meanas/examples/bloch.py

69 lines
2.3 KiB
Python
Raw Normal View History

2017-12-21 20:11:42 -08:00
import numpy, scipy, gridlock, fdfd_tools
from fdfd_tools import bloch
from numpy.linalg import norm
import logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
dx = 40
x_period = 400
y_period = z_period = 2000
g = gridlock.Grid([numpy.arange(-x_period/2, x_period/2, dx),
numpy.arange(-1000, 1000, dx),
numpy.arange(-1000, 1000, dx)],
shifts=numpy.array([[0,0,0]]),
initial=1.445**2,
periodic=True)
g.draw_cuboid([0,0,0], [200e8, 220, 220], eps=3.47**2)
#x_period = y_period = z_period = 13000
#g = gridlock.Grid([numpy.arange(3), ]*3,
# shifts=numpy.array([[0, 0, 0]]),
# initial=2.0**2,
# periodic=True)
g2 = g.copy()
g2.shifts = numpy.zeros((6,3))
g2.grids = [numpy.zeros(g.shape) for _ in range(6)]
epsilon = [g.grids[0],] * 3
2018-01-08 16:16:26 -08:00
reciprocal_lattice = numpy.diag(1000/numpy.array([x_period, y_period, z_period])) #cols are vectors
2017-12-21 20:11:42 -08:00
#print('Finding k at 1550nm')
2018-01-08 16:16:26 -08:00
#k, f = bloch.find_k(frequency=1000/1550,
# tolerance=(1000 * (1/1550 - 1/1551)),
2017-12-21 20:11:42 -08:00
# direction=[1, 0, 0],
# G_matrix=reciprocal_lattice,
# epsilon=epsilon,
# band=0)
#
#print("k={}, f={}, 1/f={}, k/f={}".format(k, f, 1/f, norm(reciprocal_lattice @ k) / f ))
print('Finding f at [0.25, 0, 0]')
for k0x in [.25]:
k0 = numpy.array([k0x, 0, 0])
kmag = norm(reciprocal_lattice @ k0)
2018-01-08 16:16:26 -08:00
tolerance = (1000/1550) * 1e-4/1.5 # df = f * dn_eff / n
2017-12-21 20:11:42 -08:00
logger.info('tolerance {}'.format(tolerance))
2018-01-08 16:16:26 -08:00
n, v = bloch.eigsolve(4, k0, G_matrix=reciprocal_lattice, epsilon=epsilon, tolerance=tolerance**2)
2017-12-21 20:11:42 -08:00
v2e = bloch.hmn_2_exyz(k0, G_matrix=reciprocal_lattice, epsilon=epsilon)
v2h = bloch.hmn_2_hxyz(k0, G_matrix=reciprocal_lattice, epsilon=epsilon)
ki = bloch.generate_kmn(k0, reciprocal_lattice, g.shape)
z = 0
e = v2e(v[0])
for i in range(3):
g2.grids[i] += numpy.real(e[i])
g2.grids[i+3] += numpy.imag(e[i])
f = numpy.sqrt(numpy.real(numpy.abs(n))) # TODO
print('k0x = {:3g}\n eigval = {}\n f = {}\n'.format(k0x, n, f))
n_eff = norm(reciprocal_lattice @ k0) / f
print('kmag/f = n_eff = {} \n wl = {}\n'.format(n_eff, 1/f ))