""" Base object representing a lithography mask. """ from typing import Callable, Sequence, cast, Mapping, Self, Any, Iterable, TypeVar, MutableMapping import copy import logging from itertools import chain from collections import defaultdict import numpy from numpy import inf, pi, nan from numpy.typing import NDArray, ArrayLike # .visualize imports matplotlib and matplotlib.collections from .ref import Ref from .shapes import Shape, Polygon, Path, DEFAULT_POLY_NUM_VERTICES from .label import Label from .utils import rotation_matrix_2d, annotations_t, layer_t from .error import PatternError from .traits import AnnotatableImpl, Scalable, Mirrorable, Rotatable, Positionable, Repeatable, Bounded from .ports import Port, PortList logger = logging.getLogger(__name__) class Pattern(PortList, AnnotatableImpl, Mirrorable): """ 2D layout consisting of some set of shapes, labels, and references to other Pattern objects (via Ref). Shapes are assumed to inherit from masque.shapes.Shape or provide equivalent functions. """ __slots__ = ( 'shapes', 'labels', 'refs', '_ports', # inherited '_offset', '_annotations', ) shapes: defaultdict[layer_t, list[Shape]] """ Stores of all shapes in this Pattern, indexed by layer. Elements in this list are assumed to inherit from Shape or provide equivalent functions. """ labels: defaultdict[layer_t, list[Label]] """ List of all labels in this Pattern. """ refs: defaultdict[str | None, list[Ref]] """ List of all references to other patterns (`Ref`s) in this `Pattern`. Multiple objects in this list may reference the same Pattern object (i.e. multiple instances of the same object). """ _ports: dict[str, Port] """ Uniquely-named ports which can be used to snap to other Pattern instances""" @property def ports(self) -> dict[str, Port]: return self._ports @ports.setter def ports(self, value: dict[str, Port]) -> None: self._ports = value def __init__( self, *, shapes: Mapping[layer_t, Sequence[Shape]] | None = None, labels: Mapping[layer_t, Sequence[Label]] | None = None, refs: Mapping[str | None, Sequence[Ref]] | None = None, annotations: annotations_t | None = None, ports: Mapping[str, 'Port'] | None = None ) -> None: """ Basic init; arguments get assigned to member variables. Non-list inputs for shapes and refs get converted to lists. Args: shapes: Initial shapes in the Pattern labels: Initial labels in the Pattern refs: Initial refs in the Pattern annotations: Initial annotations for the pattern ports: Any ports in the pattern """ self.shapes = defaultdict(list) self.labels = defaultdict(list) self.refs = defaultdict(list) if shapes: for layer, sseq in shapes.items(): self.shapes[layer].extend(sseq) if labels: for layer, lseq in labels.items(): self.labels[layer].extend(lseq) if refs: for target, rseq in refs.items(): self.refs[target].extend(rseq) if ports is not None: self.ports = dict(copy.deepcopy(ports)) else: self.ports = {} self.annotations = annotations if annotations is not None else {} def __repr__(self) -> str: nshapes = sum(len(seq) for seq in self.shapes.values()) nrefs = sum(len(seq) for seq in self.refs.values()) nlabels = sum(len(seq) for seq in self.labels.values()) s = f' 'Pattern': logger.warning('Making a shallow copy of a Pattern... old shapes are re-referenced!') new = Pattern( annotations=copy.deepcopy(self.annotations), ports=copy.deepcopy(self.ports), ) for target, rseq in self.refs.items(): new.refs[target].extend(rseq) for layer, sseq in self.shapes.items(): new.shapes[layer].extend(sseq) for layer, lseq in self.labels.items(): new.labels[layer].extend(lseq) return new # def __deepcopy__(self, memo: dict | None = None) -> 'Pattern': # memo = {} if memo is None else memo # new = Pattern( # shapes=copy.deepcopy(self.shapes, memo), # labels=copy.deepcopy(self.labels, memo), # refs=copy.deepcopy(self.refs, memo), # annotations=copy.deepcopy(self.annotations, memo), # ports=copy.deepcopy(self.ports), # ) # return new def append(self, other_pattern: 'Pattern') -> Self: """ Appends all shapes, labels and refs from other_pattern to self's shapes, labels, and supbatterns. Args: other_pattern: The Pattern to append Returns: self """ for target, rseq in other_pattern.refs.items(): self.refs[target].extend(rseq) for layer, sseq in other_pattern.shapes.items(): self.shapes[layer].extend(sseq) for layer, lseq in other_pattern.labels.items(): self.labels[layer].extend(lseq) annotation_conflicts = set(self.annotations.keys()) & set(other_pattern.annotations.keys()) if annotation_conflicts: raise PatternError(f'Annotation keys overlap: {annotation_conflicts}') self.annotations.update(other_pattern.annotations) port_conflicts = set(self.ports.keys()) & set(other_pattern.ports.keys()) if port_conflicts: raise PatternError(f'Port names overlap: {port_conflicts}') self.ports.update(other_pattern.ports) return self def subset( self, shapes: Callable[[layer_t, Shape], bool] | None = None, labels: Callable[[layer_t, Label], bool] | None = None, refs: Callable[[str | None, Ref], bool] | None = None, annotations: Callable[[str, list[int | float | str]], bool] | None = None, ports: Callable[[str, Port], bool] | None = None, default_keep: bool = False ) -> 'Pattern': """ Returns a Pattern containing only the entities (e.g. shapes) for which the given entity_func returns True. Self is _not_ altered, but shapes, labels, and refs are _not_ copied, just referenced. Args: shapes: Given a layer and shape, returns a boolean denoting whether the shape is a member of the subset. labels: Given a layer and label, returns a boolean denoting whether the label is a member of the subset. refs: Given a target and ref, returns a boolean denoting if it is a member of the subset. annotations: Given an annotation, returns a boolean denoting if it is a member of the subset. ports: Given a port, returns a boolean denoting if it is a member of the subset. default_keep: If `True`, keeps all elements of a given type if no function is supplied. Default `False` (discards all elements). Returns: A Pattern containing all the shapes and refs for which the parameter functions return True """ pat = Pattern() if shapes is not None: for layer in self.shapes: pat.shapes[layer] = [ss for ss in self.shapes[layer] if shapes(layer, ss)] elif default_keep: pat.shapes = copy.copy(self.shapes) if labels is not None: for layer in self.labels: pat.labels[layer] = [ll for ll in self.labels[layer] if labels(layer, ll)] elif default_keep: pat.labels = copy.copy(self.labels) if refs is not None: for target in self.refs: pat.refs[target] = [rr for rr in self.refs[target] if refs(target, rr)] elif default_keep: pat.refs = copy.copy(self.refs) if annotations is not None: pat.annotations = {k: v for k, v in self.annotations.items() if annotations(k, v)} elif default_keep: pat.annotations = copy.copy(self.annotations) if ports is not None: pat.ports = {k: v for k, v in self.ports.items() if ports(k, v)} elif default_keep: pat.ports = copy.copy(self.ports) return pat def polygonize( self, num_vertices: int | None = DEFAULT_POLY_NUM_VERTICES, max_arclen: float | None = None, ) -> Self: """ Calls `.to_polygons(...)` on all the shapes in this Pattern, replacing them with the returned polygons. Arguments are passed directly to `shape.to_polygons(...)`. Args: num_vertices: Number of points to use for each polygon. Can be overridden by `max_arclen` if that results in more points. Optional, defaults to shapes' internal defaults. max_arclen: Maximum arclength which can be approximated by a single line segment. Optional, defaults to shapes' internal defaults. Returns: self """ for layer in self.shapes: self.shapes[layer] = list(chain.from_iterable( ss.to_polygons(num_vertices, max_arclen) for ss in self.shapes[layer] )) return self def manhattanize( self, grid_x: ArrayLike, grid_y: ArrayLike, ) -> Self: """ Calls `.polygonize()` on the pattern, then calls `.manhattanize()` on all the resulting shapes, replacing them with the returned Manhattan polygons. Args: grid_x: List of allowed x-coordinates for the Manhattanized polygon edges. grid_y: List of allowed y-coordinates for the Manhattanized polygon edges. Returns: self """ self.polygonize() for layer in self.shapes: self.shapes[layer] = list(chain.from_iterable(( ss.manhattanize(grid_x, grid_y) for ss in self.shapes[layer] ))) return self def as_polygons(self, library: Mapping[str, 'Pattern']) -> list[NDArray[numpy.float64]]: """ Represents the pattern as a list of polygons. Deep-copies the pattern, then calls `.polygonize()` and `.flatten()` on the copy in order to generate the list of polygons. Returns: A list of `(Ni, 2)` `numpy.ndarray`s specifying vertices of the polygons. Each ndarray is of the form `[[x0, y0], [x1, y1],...]`. """ pat = self.deepcopy().polygonize().flatten(library=library) polys = [ cast(Polygon, shape).vertices + cast(Polygon, shape).offset for shape in chain_elements(pat.shapes) ] return polys def referenced_patterns(self) -> set[str | None]: """ Get all pattern namers referenced by this pattern. Non-recursive. Returns: A set of all pattern names referenced by this pattern. """ return set(self.refs.keys()) def get_bounds( self, library: Mapping[str, 'Pattern'] | None = None, recurse: bool = True, cache: MutableMapping[str, NDArray[numpy.float64] | None] | None = None, ) -> NDArray[numpy.float64] | None: """ Return a `numpy.ndarray` containing `[[x_min, y_min], [x_max, y_max]]`, corresponding to the extent of the Pattern's contents in each dimension. Returns `None` if the Pattern is empty. Args: TODO docs for get_bounds Returns: `[[x_min, y_min], [x_max, y_max]]` or `None` """ if self.is_empty(): return None n_elems = sum(1 for _ in chain_elements(self.shapes, self.labels)) ebounds = numpy.full((n_elems, 2, 2), nan) for ee, entry in enumerate(chain_elements(self.shapes, self.labels)): maybe_ebounds = cast(Bounded, entry).get_bounds() if maybe_ebounds is not None: ebounds[ee] = maybe_ebounds mask = ~numpy.isnan(ebounds[:, 0, 0]) if mask.any(): cbounds = numpy.vstack(( numpy.min(ebounds[mask, 0, :]), numpy.max(ebounds[mask, 1, :]), )) else: cbounds = numpy.array(( (+inf, +inf), (-inf, -inf), )) if recurse and self.has_refs(): if library is None: raise PatternError('Must provide a library to get_bounds() to resolve refs') if cache is None: cache = {} for target, refs in self.refs.items(): if target is None: continue if not refs: continue if target in cache: unrot_bounds = cache[target] elif any(numpy.isclose(ref.rotation % (pi / 2), 0) for ref in refs): unrot_bounds = library[target].get_bounds(library=library, recurse=recurse, cache=cache) cache[target] = unrot_bounds for ref in refs: if numpy.isclose(ref.rotation % (pi / 2), 0): if unrot_bounds is None: bounds = None else: ubounds = unrot_bounds.copy() if ref.mirrored: ubounds[:, 1] *= -1 corners = (rotation_matrix_2d(ref.rotation) @ ubounds.T).T bounds = numpy.vstack((numpy.min(corners, axis=0), numpy.max(corners, axis=0))) * ref.scale + [ref.offset] else: # Non-manhattan rotation, have to figure out bounds by rotating the pattern bounds = ref.get_bounds(library[target], library=library) if bounds is None: continue cbounds[0] = numpy.minimum(cbounds[0], bounds[0]) cbounds[1] = numpy.maximum(cbounds[1], bounds[1]) if (cbounds[1] < cbounds[0]).any(): return None else: return cbounds def get_bounds_nonempty( self, library: Mapping[str, 'Pattern'] | None = None, recurse: bool = True, ) -> NDArray[numpy.float64]: """ Convenience wrapper for `get_bounds()` which asserts that the Pattern as non-None bounds. Args: TODO docs for get_bounds Returns: `[[x_min, y_min], [x_max, y_max]]` """ bounds = self.get_bounds(library) assert bounds is not None return bounds def translate_elements(self, offset: ArrayLike) -> Self: """ Translates all shapes, label, refs, and ports by the given offset. Args: offset: (x, y) to translate by Returns: self """ for entry in chain(chain_elements(self.shapes, self.labels, self.refs), self.ports.values()): cast(Positionable, entry).translate(offset) return self def scale_elements(self, c: float) -> Self: """" Scales all shapes and refs by the given value. Args: c: factor to scale by Returns: self """ for entry in chain_elements(self.shapes, self.refs): cast(Scalable, entry).scale_by(c) return self def scale_by(self, c: float) -> Self: """ Scale this Pattern by the given value (all shapes and refs and their offsets are scaled, as are all label and port offsets) Args: c: factor to scale by Returns: self """ for entry in chain_elements(self.shapes, self.refs): cast(Positionable, entry).offset *= c cast(Scalable, entry).scale_by(c) rep = cast(Repeatable, entry).repetition if rep: rep.scale_by(c) for label in chain_elements(self.labels): cast(Positionable, label).offset *= c rep = cast(Repeatable, label).repetition if rep: rep.scale_by(c) for port in self.ports.values(): port.offset *= c return self def rotate_around(self, pivot: ArrayLike, rotation: float) -> Self: """ Rotate the Pattern around the a location. Args: pivot: (x, y) location to rotate around rotation: Angle to rotate by (counter-clockwise, radians) Returns: self """ pivot = numpy.array(pivot) self.translate_elements(-pivot) self.rotate_elements(rotation) self.rotate_element_centers(rotation) self.translate_elements(+pivot) return self def rotate_element_centers(self, rotation: float) -> Self: """ Rotate the offsets of all shapes, labels, refs, and ports around (0, 0) Args: rotation: Angle to rotate by (counter-clockwise, radians) Returns: self """ for entry in chain(chain_elements(self.shapes, self.refs, self.labels), self.ports.values()): old_offset = cast(Positionable, entry).offset cast(Positionable, entry).offset = numpy.dot(rotation_matrix_2d(rotation), old_offset) return self def rotate_elements(self, rotation: float) -> Self: """ Rotate each shape, ref, and port around its origin (offset) Args: rotation: Angle to rotate by (counter-clockwise, radians) Returns: self """ for entry in chain(chain_elements(self.shapes, self.refs), self.ports.values()): cast(Rotatable, entry).rotate(rotation) return self def mirror_element_centers(self, across_axis: int = 0) -> Self: """ Mirror the offsets of all shapes, labels, and refs across an axis Args: across_axis: Axis to mirror across (0: mirror across x axis, 1: mirror across y axis) Returns: self """ for entry in chain(chain_elements(self.shapes, self.refs, self.labels), self.ports.values()): cast(Positionable, entry).offset[across_axis - 1] *= -1 return self def mirror_elements(self, across_axis: int = 0) -> Self: """ Mirror each shape, ref, and pattern across an axis, relative to its offset Args: across_axis: Axis to mirror across (0: mirror across x axis, 1: mirror across y axis) Returns: self """ for entry in chain(chain_elements(self.shapes, self.refs), self.ports.values()): cast(Mirrorable, entry).mirror(across_axis) return self def mirror(self, across_axis: int = 0) -> Self: """ Mirror the Pattern across an axis Args: across_axis: Axis to mirror across (0: mirror across x axis, 1: mirror across y axis) Returns: self """ self.mirror_elements(across_axis) self.mirror_element_centers(across_axis) return self def copy(self) -> Self: """ Convenience method for `copy.deepcopy(pattern)` (same as `Pattern.deepcopy()`). See also: `Pattern.deepcopy()` Returns: A deep copy of the current Pattern. """ return copy.deepcopy(self) def deepcopy(self) -> Self: """ Convenience method for `copy.deepcopy(pattern)` Returns: A deep copy of the current Pattern. """ return copy.deepcopy(self) def is_empty(self) -> bool: """ # TODO is_empty doesn't include ports... maybe there should be an equivalent? Returns: True if the pattern is contains no shapes, labels, or refs. """ return not (self.has_refs() or self.has_shapes() or self.has_labels()) def has_refs(self) -> bool: return any(True for _ in chain.from_iterable(self.refs.values())) def has_shapes(self) -> bool: return any(True for _ in chain.from_iterable(self.shapes.values())) def has_labels(self) -> bool: return any(True for _ in chain.from_iterable(self.labels.values())) def ref(self, target: str | None, *args: Any, **kwargs: Any) -> Self: """ Convenience function which constructs a `Ref` object and adds it to this pattern. Args: target: Target for the ref *args: Passed to `Ref()` **kwargs: Passed to `Ref()` Returns: self """ self.refs[target].append(Ref(*args, **kwargs)) return self def polygon(self, layer: layer_t, *args: Any, **kwargs: Any) -> Self: """ Convenience function which constructs a `Polygon` object and adds it to this pattern. Args: layer: Layer for the polygon *args: Passed to `Polygon()` **kwargs: Passed to `Polygon()` Returns: self """ self.shapes[layer].append(Polygon(*args, **kwargs)) return self def rect(self, layer: layer_t, *args: Any, **kwargs: Any) -> Self: """ Convenience function which calls `Polygon.rect` to construct a rectangle and adds it to this pattern. Args: layer: Layer for the rectangle *args: Passed to `Polygon.rect()` **kwargs: Passed to `Polygon.rect()` Returns: self """ self.shapes[layer].append(Polygon.rect(*args, **kwargs)) return self def path(self, layer: layer_t, *args: Any, **kwargs: Any) -> Self: """ Convenience function which constructs a `Path` object and adds it to this pattern. Args: layer: Layer for the path *args: Passed to `Path()` **kwargs: Passed to `Path()` Returns: self """ self.shapes[layer].append(Path(*args, **kwargs)) return self def label(self, layer: layer_t, *args: Any, **kwargs: Any) -> Self: """ Convenience function which constructs a `Label` object and adds it to this pattern. Args: layer: Layer for the label *args: Passed to `Label()` **kwargs: Passed to `Label()` Returns: self """ self.labels[layer].append(Label(*args, **kwargs)) return self def flatten( self, library: Mapping[str, 'Pattern'], flatten_ports: bool = False, # TODO document ) -> 'Pattern': """ Removes all refs (recursively) and adds equivalent shapes. Alters the current pattern in-place Args: library: Source for referenced patterns. Returns: self """ flattened: dict[str | None, 'Pattern | None'] = {} # TODO both Library and Pattern have flatten()... pattern is in-place? def flatten_single(name: str | None) -> None: if name is None: pat = self else: pat = library[name].deepcopy() flattened[name] = None for target, refs in pat.refs.items(): if target is None: continue if not refs: continue if target not in flattened: flatten_single(target) target_pat = flattened[target] if target_pat is None: raise PatternError(f'Circular reference in {name} to {target}') if target_pat.is_empty(): # avoid some extra allocations continue for ref in refs: p = ref.as_pattern(pattern=target_pat) if not flatten_ports: p.ports.clear() pat.append(p) pat.refs.clear() flattened[name] = pat flatten_single(None) return self def visualize( self, library: Mapping[str, 'Pattern'] | None = None, offset: ArrayLike = (0., 0.), line_color: str = 'k', fill_color: str = 'none', overdraw: bool = False, ) -> None: """ Draw a picture of the Pattern and wait for the user to inspect it Imports `matplotlib`. Note that this can be slow; it is often faster to export to GDSII and use klayout or a different GDS viewer! Args: offset: Coordinates to offset by before drawing line_color: Outlines are drawn with this color (passed to `matplotlib.collections.PolyCollection`) fill_color: Interiors are drawn with this color (passed to `matplotlib.collections.PolyCollection`) overdraw: Whether to create a new figure or draw on a pre-existing one """ # TODO: add text labels to visualize() from matplotlib import pyplot # type: ignore import matplotlib.collections # type: ignore if self.has_refs() and library is None: raise PatternError('Must provide a library when visualizing a pattern with refs') offset = numpy.array(offset, dtype=float) if not overdraw: figure = pyplot.figure() pyplot.axis('equal') else: figure = pyplot.gcf() axes = figure.gca() polygons = [] for shape in chain.from_iterable(self.shapes.values()): polygons += [offset + s.offset + s.vertices for s in shape.to_polygons()] mpl_poly_collection = matplotlib.collections.PolyCollection( polygons, facecolors=fill_color, edgecolors=line_color, ) axes.add_collection(mpl_poly_collection) pyplot.axis('equal') for target, refs in self.refs.items(): if target is None: continue if not refs: continue assert library is not None target_pat = library[target] for ref in refs: ref.as_pattern(target_pat).visualize( library=library, offset=offset, overdraw=True, line_color=line_color, fill_color=fill_color, ) if not overdraw: pyplot.xlabel('x') pyplot.ylabel('y') pyplot.show() TT = TypeVar('TT') def chain_elements(*args: Mapping[Any, Iterable[TT]]) -> Iterable[TT]: return chain(*(chain.from_iterable(aa.values()) for aa in args)) def map_layers( elements: Mapping[layer_t, Sequence[TT]], map_layer: Callable[[layer_t], layer_t], ) -> defaultdict[layer_t, list[TT]]: new_elements: defaultdict[layer_t, list[TT]] = defaultdict(list) for old_layer, seq in elements.items(): new_layer = map_layer(old_layer) new_elements[new_layer].extend(seq) return new_elements def map_targets( refs: Mapping[str | None, Sequence[Ref]], map_target: Callable[[str | None], str | None], ) -> defaultdict[str | None, list[Ref]]: new_refs: defaultdict[str | None, list[Ref]] = defaultdict(list) for old_target, seq in refs.items(): new_target = map_target(old_target) new_refs[new_target].extend(seq) return new_refs