - 0.02j
|
||||||
|
z0 = np.array([z1, z2])
|
||||||
|
|
||||||
|
""" Conversions """
|
||||||
|
print(f'Original S: \n{s_orig}\n')
|
||||||
|
|
||||||
|
# S --> Z --> T --> Z --> S
|
||||||
|
z = s_to_z(s_orig, z0)
|
||||||
|
t = z_to_t(z, z0)
|
||||||
|
z = t_to_z(t, z0)
|
||||||
|
s = z_to_s(z, z0)
|
||||||
|
print(f'Test (S --> Z --> T --> Z --> S): \n{s}\n')
|
||||||
|
|
||||||
|
# S --> Y --> T --> Y --> S
|
||||||
|
y = s_to_y(s_orig, z0)
|
||||||
|
t = y_to_t(y, z0)
|
||||||
|
y = t_to_y(t, z0)
|
||||||
|
s = y_to_s(y, z0)
|
||||||
|
print(f'Test (S --> Y --> T --> Y --> S): \n{s}\n')
|
||||||
|
|
||||||
|
# S --> H --> T --> H --> S
|
||||||
|
h = s_to_h(s_orig, z0)
|
||||||
|
t = h_to_t(h, z0)
|
||||||
|
h = t_to_h(t, z0)
|
||||||
|
s = h_to_s(h, z0)
|
||||||
|
print(f'Test (S --> H --> T --> H --> S): \n{s}\n')
|
||||||
|
|
||||||
|
# S --> ABCD --> T --> ABCD --> S
|
||||||
|
abcd = s_to_abcd(s_orig, z0)
|
||||||
|
t = abcd_to_t(abcd, z0)
|
||||||
|
abcd = t_to_abcd(t, z0)
|
||||||
|
s = abcd_to_s(abcd, z0)
|
||||||
|
print(f'Test (S --> ABCD --> T --> ABCD --> S): \n{s}\n')
|
||||||
|
|
86
spconv.py
Normal file
86
spconv.py
Normal file
@ -0,0 +1,86 @@
|
|||||||
|
import numpy
|
||||||
|
from numpy import sqrt, real, abs
|
||||||
|
from numpy.linalg import pinv
|
||||||
|
|
||||||
|
|
||||||
|
def diag(twod):
|
||||||
|
# numpy.diag() but makes a stack of diagonal matrices
|
||||||
|
return numpy.einsum('ij,jk->ijk', twod, numpy.eye(twod.shape[-1], dtype=twod.dtype))
|
||||||
|
|
||||||
|
|
||||||
|
def s2z(s, zref):
|
||||||
|
# G0_inv @ inv(I - S) @ (S Z0 + Z0*) @ G0
|
||||||
|
# Where Z0 is diag(zref) and G0 = diag(1/sqrt(abs(real(zref))))
|
||||||
|
nf = s.shape[-1]
|
||||||
|
I = numpy.eye(nf)[None, :, :]
|
||||||
|
zref = numpy.array(zref, copy=False)
|
||||||
|
gref = 1 / sqrt(abs(zref.real))
|
||||||
|
z = diag(1 / gref) @ pinv(I - s) @ ( S @ diag(zref) + diag(zref).conj()) @ diag(gref)
|
||||||
|
return z
|
||||||
|
|
||||||
|
|
||||||
|
def change_of_zref(
|
||||||
|
s, # (nf, np, np)
|
||||||
|
zref_old, # (nf, np)
|
||||||
|
zref_new, # (nf, np)
|
||||||
|
):
|
||||||
|
# Change-of-Z0 to Z0'
|
||||||
|
# S' = inv(A) @ (S - rho*) @ inv(I - rho @ S) @ A*
|
||||||
|
# A = inv(G0') @ G0 @ inv(I - rho*) (diagonal)
|
||||||
|
# rho = (Z0' - Z0) @ inv(Z0' + Z0) (diagonal)
|
||||||
|
|
||||||
|
I = numpy.eye(SL.shape[-1])[None, :, :]
|
||||||
|
zref_old = numpy.array(zref_old, copy=False)
|
||||||
|
zref_new = numpy.array(zref_new, copy=False)
|
||||||
|
|
||||||
|
g_old = 1 / sqrt(abs(zref_old.real))
|
||||||
|
r_new = sqrt(abs(zref_new.real))
|
||||||
|
|
||||||
|
rhov = (zref_new - zref_old) / (zref_new + zref_old)
|
||||||
|
av = r_new * g_old / (1 - rhov.conj())
|
||||||
|
|
||||||
|
s_new = diag(1 / av) @ (s - diag(rhov.conj())) @ pinv(I[None, :] - diag(rhov) @ S) @ diag(av.conj())
|
||||||
|
return s_new
|
||||||
|
|
||||||
|
|
||||||
|
def embedding(
|
||||||
|
See, # (nf, ne, ne)
|
||||||
|
Sei, # (nf, ne, ni)
|
||||||
|
Sie, # (nf, ni, ne)
|
||||||
|
Sii, # (nf, ni, ni)
|
||||||
|
SL, # (nf, ni, ni)
|
||||||
|
):
|
||||||
|
# Reveyrand, doi:10.1109/INMMIC.2018.8430023
|
||||||
|
I = numpy.eye(SL.shape[-1])[None, :, :]
|
||||||
|
S_tot = See + Sei @ pinv(I - SL @ Sii) @ SL @ Sie
|
||||||
|
return S_tot
|
||||||
|
|
||||||
|
def deembedding(
|
||||||
|
Sei, # (nf, ne, ni)
|
||||||
|
Sie, # (nf, ni, ne)
|
||||||
|
Sext, # (nf, ne, ne)
|
||||||
|
See, # (nf, ne, ne)
|
||||||
|
Si, # (nf, ni, ni)
|
||||||
|
):
|
||||||
|
# Reveyrand, doi:10.1109/INMMIC.2018.8430023
|
||||||
|
# Requires balanced number of ports, similar to VNA calibration
|
||||||
|
Sei_inv = pinv(Sei)
|
||||||
|
Sdif = Sext - See
|
||||||
|
return Sei_inv @ Sdif @ pinv(Sie + Sii @ Sei_inv @ Sdif)
|
||||||
|
|
||||||
|
|
||||||
|
def thru_with_Zref_change(
|
||||||
|
zref0, # (nf,)
|
||||||
|
zref1, # (nf,)
|
||||||
|
):
|
||||||
|
nf = zref0.shape[0]
|
||||||
|
s = numpy.empty((nf, 2, 2), dtype=complex)
|
||||||
|
s[:, 0, 0] = zref1 - zref0
|
||||||
|
s[:, 0, 1] = 2 * sqrt(zref0 * zref1)
|
||||||
|
s[:, 1, 0] = s[:, 0, 1]
|
||||||
|
s[:, 1, 1] = -s[:, 0, 0]
|
||||||
|
|
||||||
|
s /= zref0 + zref1
|
||||||
|
return s
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user