2019-07-09 20:21:14 -07:00
|
|
|
import importlib
|
|
|
|
import numpy
|
|
|
|
from numpy.linalg import norm
|
|
|
|
|
2021-07-11 17:33:15 -07:00
|
|
|
from meanas.fdmath import vec, unvec
|
2019-08-04 14:13:51 -07:00
|
|
|
from meanas.fdfd import waveguide_mode, functional, scpml
|
|
|
|
from meanas.fdfd.solvers import generic as generic_solver
|
2019-07-09 20:21:14 -07:00
|
|
|
|
|
|
|
import gridlock
|
|
|
|
|
|
|
|
from matplotlib import pyplot
|
|
|
|
|
|
|
|
|
|
|
|
__author__ = 'Jan Petykiewicz'
|
|
|
|
|
|
|
|
|
|
|
|
def test1(solver=generic_solver):
|
|
|
|
dx = 20 # discretization (nm/cell)
|
|
|
|
pml_thickness = 10 # (number of cells)
|
|
|
|
|
|
|
|
wl = 1550 # Excitation wavelength
|
|
|
|
omega = 2 * numpy.pi / wl
|
|
|
|
|
|
|
|
# Device design parameters
|
|
|
|
w = 800
|
|
|
|
th = 220
|
|
|
|
center = [0, 0, 0]
|
|
|
|
r0 = 8e3
|
|
|
|
|
|
|
|
# refractive indices
|
|
|
|
n_wg = numpy.sqrt(12.6) # ~Si
|
|
|
|
n_air = 1.0 # air
|
|
|
|
|
|
|
|
# Half-dimensions of the simulation grid
|
|
|
|
y_max = 1200
|
|
|
|
z_max = 900
|
|
|
|
xyz_max = numpy.array([800, y_max, z_max]) + (pml_thickness + 2) * dx
|
|
|
|
|
|
|
|
# Coordinates of the edges of the cells.
|
|
|
|
half_edge_coords = [numpy.arange(dx/2, m + dx/2, step=dx) for m in xyz_max]
|
|
|
|
edge_coords = [numpy.hstack((-h[::-1], h)) for h in half_edge_coords]
|
|
|
|
edge_coords[0] = numpy.array([-dx, dx])
|
|
|
|
|
|
|
|
# #### Create the grid and draw the device ####
|
|
|
|
grid = gridlock.Grid(edge_coords, initial=n_air**2, num_grids=3)
|
|
|
|
grid.draw_cuboid(center=center, dimensions=[8e3, w, th], eps=n_wg**2)
|
|
|
|
|
|
|
|
dxes = [grid.dxyz, grid.autoshifted_dxyz()]
|
|
|
|
for a in (1, 2):
|
|
|
|
for p in (-1, 1):
|
2019-08-04 14:13:51 -07:00
|
|
|
dxes = scmpl.stretch_with_scpml(dxes, omega=omega, axis=a, polarity=p,
|
|
|
|
thickness=pml_thickness)
|
2019-07-09 20:21:14 -07:00
|
|
|
|
|
|
|
wg_args = {
|
|
|
|
'omega': omega,
|
|
|
|
'dxes': [(d[1], d[2]) for d in dxes],
|
|
|
|
'epsilon': vec(g.transpose([1, 2, 0]) for g in grid.grids),
|
|
|
|
'r0': r0,
|
|
|
|
}
|
|
|
|
|
|
|
|
wg_results = waveguide_mode.solve_waveguide_mode_cylindrical(mode_number=0, **wg_args)
|
|
|
|
|
|
|
|
E = wg_results['E']
|
|
|
|
|
|
|
|
n_eff = wl / (2 * numpy.pi / wg_results['wavenumber'])
|
|
|
|
print('n =', n_eff)
|
|
|
|
print('alpha (um^-1) =', -4 * numpy.pi * numpy.imag(n_eff) / (wl * 1e-3))
|
|
|
|
|
|
|
|
'''
|
|
|
|
Plot results
|
|
|
|
'''
|
|
|
|
def pcolor(v):
|
|
|
|
vmax = numpy.max(numpy.abs(v))
|
|
|
|
pyplot.pcolor(v.T, cmap='seismic', vmin=-vmax, vmax=vmax)
|
|
|
|
pyplot.axis('equal')
|
|
|
|
pyplot.colorbar()
|
|
|
|
|
|
|
|
pyplot.figure()
|
|
|
|
pyplot.subplot(2, 2, 1)
|
|
|
|
pcolor(numpy.real(E[0][:, :]))
|
|
|
|
pyplot.subplot(2, 2, 2)
|
|
|
|
pcolor(numpy.real(E[1][:, :]))
|
|
|
|
pyplot.subplot(2, 2, 3)
|
|
|
|
pcolor(numpy.real(E[2][:, :]))
|
|
|
|
pyplot.subplot(2, 2, 4)
|
|
|
|
pyplot.show()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
test1()
|