some work on FDFD derivation
This commit is contained in:
parent
107c0fcd7e
commit
1b3d322fc6
@ -21,13 +21,70 @@ From the "Frequency domain" section of `meanas.fdmath`, we have
|
||||
$$
|
||||
\\begin{aligned}
|
||||
\\tilde{E}_{l, \\vec{r}} &= \\tilde{E}_{\\vec{r}} e^{-\\imath \\omega l \\Delta_t} \\\\
|
||||
\\tilde{H}_{l - \\frac{1}{2}, \\vec{r} + \\frac{1}{2}} &= \\tilde{H}_{\\vec{r} + \\frac{1}{2}} e^{-\\imath \\omega (l - \\frac{1}{2}) \\Delta_t} \\\\
|
||||
\\tilde{J}_{l, \\vec{r}} &= \\tilde{J}_{\\vec{r}} e^{-\\imath \\omega (l - \\frac{1}{2}) \\Delta_t} \\\\
|
||||
\\tilde{M}_{l - \\frac{1}{2}, \\vec{r} + \\frac{1}{2}} &= \\tilde{M}_{\\vec{r} + \\frac{1}{2}} e^{-\\imath \\omega l \\Delta_t} \\\\
|
||||
\\hat{\\nabla} \\times (\\mu^{-1}_{\\vec{r} + \\frac{1}{2}} \\cdot \\tilde{\\nabla} \\times \\tilde{E}_{\\vec{r}})
|
||||
-\\Omega^2 \\epsilon_{\\vec{r}} \\cdot \\tilde{E}_{\\vec{r}} &= \\imath \\Omega \\tilde{J}_{\\vec{r}} \\\\
|
||||
-\\Omega^2 \\epsilon_{\\vec{r}} \\cdot \\tilde{E}_{\\vec{r}} &= -\\imath \\Omega \\tilde{J}_{\\vec{r}} e^{\\imath \\omega \\Delta_t / 2} \\\\
|
||||
\\Omega &= 2 \\sin(\\omega \\Delta_t / 2) / \\Delta_t
|
||||
\\end{aligned}
|
||||
$$
|
||||
|
||||
resulting in
|
||||
|
||||
$$
|
||||
\\begin{aligned}
|
||||
\\tilde{\\partial}_t &\\Rightarrow -\\imath \\Omega e^{-\\imath \\omega \\Delta_t / 2}\\\\
|
||||
\\hat{\\partial}_t &\\Rightarrow -\\imath \\Omega e^{ \\imath \\omega \\Delta_t / 2}\\\\
|
||||
\\end{aligned}
|
||||
$$
|
||||
|
||||
Maxwell's equations are then
|
||||
|
||||
$$
|
||||
\\begin{aligned}
|
||||
\\tilde{\\nabla} \\times \\tilde{E}_{\\vec{r}} &=
|
||||
\\imath \\Omega e^{-\\imath \\omega \\Delta_t / 2} \\hat{B}_{\\vec{r} + \\frac{1}{2}}
|
||||
- \\hat{M}_{\\vec{r} + \\frac{1}{2}} \\\\
|
||||
\\hat{\\nabla} \\times \\hat{H}_{\\vec{r} + \\frac{1}{2}} &=
|
||||
-\\imath \\Omega e^{ \\imath \\omega \\Delta_t / 2} \\tilde{D}_{\\vec{r}}
|
||||
+ \\tilde{J}_{\\vec{r}} \\\\
|
||||
\\tilde{\\nabla} \\cdot \\hat{B}_{\\vec{r} + \\frac{1}{2}} &= 0 \\\\
|
||||
\\hat{\\nabla} \\cdot \\tilde{D}_{\\vec{r}} &= \\rho_{\\vec{r}}
|
||||
\\end{aligned}
|
||||
$$
|
||||
|
||||
With $\\Delta_t \\to 0$, this simplifies to
|
||||
|
||||
$$
|
||||
\\begin{aligned}
|
||||
\\tilde{E}_{l, \\vec{r}} &\\to \\tilde{E}_{\\vec{r}} \\\\
|
||||
\\tilde{H}_{l - \\frac{1}{2}, \\vec{r} + \\frac{1}{2}} &\\to \\tilde{H}_{\\vec{r} + \\frac{1}{2}} \\\\
|
||||
\\tilde{J}_{l, \\vec{r}} &\\to \\tilde{J}_{\\vec{r}} \\\\
|
||||
\\tilde{M}_{l - \\frac{1}{2}, \\vec{r} + \\frac{1}{2}} &\\to \\tilde{M}_{\\vec{r} + \\frac{1}{2}} \\\\
|
||||
\\Omega &\\to \\omega \\\\
|
||||
\\tilde{\\partial}_t &\\to -\\imath \\omega \\\\
|
||||
\\hat{\\partial}_t &\\to -\\imath \\omega \\\\
|
||||
\\end{aligned}
|
||||
$$
|
||||
|
||||
and then
|
||||
|
||||
$$
|
||||
\\begin{aligned}
|
||||
\\tilde{\\nabla} \\times \\tilde{E}_{\\vec{r}} &=
|
||||
\\imath \\omega \\hat{B}_{\\vec{r} + \\frac{1}{2}}
|
||||
- \\hat{M}_{\\vec{r} + \\frac{1}{2}} \\\\
|
||||
\\hat{\\nabla} \\times \\hat{H}_{\\vec{r} + \\frac{1}{2}} &=
|
||||
-\\imath \\omega \\tilde{D}_{\\vec{r}}
|
||||
+ \\tilde{J}_{\\vec{r}} \\\\
|
||||
\\end{aligned}
|
||||
$$
|
||||
|
||||
$$
|
||||
\\hat{\\nabla} \\times (\\mu^{-1}_{\\vec{r} + \\frac{1}{2}} \\cdot \\tilde{\\nabla} \\times \\tilde{E}_{\\vec{r}})
|
||||
-\\omega^2 \\epsilon_{\\vec{r}} \\cdot \\tilde{E}_{\\vec{r}} = -\\imath \\omega \\tilde{J}_{\\vec{r}} \\\\
|
||||
$$
|
||||
|
||||
# TODO FDFD?
|
||||
# TODO PML
|
||||
|
@ -426,7 +426,7 @@ This gives the frequency-domain wave equation,
|
||||
|
||||
$$
|
||||
\\hat{\\nabla} \\times (\\mu^{-1}_{\\vec{r} + \\frac{1}{2}} \\cdot \\tilde{\\nabla} \\times \\tilde{E}_{\\vec{r}})
|
||||
-\\Omega^2 \\epsilon_{\\vec{r}} \\cdot \\tilde{E}_{\\vec{r}} = \\imath \\Omega \\tilde{J}_{\\vec{r}}
|
||||
-\\Omega^2 \\epsilon_{\\vec{r}} \\cdot \\tilde{E}_{\\vec{r}} = -\\imath \\Omega \\tilde{J}_{\\vec{r}} e^{\\imath \\omega \\Delta_t / 2} \\\\
|
||||
$$
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user