from typing import Any, cast import copy import functools import numpy from numpy import pi from numpy.typing import NDArray, ArrayLike from . import Shape, Polygon, normalized_shape_tuple, DEFAULT_POLY_NUM_VERTICES from ..error import PatternError from ..repetition import Repetition from ..utils import is_scalar, annotations_t, annotations_lt, annotations_eq, rep2key @functools.total_ordering class Arc(Shape): """ An elliptical arc, formed by cutting off an elliptical ring with two rays which exit from its center. It has a position, two radii, a start and stop angle, a rotation, and a width. The radii define an ellipse; the ring is formed with radii +/- width/2. The rotation gives the angle from x-axis, counterclockwise, to the first (x) radius. The start and stop angle are measured counterclockwise from the first (x) radius. """ __slots__ = ( '_radii', '_angles', '_width', '_rotation', # Inherited '_offset', '_repetition', '_annotations', ) _radii: NDArray[numpy.float64] """ Two radii for defining an ellipse """ _rotation: float """ Rotation (ccw, radians) from the x axis to the first radius """ _angles: NDArray[numpy.float64] """ Start and stop angles (ccw, radians) for choosing an arc from the ellipse, measured from the first radius """ _width: float """ Width of the arc """ # radius properties @property def radii(self) -> Any: # mypy#3004 NDArray[numpy.float64]: """ Return the radii `[rx, ry]` """ return self._radii @radii.setter def radii(self, val: ArrayLike) -> None: val = numpy.array(val, dtype=float).flatten() if not val.size == 2: raise PatternError('Radii must have length 2') if not val.min() >= 0: raise PatternError('Radii must be non-negative') self._radii = val @property def radius_x(self) -> float: return self._radii[0] @radius_x.setter def radius_x(self, val: float) -> None: if not val >= 0: raise PatternError('Radius must be non-negative') self._radii[0] = val @property def radius_y(self) -> float: return self._radii[1] @radius_y.setter def radius_y(self, val: float) -> None: if not val >= 0: raise PatternError('Radius must be non-negative') self._radii[1] = val # arc start/stop angle properties @property def angles(self) -> Any: # mypy#3004 NDArray[numpy.float64]: """ Return the start and stop angles `[a_start, a_stop]`. Angles are measured from x-axis after rotation Returns: `[a_start, a_stop]` """ return self._angles @angles.setter def angles(self, val: ArrayLike) -> None: val = numpy.array(val, dtype=float).flatten() if not val.size == 2: raise PatternError('Angles must have length 2') self._angles = val @property def start_angle(self) -> float: return self.angles[0] @start_angle.setter def start_angle(self, val: float) -> None: self.angles = (val, self.angles[1]) @property def stop_angle(self) -> float: return self.angles[1] @stop_angle.setter def stop_angle(self, val: float) -> None: self.angles = (self.angles[0], val) # Rotation property @property def rotation(self) -> float: """ Rotation of radius_x from x_axis, counterclockwise, in radians. Stored mod 2*pi Returns: rotation counterclockwise in radians """ return self._rotation @rotation.setter def rotation(self, val: float) -> None: if not is_scalar(val): raise PatternError('Rotation must be a scalar') self._rotation = val % (2 * pi) # Width @property def width(self) -> float: """ Width of the arc (difference between inner and outer radii) Returns: width """ return self._width @width.setter def width(self, val: float) -> None: if not is_scalar(val): raise PatternError('Width must be a scalar') if not val > 0: raise PatternError('Width must be positive') self._width = val def __init__( self, radii: ArrayLike, angles: ArrayLike, width: float, *, offset: ArrayLike = (0.0, 0.0), rotation: float = 0, repetition: Repetition | None = None, annotations: annotations_t | None = None, raw: bool = False, ) -> None: if raw: assert isinstance(radii, numpy.ndarray) assert isinstance(angles, numpy.ndarray) assert isinstance(offset, numpy.ndarray) self._radii = radii self._angles = angles self._width = width self._offset = offset self._rotation = rotation self._repetition = repetition self._annotations = annotations if annotations is not None else {} else: self.radii = radii self.angles = angles self.width = width self.offset = offset self.rotation = rotation self.repetition = repetition self.annotations = annotations if annotations is not None else {} def __deepcopy__(self, memo: dict | None = None) -> 'Arc': memo = {} if memo is None else memo new = copy.copy(self) new._offset = self._offset.copy() new._radii = self._radii.copy() new._angles = self._angles.copy() new._annotations = copy.deepcopy(self._annotations) return new def __eq__(self, other: Any) -> bool: return ( type(self) is type(other) and numpy.array_equal(self.offset, other.offset) and numpy.array_equal(self.radii, other.radii) and numpy.array_equal(self.angles, other.angles) and self.width == other.width and self.rotation == other.rotation and self.repetition == other.repetition and annotations_eq(self.annotations, other.annotations) ) def __lt__(self, other: Shape) -> bool: if type(self) is not type(other): if repr(type(self)) != repr(type(other)): return repr(type(self)) < repr(type(other)) return id(type(self)) < id(type(other)) other = cast(Arc, other) if self.width != other.width: return self.width < other.width if not numpy.array_equal(self.radii, other.radii): return tuple(self.radii) < tuple(other.radii) if not numpy.array_equal(self.angles, other.angles): return tuple(self.angles) < tuple(other.angles) if not numpy.array_equal(self.offset, other.offset): return tuple(self.offset) < tuple(other.offset) if self.rotation != other.rotation: return self.rotation < other.rotation if self.repetition != other.repetition: return rep2key(self.repetition) < rep2key(other.repetition) return annotations_lt(self.annotations, other.annotations) def to_polygons( self, num_vertices: int | None = DEFAULT_POLY_NUM_VERTICES, max_arclen: float | None = None, ) -> list[Polygon]: if (num_vertices is None) and (max_arclen is None): raise PatternError('Max number of points and arclength left unspecified' + ' (default was also overridden)') r0, r1 = self.radii # Convert from polar angle to ellipse parameter (for [rx*cos(t), ry*sin(t)] representation) a_ranges = cast(tuple[tuple[float, float], tuple[float, float]], self._angles_to_parameters()) # Approximate perimeter via numerical integration #perimeter1 = numpy.trapz(numpy.sqrt(r0sin * r0sin + r1cos * r1cos), dx=dt) #from scipy.special import ellipeinc #m = 1 - (r1 / r0) ** 2 #t1 = ellipeinc(a1 - pi / 2, m) #t0 = ellipeinc(a0 - pi / 2, m) #perimeter2 = r0 * (t1 - t0) def get_arclens(n_pts: int, a0: float, a1: float, dr: float) -> tuple[NDArray[numpy.float64], NDArray[numpy.float64]]: """ Get `n_pts` arclengths """ t, dt = numpy.linspace(a0, a1, n_pts, retstep=True) # NOTE: could probably use an adaptive number of points r0sin = (r0 + dr) * numpy.sin(t) r1cos = (r1 + dr) * numpy.cos(t) arc_dl = numpy.sqrt(r0sin * r0sin + r1cos * r1cos) #arc_lengths = numpy.diff(t) * (arc_dl[1:] + arc_dl[:-1]) / 2 arc_lengths = (arc_dl[1:] + arc_dl[:-1]) * numpy.abs(dt) / 2 return arc_lengths, t wh = self.width / 2.0 if num_vertices is not None: n_pts = numpy.ceil(max(self.radii + wh) / min(self.radii) * num_vertices * 100).astype(int) perimeter_inner = get_arclens(n_pts, *a_ranges[0], dr=-wh)[0].sum() perimeter_outer = get_arclens(n_pts, *a_ranges[1], dr= wh)[0].sum() implied_arclen = (perimeter_outer + perimeter_inner + self.width * 2) / num_vertices max_arclen = min(implied_arclen, max_arclen if max_arclen is not None else numpy.inf) assert max_arclen is not None def get_thetas(inner: bool) -> NDArray[numpy.float64]: """ Figure out the parameter values at which we should place vertices to meet the arclength constraint""" dr = -wh if inner else wh n_pts = numpy.ceil(2 * pi * max(self.radii + dr) / max_arclen).astype(int) arc_lengths, thetas = get_arclens(n_pts, *a_ranges[0 if inner else 1], dr=dr) keep = [0] removable = (numpy.cumsum(arc_lengths) <= max_arclen) start = 1 while start < arc_lengths.size: next_to_keep = start + numpy.where(removable)[0][-1] # TODO: any chance we haven't sampled finely enough? keep.append(next_to_keep) removable = (numpy.cumsum(arc_lengths[next_to_keep + 1:]) <= max_arclen) start = next_to_keep + 1 if keep[-1] != thetas.size - 1: keep.append(thetas.size - 1) thetas = thetas[keep] if inner: thetas = thetas[::-1] return thetas if wh in (r0, r1): thetas_inner = numpy.zeros(1) # Don't generate multiple vertices if we're at the origin else: thetas_inner = get_thetas(inner=True) thetas_outer = get_thetas(inner=False) sin_th_i, cos_th_i = (numpy.sin(thetas_inner), numpy.cos(thetas_inner)) sin_th_o, cos_th_o = (numpy.sin(thetas_outer), numpy.cos(thetas_outer)) xs1 = (r0 + wh) * cos_th_o ys1 = (r1 + wh) * sin_th_o xs2 = (r0 - wh) * cos_th_i ys2 = (r1 - wh) * sin_th_i xs = numpy.hstack((xs1, xs2)) ys = numpy.hstack((ys1, ys2)) xys = numpy.vstack((xs, ys)).T poly = Polygon(xys, offset=self.offset, rotation=self.rotation) return [poly] def get_bounds_single(self) -> NDArray[numpy.float64]: """ Equation for rotated ellipse is `x = x0 + a * cos(t) * cos(rot) - b * sin(t) * sin(phi)` `y = y0 + a * cos(t) * sin(rot) + b * sin(t) * cos(rot)` where `t` is our parameter. Differentiating and solving for 0 slope wrt. `t`, we find `tan(t) = -+ b/a cot(phi)` where -+ is for x, y cases, so that's where the extrema are. If the extrema are innaccessible due to arc constraints, check the arc endpoints instead. """ a_ranges = self._angles_to_parameters() mins = [] maxs = [] for a, sgn in zip(a_ranges, (-1, +1), strict=True): wh = sgn * self.width / 2 rx = self.radius_x + wh ry = self.radius_y + wh if rx == 0 or ry == 0: # Single point, at origin mins.append([0, 0]) maxs.append([0, 0]) continue a0, a1 = a a0_offset = a0 - (a0 % (2 * pi)) sin_r = numpy.sin(self.rotation) cos_r = numpy.cos(self.rotation) sin_a = numpy.sin(a) cos_a = numpy.cos(a) # Cutoff angles xpt = (-self.rotation) % (2 * pi) + a0_offset ypt = (pi / 2 - self.rotation) % (2 * pi) + a0_offset xnt = (xpt - pi) % (2 * pi) + a0_offset ynt = (ypt - pi) % (2 * pi) + a0_offset # Points along coordinate axes rx2_inv = 1 / (rx * rx) ry2_inv = 1 / (ry * ry) xr = numpy.abs(cos_r * cos_r * rx2_inv + sin_r * sin_r * ry2_inv) ** -0.5 yr = numpy.abs(-sin_r * -sin_r * rx2_inv + cos_r * cos_r * ry2_inv) ** -0.5 # Arc endpoints xn, xp = sorted(rx * cos_r * cos_a - ry * sin_r * sin_a) yn, yp = sorted(rx * sin_r * cos_a + ry * cos_r * sin_a) # If our arc subtends a coordinate axis, use the extremum along that axis if a0 < xpt < a1 or a0 < xpt + 2 * pi < a1: xp = xr if a0 < xnt < a1 or a0 < xnt + 2 * pi < a1: xn = -xr if a0 < ypt < a1 or a0 < ypt + 2 * pi < a1: yp = yr if a0 < ynt < a1 or a0 < ynt + 2 * pi < a1: yn = -yr mins.append([xn, yn]) maxs.append([xp, yp]) return numpy.vstack((numpy.min(mins, axis=0) + self.offset, numpy.max(maxs, axis=0) + self.offset)) def rotate(self, theta: float) -> 'Arc': self.rotation += theta return self def mirror(self, axis: int = 0) -> 'Arc': self.offset[axis - 1] *= -1 self.rotation *= -1 self.rotation += axis * pi self.angles *= -1 return self def scale_by(self, c: float) -> 'Arc': self.radii *= c self.width *= c return self def normalized_form(self, norm_value: float) -> normalized_shape_tuple: if self.radius_x < self.radius_y: radii = self.radii / self.radius_x scale = self.radius_x rotation = self.rotation angles = self.angles else: # rotate by 90 degrees and swap radii radii = self.radii[::-1] / self.radius_y scale = self.radius_y rotation = self.rotation + pi / 2 angles = self.angles - pi / 2 delta_angle = angles[1] - angles[0] start_angle = angles[0] % (2 * pi) if start_angle >= pi: start_angle -= pi rotation += pi angles = (start_angle, start_angle + delta_angle) rotation %= 2 * pi width = self.width return ((type(self), radii, angles, width / norm_value), (self.offset, scale / norm_value, rotation, False), lambda: Arc( radii=radii * norm_value, angles=angles, width=width * norm_value, )) def get_cap_edges(self) -> NDArray[numpy.float64]: """ Returns: ``` [[[x0, y0], [x1, y1]], array of 4 points, specifying the two cuts which [[x2, y2], [x3, y3]]], would create this arc from its corresponding ellipse. ``` """ a_ranges = self._angles_to_parameters() mins = [] maxs = [] for a, sgn in zip(a_ranges, (-1, +1), strict=True): wh = sgn * self.width / 2 rx = self.radius_x + wh ry = self.radius_y + wh sin_r = numpy.sin(self.rotation) cos_r = numpy.cos(self.rotation) sin_a = numpy.sin(a) cos_a = numpy.cos(a) # arc endpoints xn, xp = sorted(rx * cos_r * cos_a - ry * sin_r * sin_a) yn, yp = sorted(rx * sin_r * cos_a + ry * cos_r * sin_a) mins.append([xn, yn]) maxs.append([xp, yp]) return numpy.array([mins, maxs]) + self.offset def _angles_to_parameters(self) -> NDArray[numpy.float64]: """ Convert from polar angle to ellipse parameter (for [rx*cos(t), ry*sin(t)] representation) Returns: "Eccentric anomaly" parameter ranges for the inner and outer edges, in the form `[[a_min_inner, a_max_inner], [a_min_outer, a_max_outer]]` """ a = [] for sgn in (-1, +1): wh = sgn * self.width / 2.0 rx = self.radius_x + wh ry = self.radius_y + wh a0, a1 = (numpy.arctan2(rx * numpy.sin(a), ry * numpy.cos(a)) for a in self.angles) sign = numpy.sign(self.angles[1] - self.angles[0]) if sign != numpy.sign(a1 - a0): a1 += sign * 2 * pi a.append((a0, a1)) return numpy.array(a, dtype=float) def __repr__(self) -> str: angles = f' a°{numpy.rad2deg(self.angles)}' rotation = f' r°{numpy.rad2deg(self.rotation):g}' if self.rotation != 0 else '' return f''