add inner_product() and use it for energy calculation

This commit is contained in:
Jan Petykiewicz 2025-01-14 22:01:10 -08:00
parent 7987dc796f
commit 155f30068f

View File

@ -414,15 +414,10 @@ def _normalized_fields(
shape = [s.size for s in dxes[0]] shape = [s.size for s in dxes[0]]
dxes_real = [[numpy.real(d) for d in numpy.meshgrid(*dxes[v], indexing='ij')] for v in (0, 1)] dxes_real = [[numpy.real(d) for d in numpy.meshgrid(*dxes[v], indexing='ij')] for v in (0, 1)]
E = unvec(e, shape)
H = unvec(h, shape)
# Find time-averaged Sz and normalize to it # Find time-averaged Sz and normalize to it
# H phase is adjusted by a half-cell forward shift for Yee cell, and 1-cell reverse shift for Poynting # H phase is adjusted by a half-cell forward shift for Yee cell, and 1-cell reverse shift for Poynting
phase = numpy.exp(-1j * -prop_phase / 2) phase = numpy.exp(-1j * -prop_phase / 2)
Sz_a = E[0] * numpy.conj(H[1] * phase) * dxes_real[0][1] * dxes_real[1][0] Sz_tavg = inner_product(e, h, dxes=dxes, prop_phase=prop_phase, conj_h=True).real
Sz_b = E[1] * numpy.conj(H[0] * phase) * dxes_real[0][0] * dxes_real[1][1]
Sz_tavg = numpy.real(Sz_a.sum() - Sz_b.sum()) * 0.5 # 0.5 since E, H are assumed to be peak (not RMS) amplitudes
assert Sz_tavg > 0, f'Found a mode propagating in the wrong direction! {Sz_tavg=}' assert Sz_tavg > 0, f'Found a mode propagating in the wrong direction! {Sz_tavg=}'
energy = numpy.real(epsilon * e.conj() * e) energy = numpy.real(epsilon * e.conj() * e)
@ -901,3 +896,37 @@ def solve_mode(
kwargs['mode_numbers'] = [mode_number] kwargs['mode_numbers'] = [mode_number]
e_xys, wavenumbers = solve_modes(*args, **kwargs) e_xys, wavenumbers = solve_modes(*args, **kwargs)
return e_xys[0], wavenumbers[0] return e_xys[0], wavenumbers[0]
def inner_product( # TODO documentation
e1: vcfdfield_t,
h2: vcfdfield_t,
dxes: dx_lists_t,
prop_phase: float = 0,
conj_h: bool = False,
trapezoid: bool = False,
) -> tuple[vcfdfield_t, vcfdfield_t]:
shape = [s.size for s in dxes[0]]
# H phase is adjusted by a half-cell forward shift for Yee cell, and 1-cell reverse shift for Poynting
phase = numpy.exp(-1j * -prop_phase / 2)
E1 = unvec(e1, shape)
H2 = unvec(h2, shape) * phase
if conj_h:
H2 = numpy.conj(H2)
# Find time-averaged Sz and normalize to it
dxes_real = [[numpy.real(dxyz) for dxyz in dxeh] for dxeh in dxes]
if integrate:
Sz_a = numpy.trapezoid(numpy.trapezoid(E1[0] * H2[1], numpy.cumsum(dxes_real[0][1])), numpy.cumsum(dxes_real[1][0]))
Sz_b = numpy.trapezoid(numpy.trapezoid(E1[1] * H2[0], numpy.cumsum(dxes_real[0][0])), numpy.cumsum(dxes_real[1][1]))
else:
Sz_a = E1[0] * H2[1] * dxes_real[1][0][:, None] * dxes_real[0][1][None, :]
Sz_b = E1[1] * H2[0] * dxes_real[0][0][:, None] * dxes_real[1][1][None, :]
Sz = 0.5 * (Sz_a.sum() - Sz_b.sum())
return Sz