meanas/fdfd_tools/bloch.py

502 lines
18 KiB
Python
Raw Normal View History

2017-12-09 18:21:37 -08:00
'''
Bloch eigenmode solver/operators
This module contains functions for generating and solving the
3D Bloch eigenproblem. The approach is to transform the problem
into the (spatial) fourier domain, transforming the equation
1/mu * curl(1/eps * curl(H)) = (w/c)^2 H
into
conv(1/mu_k, ik x conv(1/eps_k, ik x H_k)) = (w/c)^2 H_k
where:
- the _k subscript denotes a 3D fourier transformed field
- each component of H_k corresponds to a plane wave with wavevector k
- x is the cross product
- conv denotes convolution
Since k and H are orthogonal for each plane wave, we can use each
k to create an orthogonal basis (k, m, n), with k x m = n, and
|m| = |n| = 1. The cross products are then simplified with
k @ h = kx hx + ky hy + kz hz = 0 = hk
h = hk + hm + hn = hm + hn
k = kk + km + kn = kk = |k|
k x h = (ky hz - kz hy,
kz hx - kx hz,
kx hy - ky hx)
= ((k x h) @ k, (k x h) @ m, (k x h) @ n)_kmn
= (0, (m x k) @ h, (n x k) @ h)_kmn # triple product ordering
= (0, kk (-n @ h), kk (m @ h))_kmn # (m x k) = -|k| n, etc.
= |k| (0, -h @ n, h @ m)_kmn
k x h = (km hn - kn hm,
kn hk - kk hn,
kk hm - km hk)_kmn
= (0, -kk hn, kk hm)_kmn
= (-kk hn)(mx, my, mz) + (kk hm)(nx, ny, nz)
= |k| (hm * (nx, ny, nz) - hn * (mx, my, mz))
where h is shorthand for H_k, (...)_kmn deontes the (k, m, n) basis,
and e.g. hm is the component of h in the m direction.
We can also simplify conv(X_k, Y_k) as fftn(X * ifftn(Y_k)).
Using these results and storing H_k as h = (hm, hn), we have
e_xyz = fftn(1/eps * ifftn(|k| (hm * n - hn * m)))
b_mn = |k| (-e_xyz @ n, e_xyz @ m)
h_mn = fftn(1/mu * ifftn(b_m * m + b_n * n))
which forms the operator from the left side of the equation.
We can then use a preconditioned block Rayleigh iteration algorithm, as in
SG Johnson and JD Joannopoulos, Block-iterative frequency-domain methods
2017-12-09 18:21:37 -08:00
for Maxwell's equations in a planewave basis, Optics Express 8, 3, 173-190 (2001)
(similar to that used in MPB) to find the eigenvectors for this operator.
2017-12-09 18:21:37 -08:00
===
Typically you will want to do something like
recip_lattice = numpy.diag(1/numpy.array(epsilon[0].shape * dx))
n, v = bloch.eigsolve(5, k0, recip_lattice, epsilon)
f = numpy.sqrt(-numpy.real(n[0]))
n_eff = norm(recip_lattice @ k0) / f
v2e = bloch.hmn_2_exyz(k0, recip_lattice, epsilon)
e_field = v2e(v[0])
k, f = find_k(frequency=1/1550,
tolerance=(1/1550 - 1/1551),
2017-12-17 21:32:59 -08:00
direction=[1, 0, 0],
2017-12-09 18:21:37 -08:00
G_matrix=recip_lattice,
epsilon=epsilon,
band=0)
'''
from typing import List, Tuple, Callable, Dict
import logging
2017-12-09 18:21:37 -08:00
import numpy
from numpy.fft import fftn, ifftn, fftfreq
import scipy
import scipy.optimize
2017-12-09 18:21:37 -08:00
from scipy.linalg import norm
import scipy.sparse.linalg as spalg
from .eigensolvers import rayleigh_quotient_iteration
2017-12-09 18:21:37 -08:00
from . import field_t
logger = logging.getLogger(__name__)
2017-12-09 18:21:37 -08:00
def generate_kmn(k0: numpy.ndarray,
G_matrix: numpy.ndarray,
shape: numpy.ndarray
) -> Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]:
"""
Generate a (k, m, n) orthogonal basis for each k-vector in the simulation grid.
:param k0: [k0x, k0y, k0z], Bloch wavevector, in G basis.
:param G_matrix: 3x3 matrix, with reciprocal lattice vectors as columns.
:param shape: [nx, ny, nz] shape of the simulation grid.
:return: (|k|, m, n) where |k| has shape tuple(shape) + (1,)
and m, n have shape tuple(shape) + (3,).
All are given in the xyz basis (e.g. |k|[0,0,0] = norm(G_matrix @ k0)).
"""
k0 = numpy.array(k0)
Gi_grids = numpy.meshgrid(*(fftfreq(n, 1/n) for n in shape[:3]), indexing='ij')
Gi = numpy.stack(Gi_grids, axis=3)
k_G = k0[None, None, None, :] - Gi
k_xyz = numpy.rollaxis(G_matrix @ numpy.rollaxis(k_G, 3, 2), 3, 2)
m = numpy.broadcast_to([0, 1, 0], tuple(shape[:3]) + (3,)).astype(float)
n = numpy.broadcast_to([0, 0, 1], tuple(shape[:3]) + (3,)).astype(float)
xy_non0 = numpy.any(k_xyz[:, :, :, 0:1] != 0, axis=3)
if numpy.any(xy_non0):
u = numpy.cross(k_xyz[xy_non0], [0, 0, 1])
m[xy_non0, :] = u / norm(u, axis=1)[:, None]
z_non0 = numpy.any(k_xyz != 0, axis=3)
if numpy.any(z_non0):
v = numpy.cross(k_xyz[z_non0], m[z_non0])
n[z_non0, :] = v / norm(v, axis=1)[:, None]
k_mag = norm(k_xyz, axis=3)[:, :, :, None]
return k_mag, m, n
def maxwell_operator(k0: numpy.ndarray,
G_matrix: numpy.ndarray,
epsilon: field_t,
mu: field_t = None
) -> Callable[[numpy.ndarray], numpy.ndarray]:
"""
Generate the Maxwell operator
conv(1/mu_k, ik x conv(1/eps_k, ik x ___))
which is the spatial-frequency-space representation of
1/mu * curl(1/eps * curl(___))
The operator is a function that acts on a vector h_mn of size (2 * epsilon[0].size)
See the module-level docstring for more information.
:param k0: Bloch wavevector, [k0x, k0y, k0z].
:param G_matrix: 3x3 matrix, with reciprocal lattice vectors as columns.
:param epsilon: Dielectric constant distribution for the simulation.
All fields are sampled at cell centers (i.e., NOT Yee-gridded)
:param mu: Magnetic permability distribution for the simulation.
Default None (1 everywhere).
:return: Function which applies the maxwell operator to h_mn.
"""
shape = epsilon[0].shape + (1,)
k_mag, m, n = generate_kmn(k0, G_matrix, shape)
epsilon = numpy.stack(epsilon, 3)
if mu is not None:
mu = numpy.stack(mu, 3)
def operator(h: numpy.ndarray):
"""
Maxwell operator for Bloch eigenmode simulation.
h is complex 2-field in (m, n) basis, vectorized
:param h: Raveled h_mn; size (2 * epsilon[0].size).
:return: Raveled conv(1/mu_k, ik x conv(1/eps_k, ik x h_mn)).
"""
hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)]
#{d,e,h}_xyz fields are complex 3-fields in (1/x, 1/y, 1/z) basis
# cross product and transform into xyz basis
d_xyz = (n * hin_m -
m * hin_n) * k_mag
# divide by epsilon
2017-12-17 21:32:29 -08:00
e_xyz = fftn(ifftn(d_xyz, axes=range(3)) / epsilon, axes=range(3))
2017-12-09 18:21:37 -08:00
# cross product and transform into mn basis
b_m = numpy.sum(e_xyz * n, axis=3)[:, :, :, None] * -k_mag
b_n = numpy.sum(e_xyz * m, axis=3)[:, :, :, None] * +k_mag
if mu is None:
h_m, h_n = b_m, b_n
else:
# transform from mn to xyz
b_xyz = (m * b_m[:, :, :, None] +
n * b_n[:, :, :, None])
# divide by mu
2017-12-17 21:32:29 -08:00
h_xyz = fftn(ifftn(b_xyz, axes=range(3)) / mu, axes=range(3))
2017-12-09 18:21:37 -08:00
# transform back to mn
h_m = numpy.sum(h_xyz * m, axis=3)
h_n = numpy.sum(h_xyz * n, axis=3)
return numpy.hstack((h_m.ravel(), h_n.ravel()))
return operator
def hmn_2_exyz(k0: numpy.ndarray,
G_matrix: numpy.ndarray,
epsilon: field_t,
) -> Callable[[numpy.ndarray], field_t]:
"""
Generate an operator which converts a vectorized spatial-frequency-space
h_mn into an E-field distribution, i.e.
ifft(conv(1/eps_k, ik x h_mn))
The operator is a function that acts on a vector h_mn of size (2 * epsilon[0].size)
See the module-level docstring for more information.
:param k0: Bloch wavevector, [k0x, k0y, k0z].
:param G_matrix: 3x3 matrix, with reciprocal lattice vectors as columns.
:param epsilon: Dielectric constant distribution for the simulation.
All fields are sampled at cell centers (i.e., NOT Yee-gridded)
:return: Function for converting h_mn into E_xyz
"""
shape = epsilon[0].shape + (1,)
epsilon = numpy.stack(epsilon, 3)
k_mag, m, n = generate_kmn(k0, G_matrix, shape)
def operator(h: numpy.ndarray) -> field_t:
hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)]
d_xyz = (n * hin_m -
m * hin_n) * k_mag
# divide by epsilon
2017-12-17 21:32:29 -08:00
return [ei for ei in numpy.rollaxis(ifftn(d_xyz, axes=range(3)) / epsilon, 3)]
2017-12-09 18:21:37 -08:00
return operator
def hmn_2_hxyz(k0: numpy.ndarray,
G_matrix: numpy.ndarray,
epsilon: field_t
) -> Callable[[numpy.ndarray], field_t]:
"""
Generate an operator which converts a vectorized spatial-frequency-space
h_mn into an H-field distribution, i.e.
ifft(h_mn)
The operator is a function that acts on a vector h_mn of size (2 * epsilon[0].size)
See the module-level docstring for more information.
:param k0: Bloch wavevector, [k0x, k0y, k0z].
:param G_matrix: 3x3 matrix, with reciprocal lattice vectors as columns.
:param epsilon: Dielectric constant distribution for the simulation.
Only epsilon[0].shape is used.
:return: Function for converting h_mn into H_xyz
"""
shape = epsilon[0].shape + (1,)
k_mag, m, n = generate_kmn(k0, G_matrix, shape)
def operator(h: numpy.ndarray):
hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)]
h_xyz = (m * hin_m +
n * hin_n)
2017-12-17 21:32:29 -08:00
return [ifftn(hi) for hi in numpy.rollaxis(h_xyz, 3)]
2017-12-09 18:21:37 -08:00
return operator
def inverse_maxwell_operator_approx(k0: numpy.ndarray,
G_matrix: numpy.ndarray,
epsilon: field_t,
mu: field_t = None
) -> Callable[[numpy.ndarray], numpy.ndarray]:
"""
Generate an approximate inverse of the Maxwell operator,
ik x conv(eps_k, ik x conv(mu_k, ___))
which can be used to improve the speed of ARPACK in shift-invert mode.
See the module-level docstring for more information.
:param k0: Bloch wavevector, [k0x, k0y, k0z].
:param G_matrix: 3x3 matrix, with reciprocal lattice vectors as columns.
:param epsilon: Dielectric constant distribution for the simulation.
All fields are sampled at cell centers (i.e., NOT Yee-gridded)
:param mu: Magnetic permability distribution for the simulation.
Default None (1 everywhere).
:return: Function which applies the approximate inverse of the maxwell operator to h_mn.
"""
shape = epsilon[0].shape + (1,)
epsilon = numpy.stack(epsilon, 3)
k_mag, m, n = generate_kmn(k0, G_matrix, shape)
if mu is not None:
mu = numpy.stack(mu, 3)
def operator(h: numpy.ndarray):
"""
Approximate inverse Maxwell operator for Bloch eigenmode simulation.
h is complex 2-field in (m, n) basis, vectorized
:param h: Raveled h_mn; size (2 * epsilon[0].size).
:return: Raveled ik x conv(eps_k, ik x conv(mu_k, h_mn))
"""
hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)]
#{d,e,h}_xyz fields are complex 3-fields in (1/x, 1/y, 1/z) basis
if mu is None:
b_m, b_n = hin_m, hin_n
else:
# transform from mn to xyz
h_xyz = (m * hin_m[:, :, :, None] +
n * hin_n[:, :, :, None])
# multiply by mu
2017-12-17 21:32:29 -08:00
b_xyz = fftn(ifftn(h_xyz, axes=range(3)) * mu, axes=range(3))
2017-12-09 18:21:37 -08:00
# transform back to mn
b_m = numpy.sum(b_xyz * m, axis=3)
b_n = numpy.sum(b_xyz * n, axis=3)
# cross product and transform into xyz basis
e_xyz = (n * b_m -
m * b_n) / k_mag
# multiply by epsilon
2017-12-17 21:32:29 -08:00
d_xyz = fftn(ifftn(e_xyz, axes=range(3)) * epsilon, axes=range(3))
2017-12-09 18:21:37 -08:00
# cross product and transform into mn basis crossinv_t2c
h_m = numpy.sum(e_xyz * n, axis=3)[:, :, :, None] / +k_mag
h_n = numpy.sum(e_xyz * m, axis=3)[:, :, :, None] / -k_mag
return numpy.hstack((h_m.ravel(), h_n.ravel()))
return operator
def eigsolve(num_modes: int,
k0: numpy.ndarray,
G_matrix: numpy.ndarray,
epsilon: field_t,
mu: field_t = None,
tolerance = 1e-8,
2017-12-09 18:21:37 -08:00
) -> Tuple[numpy.ndarray, numpy.ndarray]:
"""
Find the first (lowest-frequency) num_modes eigenmodes with Bloch wavevector
k0 of the specified structure.
:param k0: Bloch wavevector, [k0x, k0y, k0z].
:param G_matrix: 3x3 matrix, with reciprocal lattice vectors as columns.
:param epsilon: Dielectric constant distribution for the simulation.
All fields are sampled at cell centers (i.e., NOT Yee-gridded)
:param mu: Magnetic permability distribution for the simulation.
Default None (1 everywhere).
:return: (eigenvalues, eigenvectors) where eigenvalues[i] corresponds to the
vector eigenvectors[i, :]
"""
h_size = 2 * epsilon[0].size
'''
Generate the operators
'''
2017-12-09 18:21:37 -08:00
mop = maxwell_operator(k0=k0, G_matrix=G_matrix, epsilon=epsilon, mu=mu)
imop = inverse_maxwell_operator_approx(k0=k0, G_matrix=G_matrix, epsilon=epsilon, mu=mu)
scipy_op = spalg.LinearOperator(dtype=complex, shape=(h_size, h_size), matvec=mop)
scipy_iop = spalg.LinearOperator(dtype=complex, shape=(h_size, h_size), matvec=imop)
y_shape = (h_size, num_modes)
def rayleigh_quotient(Z: numpy.ndarray, approx_grad: bool = True):
"""
Absolute value of the block Rayleigh quotient, and the associated gradient.
See Johnson and Joannopoulos, Opt. Expr. 8, 3 (2001) for details (full
citation in module docstring).
===
Notes on my understanding of the procedure:
Minimize f(Y) = |trace((Y.H @ A @ Y)|, making use of Y = Z @ inv(Z.H @ Z)^(1/2)
(a polar orthogonalization of Y). This gives f(Z) = |trace(Z.H @ A @ Z @ U)|,
where U = inv(Z.H @ Z). We minimize the absolute value to find the eigenvalues
with smallest magnitude.
The gradient is P @ (A @ Z @ U), where P = (1 - Z @ U @ Z.H) is a projection
onto the space orthonormal to Z. If approx_grad is True, the approximate
inverse of the maxwell operator is used to precondition the gradient.
"""
z = Z.reshape(y_shape)
U = numpy.linalg.inv(z.conj().T @ z)
zU = z @ U
AzU = scipy_op @ zU
zTAzU = z.conj().T @ AzU
f = numpy.real(numpy.trace(zTAzU))
if approx_grad:
df_dy = scipy_iop @ (AzU - zU @ zTAzU)
else:
df_dy = (AzU - zU @ zTAzU)
2017-12-17 22:55:55 -08:00
return numpy.abs(f), numpy.sign(f) * numpy.real(df_dy).ravel()
'''
Use the conjugate gradient method and the approximate gradient calculation to
quickly find approximate eigenvectors.
'''
result = scipy.optimize.minimize(rayleigh_quotient,
numpy.random.rand(*y_shape),
jac=True,
method='CG',
tol=1e-5,
options={'maxiter': 30, 'disp':True})
result = scipy.optimize.minimize(lambda y: rayleigh_quotient(y, False),
result.x,
jac=True,
method='CG',
tol=1e-13,
options={'maxiter': 100, 'disp':True})
z = result.x.reshape(y_shape)
'''
Recover eigenvectors from Z
'''
U = numpy.linalg.inv(z.conj().T @ z)
y = z @ scipy.linalg.sqrtm(U)
w = y.conj().T @ (scipy_op @ y)
eigvals, w_eigvecs = numpy.linalg.eig(w)
eigvecs = y @ w_eigvecs
for i in range(len(eigvals)):
v = eigvecs[:, i]
n = eigvals[i]
v /= norm(v)
logger.info('eigness {}: {}'.format(i, norm(scipy_op @ v - (v.conj() @ (scipy_op @ v)) * v )))
ev2 = eigvecs.copy()
for i in range(len(eigvals)):
logger.info('Refining eigenvector {}'.format(i))
eigvals[i], ev2[:, i] = rayleigh_quotient_iteration(scipy_op,
guess_vector=eigvecs[:, i],
iterations=40,
tolerance=tolerance * numpy.real(numpy.sqrt(eigvals[i])) * 2,
solver = lambda A, b: spalg.bicgstab(A, b, maxiter=200)[0])
eigvecs = ev2
order = numpy.argsort(numpy.abs(eigvals))
for i in range(len(eigvals)):
v = eigvecs[:, i]
n = eigvals[i]
v /= norm(v)
logger.info('eigness {}: {}'.format(i, norm(scipy_op @ v - (v.conj() @ (scipy_op @ v)) * v )))
2017-12-09 18:21:37 -08:00
return eigvals[order], eigvecs.T[order]
def find_k(frequency: float,
tolerance: float,
2017-12-17 21:32:59 -08:00
direction: numpy.ndarray,
2017-12-09 18:21:37 -08:00
G_matrix: numpy.ndarray,
epsilon: field_t,
mu: field_t = None,
2017-12-18 00:13:29 -08:00
band: int = 0,
k_min: float = 0,
k_max: float = 0.5,
2017-12-09 18:21:37 -08:00
) -> Tuple[numpy.ndarray, float]:
"""
Search for a bloch vector that has a given frequency.
:param frequency: Target frequency.
:param tolerance: Target frequency tolerance.
2017-12-17 21:32:59 -08:00
:param direction: k-vector direction to search along.
2017-12-09 18:21:37 -08:00
:param G_matrix: 3x3 matrix, with reciprocal lattice vectors as columns.
:param epsilon: Dielectric constant distribution for the simulation.
All fields are sampled at cell centers (i.e., NOT Yee-gridded)
:param mu: Magnetic permability distribution for the simulation.
Default None (1 everywhere).
:param band: Which band to search in. Default 0 (lowest frequency).
return: (k, actual_frequency) The found k-vector and its frequency
"""
2017-12-17 21:32:59 -08:00
direction = numpy.array(direction) / norm(direction)
2017-12-09 18:21:37 -08:00
def get_f(k0_mag: float, band: int = 0):
2017-12-17 21:32:59 -08:00
k0 = direction * k0_mag
2017-12-09 18:21:37 -08:00
n, _v = eigsolve(band + 1, k0, G_matrix=G_matrix, epsilon=epsilon)
f = numpy.sqrt(numpy.abs(numpy.real(n[band])))
return f
2017-12-18 00:13:29 -08:00
res = scipy.optimize.minimize_scalar(lambda x: abs(get_f(x, band) - frequency),
(k_min + k_max) / 2,
method='Bounded',
bounds=(k_min, k_max),
2017-12-09 18:21:37 -08:00
options={'xatol': abs(tolerance)})
2017-12-17 21:32:59 -08:00
return res.x * direction, res.fun + frequency
2017-12-09 18:21:37 -08:00