meanas/README.md

99 lines
3.0 KiB
Markdown
Raw Normal View History

2019-11-24 22:46:36 -08:00
# meanas
2016-04-13 04:05:08 -07:00
2019-08-04 13:48:41 -07:00
**meanas** is a python package for electromagnetic simulations
** UNSTABLE / WORK IN PROGRESS **
Formerly known as [fdfd_tools](https://mpxd.net/code/jan/fdfd_tools).
2019-08-04 13:48:41 -07:00
This package is intended for building simulation inputs, analyzing
simulation outputs, and running short simulations on unspecialized hardware.
It is designed to provide tooling and a baseline for other, high-performance
purpose- and hardware-specific solvers.
2016-05-30 22:30:45 -07:00
**Contents**
2019-11-24 22:46:36 -08:00
2019-08-04 13:48:41 -07:00
- Finite difference frequency domain (FDFD)
* Library of sparse matrices for representing the electromagnetic wave
equation in 3D, as well as auxiliary matrices for conversion between fields
* Waveguide mode operators
* Waveguide mode eigensolver
* Stretched-coordinate PML boundaries (SCPML)
* Functional versions of most operators
* Anisotropic media (limited to diagonal elements eps_xx, eps_yy, eps_zz, mu_xx, ...)
* Arbitrary distributions of perfect electric and magnetic conductors (PEC / PMC)
- Finite difference time domain (FDTD)
* Basic Maxwell time-steps
* Poynting vector and energy calculation
* Convolutional PMLs
2016-05-30 22:30:45 -07:00
This package does *not* provide a fast matrix solver, though by default
2019-08-04 13:48:41 -07:00
`meanas.fdfd.solvers.generic(...)` will call
`scipy.sparse.linalg.qmr(...)` to perform a solve.
For 2D FDFD problems this should be fine; likewise, the waveguide mode
solver uses scipy's eigenvalue solver, with reasonable results.
2019-08-04 13:48:41 -07:00
For solving large (or 3D) FDFD problems, I recommend a GPU-based iterative
solver, such as [opencl_fdfd](https://mpxd.net/code/jan/opencl_fdfd) or
those included in [MAGMA](http://icl.cs.utk.edu/magma/index.html). Your
solver will need the ability to solve complex symmetric (non-Hermitian)
linear systems, ideally with double precision.
2016-05-30 22:30:45 -07:00
2020-02-19 18:56:56 -08:00
- [Source repository](https://mpxd.net/code/jan/meanas)
- PyPI *TBD*
2019-08-04 13:48:41 -07:00
2016-05-30 22:30:45 -07:00
## Installation
**Requirements:**
2019-11-24 22:46:36 -08:00
2022-08-30 23:50:29 -07:00
* python >=3.8
2016-05-30 22:30:45 -07:00
* numpy
* scipy
Install from PyPI with pip:
```bash
2022-08-30 23:50:29 -07:00
pip3 install 'meanas[dev]'
```
### Development install
2022-08-30 23:50:29 -07:00
Install python3 and git:
```bash
# This is for Debian/Ubuntu/other-apt-based systems; you may need an alternative command
2022-08-30 23:50:29 -07:00
sudo apt install python3 build-essential python3-dev git
```
In-place development install:
2016-05-30 22:30:45 -07:00
```bash
# Download using git
2022-08-30 23:50:29 -07:00
git clone https://mpxd.net/code/jan/meanas.git
# If you'd like to create a virtualenv, do so:
python3 -m venv my_venv
# If you are using a virtualenv, activate it
2022-08-30 23:50:29 -07:00
source my_venv/bin/activate
2022-08-30 23:50:29 -07:00
# Install in-place (-e, editable) from ./meanas, including development dependencies ([dev])
pip3 install --user -e './meanas[dev]'
# Run tests
2019-11-05 19:02:40 -08:00
cd meanas
2019-10-27 16:16:43 -07:00
python3 -m pytest -rsxX | tee test_results.txt
2016-05-30 22:30:45 -07:00
```
2019-10-09 00:11:27 -07:00
#### See also:
2019-10-09 00:10:46 -07:00
- [git book](https://git-scm.com/book/en/v2)
2022-08-30 23:50:29 -07:00
- [venv documentation](https://docs.python.org/3/tutorial/venv.html)
2019-10-09 00:10:46 -07:00
- [python language reference](https://docs.python.org/3/reference/index.html)
- [python standard library](https://docs.python.org/3/library/index.html)
## Use
2019-08-04 13:48:41 -07:00
See `examples/` for some simple examples; you may need additional
packages such as [gridlock](https://mpxd.net/code/jan/gridlock)
to run the examples.