""" Manual wire routing tutorial: RenderPather an PathTool """ from typing import Callable from masque import RenderPather, Library, Pattern, Port, layer_t, map_layers from masque.builder.tools import PathTool from masque.file.gdsii import writefile from basic_shapes import GDS_OPTS from pather import M1_WIDTH, V1_WIDTH, M2_WIDTH, map_layer, make_pad, make_via def main() -> None: # # To illustrate the advantages of using `RenderPather`, we use `PathTool` instead # of `BasicTool`. `PathTool` lacks some sophistication (e.g. no automatic transitions) # but when used with `RenderPather`, it can consolidate multiple routing steps into # a single `Path` shape. # # We'll try to nearly replicate the layout from the `Pather` tutorial; see `pather.py` # for more detailed descriptions of the individual pathing steps. # # First, we make a library and generate some of the same patterns as in the pather tutorial library = Library() library['pad'] = make_pad() library['v1_via'] = make_via( layer_top='M2', layer_via='V1', layer_bot='M1', width_top=M2_WIDTH, width_via=V1_WIDTH, width_bot=M1_WIDTH, ptype_bot='m1wire', ptype_top='m2wire', ) # `PathTool` is more limited than `BasicTool`. It only generates one type of shape # (`Path`), so it only needs to know what layer to draw on, what width to draw with, # and what port type to present. M1_ptool = PathTool(layer='M1', width=M1_WIDTH, ptype='m1wire') M2_ptool = PathTool(layer='M2', width=M2_WIDTH, ptype='m2wire') rpather = RenderPather(tools=M2_ptool, library=library) # As in the pather tutorial, we make soem pads and labels... rpather.place('pad', offset=(18_000, 30_000), port_map={'wire_port': 'VCC'}) rpather.place('pad', offset=(18_000, 60_000), port_map={'wire_port': 'GND'}) rpather.pattern.label(layer='M2', string='VCC', offset=(18e3, 30e3)) rpather.pattern.label(layer='M2', string='GND', offset=(18e3, 60e3)) # ...and start routing the signals. rpather.path('VCC', ccw=False, length=6_000) rpather.path_to('VCC', ccw=None, x=0) rpather.path('GND', 0, 5_000) rpather.path_to('GND', None, x=rpather['VCC'].offset[0]) # `PathTool` doesn't know how to transition betwen metal layers, so we have to # `plug` the via into the GND wire ourselves. rpather.plug('v1_via', {'GND': 'top'}) rpather.retool(M1_ptool, keys=['GND']) rpather.mpath(['GND', 'VCC'], ccw=True, xmax=-10_000, spacing=5_000) # Same thing on the VCC wire when it goes down to M1. rpather.plug('v1_via', {'VCC': 'top'}) rpather.retool(M1_ptool) rpather.mpath(['GND', 'VCC'], ccw=True, emax=50_000, spacing=1_200) rpather.mpath(['GND', 'VCC'], ccw=False, emin=1_000, spacing=1_200) rpather.mpath(['GND', 'VCC'], ccw=False, emin=2_000, spacing=4_500) # And again when VCC goes back up to M2. rpather.plug('v1_via', {'VCC': 'bottom'}) rpather.retool(M2_ptool) rpather.mpath(['GND', 'VCC'], None, xmin=-28_000) # Finally, since PathTool has no conception of transitions, we can't # just ask it to transition to an 'm1wire' port at the end of the final VCC segment. # Instead, we have to calculate the via size ourselves, and adjust the final position # to account for it. via_size = abs( library['v1_via'].ports['top'].offset[0] - library['v1_via'].ports['bottom'].offset[0] ) rpather.path_to('VCC', None, -50_000 + via_size) rpather.plug('v1_via', {'VCC': 'top'}) rpather.render() library['RenderPather_and_PathTool'] = rpather.pattern # Convert from text-based layers to numeric layers for GDS, and output the file library.map_layers(map_layer) writefile(library, 'render_pather.gds', **GDS_OPTS) if __name__ == '__main__': main()