Compare commits
4 Commits
master
...
build_path
Author | SHA1 | Date | |
---|---|---|---|
fff20b3da9 | |||
4bae737630 | |||
9891ba9e47 | |||
df320e80cc |
230
README.md
230
README.md
@ -3,226 +3,43 @@
|
||||
Masque is a Python module for designing lithography masks.
|
||||
|
||||
The general idea is to implement something resembling the GDSII file-format, but
|
||||
with some vectorized element types (eg. circles, not just polygons) and the ability
|
||||
to output to multiple formats.
|
||||
with some vectorized element types (eg. circles, not just polygons), better support for
|
||||
E-beam doses, and the ability to output to multiple formats.
|
||||
|
||||
- [Source repository](https://mpxd.net/code/jan/masque)
|
||||
- [PyPI](https://pypi.org/project/masque)
|
||||
- [Github mirror](https://github.com/anewusername/masque)
|
||||
|
||||
|
||||
## Installation
|
||||
|
||||
Requirements:
|
||||
* python >= 3.11
|
||||
* python >= 3.8
|
||||
* numpy
|
||||
* klamath (used for GDSII i/o)
|
||||
|
||||
Optional requirements:
|
||||
* `ezdxf` (DXF i/o): ezdxf
|
||||
* `oasis` (OASIS i/o): fatamorgana
|
||||
* `svg` (SVG output): svgwrite
|
||||
* `visualization` (shape plotting): matplotlib
|
||||
* `text` (`Text` shape): matplotlib, freetype
|
||||
* klamath (used for `gdsii` i/o and library management)
|
||||
* matplotlib (optional, used for `visualization` functions and `text`)
|
||||
* ezdxf (optional, used for `dxf` i/o)
|
||||
* fatamorgana (optional, used for `oasis` i/o)
|
||||
* svgwrite (optional, used for `svg` output)
|
||||
* freetype (optional, used for `text`)
|
||||
|
||||
|
||||
Install with pip:
|
||||
```bash
|
||||
pip install 'masque[oasis,dxf,svg,visualization,text]'
|
||||
pip3 install 'masque[visualization,oasis,dxf,svg,text]'
|
||||
```
|
||||
|
||||
## Overview
|
||||
|
||||
A layout consists of a hierarchy of `Pattern`s stored in a single `Library`.
|
||||
Each `Pattern` can contain `Ref`s pointing at other patterns, `Shape`s, `Label`s, and `Port`s.
|
||||
|
||||
|
||||
`masque` departs from several "classic" GDSII paradigms:
|
||||
- A `Pattern` object does not store its own name. A name is only assigned when the pattern is placed
|
||||
into a `Library`, which is effectively a name->`Pattern` mapping.
|
||||
- Layer info for `Shape`ss and `Label`s is not stored in the individual shape and label objects.
|
||||
Instead, the layer is determined by the key for the container dict (e.g. `pattern.shapes[layer]`).
|
||||
* This simplifies many common tasks: filtering `Shape`s by layer, remapping layers, and checking if
|
||||
a layer is empty.
|
||||
* Technically, this allows reusing the same shape or label object across multiple layers. This isn't
|
||||
part of the standard workflow since a mixture of single-use and multi-use shapes could be confusing.
|
||||
* This is similar to the approach used in [KLayout](https://www.klayout.de)
|
||||
- `Ref` target names are also determined in the key of the container dict (e.g. `pattern.refs[target_name]`).
|
||||
* This similarly simplifies filtering `Ref`s by target name, updating to a new target, and checking
|
||||
if a given `Pattern` is referenced.
|
||||
- `Pattern` names are set by their containing `Library` and are not stored in the `Pattern` objects.
|
||||
* This guarantees that there are no duplicate pattern names within any given `Library`.
|
||||
* Likewise, enumerating all the names (and all the `Pattern`s) in a `Library` is straightforward.
|
||||
- Each `Ref`, `Shape`, or `Label` can be repeated multiple times by attaching a `repetition` object to it.
|
||||
* This is similar to how OASIS reptitions are handled, and provides extra flexibility over the GDSII
|
||||
approach of only allowing arrays through AREF (`Ref` + `repetition`).
|
||||
- `Label`s do not have an orientation or presentation
|
||||
* This is in line with how they are used in practice, and how they are represented in OASIS.
|
||||
- Non-polygonal `Shape`s are allowed. For example, elliptical arcs are a basic shape type.
|
||||
* This enables compatibility with OASIS (e.g. circles) and other formats.
|
||||
* `Shape`s provide a `.to_polygons()` method for GDSII compatibility.
|
||||
- Most coordinate values are stored as 64-bit floats internally.
|
||||
* 1 earth radii in nanometers (6e15) is still represented without approximation (53 bit mantissa -> 2^53 > 9e15)
|
||||
* Operations that would otherwise clip/round on are still represented approximately.
|
||||
* Memory usage is usually dominated by other Python overhead.
|
||||
- `Pattern` objects also contain `Port` information, which can be used to "snap" together
|
||||
multiple sub-components by matching up the requested port offsets and rotations.
|
||||
* Port rotations are defined as counter-clockwise angles from the +x axis.
|
||||
* Ports point into the interior of their associated device.
|
||||
* Port rotations may be `None` in the case of non-oriented ports.
|
||||
* Ports have a `ptype` string which is compared in order to catch mismatched connections at build time.
|
||||
* Ports can be exported into/imported from `Label`s stored directly in the layout,
|
||||
editable from standard tools (e.g. KLayout). A default format is provided.
|
||||
|
||||
In one important way, `masque` stays very orthodox:
|
||||
References are accomplished by listing the target's name, not its `Pattern` object.
|
||||
|
||||
- The main downside of this is that any operations that traverse the hierarchy require
|
||||
both the `Pattern` and the `Library` which is contains its reference targets.
|
||||
- This guarantees that names within a `Library` remain unique at all times.
|
||||
* Since this can be tedious in cases where you don't actually care about the name of a
|
||||
pattern, patterns whose names start with `SINGLE_USE_PREFIX` (default: an underscore)
|
||||
may be silently renamed in order to maintain uniqueness.
|
||||
See `masque.library.SINGLE_USE_PREFIX`, `masque.library._rename_patterns()`,
|
||||
and `ILibrary.add()` for more details.
|
||||
- Having all patterns accessible through the `Library` avoids having to perform a
|
||||
tree traversal for every operation which needs to touch all `Pattern` objects
|
||||
(e.g. deleting a layer everywhere or scaling all patterns).
|
||||
- Since `Pattern` doesn't know its own name, you can't create a reference by passing in
|
||||
a `Pattern` object -- you need to know its name.
|
||||
- You *can* reference a `Pattern` before it is created, so long as you have already decided
|
||||
on its name.
|
||||
- Functions like `Pattern.place()` and `Pattern.plug()` need to receive a pattern's name
|
||||
in order to create a reference, but they also need to access the pattern's ports.
|
||||
* One way to provide this data is through an `Abstract`, generated via
|
||||
`Library.abstract()` or through a `Library.abstract_view()`.
|
||||
* Another way is use `Builder.place()` or `Builder.plug()`, which automatically creates
|
||||
an `Abstract` from its internally-referenced `Library`.
|
||||
|
||||
|
||||
## Glossary
|
||||
- `Library`: A collection of named cells. OASIS or GDS "library" or file.
|
||||
- `Tree`: Any `{name: pattern}` mapping which has only one topcell.
|
||||
- `Pattern`: A collection of geometry, text labels, and reference to other patterns.
|
||||
OASIS or GDS "Cell", DXF "Block".
|
||||
- `Ref`: A reference to another pattern. GDS "AREF/SREF", OASIS "Placement".
|
||||
- `Shape`: Individual geometric entity. OASIS or GDS "Geometry element", DXF "LWPolyline" or "Polyline".
|
||||
- `repetition`: Repetition operation. OASIS "repetition".
|
||||
GDS "AREF" is a `Ref` combined with a `Grid` repetition.
|
||||
- `Label`: Text label. Not rendered into geometry. OASIS, GDS, DXF "Text".
|
||||
- `annotation`: Additional metadata. OASIS or GDS "property".
|
||||
|
||||
|
||||
## Syntax, shorthand, and design patterns
|
||||
Most syntax and behavior should follow normal python conventions.
|
||||
There are a few exceptions, either meant to catch common mistakes or to provide a shorthand for common operations:
|
||||
|
||||
### `Library` objects don't allow overwriting already-existing patterns
|
||||
```python3
|
||||
library['mycell'] = pattern0
|
||||
library['mycell'] = pattern1 # Error! 'mycell' already exists and can't be overwritten
|
||||
del library['mycell'] # We can explicitly delete it
|
||||
library['mycell'] = pattern1 # And now it's ok to assign a new value
|
||||
library.delete('mycell') # This also deletes all refs pointing to 'mycell' by default
|
||||
Alternatively, install from git
|
||||
```bash
|
||||
pip3 install git+https://mpxd.net/code/jan/masque.git@release
|
||||
```
|
||||
|
||||
### Insert a newly-made hierarchical pattern (with children) into a layout
|
||||
```python3
|
||||
# Let's say we have a function which returns a new library containing one topcell (and possibly children)
|
||||
tree = make_tree(...)
|
||||
|
||||
# To reference this cell in our layout, we have to add all its children to our `library` first:
|
||||
top_name = tree.top() # get the name of the topcell
|
||||
name_mapping = library.add(tree) # add all patterns from `tree`, renaming elgible conflicting patterns
|
||||
new_name = name_mapping.get(top_name, top_name) # get the new name for the cell (in case it was auto-renamed)
|
||||
my_pattern.ref(new_name, ...) # instantiate the cell
|
||||
|
||||
# This can be accomplished as follows
|
||||
new_name = library << tree # Add `tree` into `library` and return the top cell's new name
|
||||
my_pattern.ref(new_name, ...) # instantiate the cell
|
||||
|
||||
# In practice, you may do lots of
|
||||
my_pattern.ref(lib << make_tree(...), ...)
|
||||
|
||||
# With a `Builder` and `place()`/`plug()` the `lib <<` portion can be implicit:
|
||||
my_builder = Builder(library=lib, ...)
|
||||
...
|
||||
my_builder.place(make_tree(...))
|
||||
```
|
||||
|
||||
We can also use this shorthand to quickly add and reference a single flat (as yet un-named) pattern:
|
||||
```python3
|
||||
anonymous_pattern = Pattern(...)
|
||||
my_pattern.ref(lib << {'_tentative_name': anonymous_pattern}, ...)
|
||||
```
|
||||
|
||||
### Place a hierarchical pattern into a layout, preserving its port info
|
||||
```python3
|
||||
# As above, we have a function that makes a new library containing one topcell (and possibly children)
|
||||
tree = make_tree(...)
|
||||
|
||||
# We need to go get its port info to `place()` it into our existing layout,
|
||||
new_name = library << tree # Add the tree to the library and return its name (see `<<` above)
|
||||
abstract = library.abstract(tree) # An `Abstract` stores a pattern's name and its ports (but no geometry)
|
||||
my_pattern.place(abstract, ...)
|
||||
|
||||
# With shorthand,
|
||||
abstract = library <= tree
|
||||
my_pattern.place(abstract, ...)
|
||||
|
||||
# or
|
||||
my_pattern.place(library << make_tree(...), ...)
|
||||
|
||||
|
||||
### Quickly add geometry, labels, or refs:
|
||||
The long form for adding elements can be overly verbose:
|
||||
```python3
|
||||
my_pattern.shapes[layer].append(Polygon(vertices, ...))
|
||||
my_pattern.labels[layer] += [Label('my text')]
|
||||
my_pattern.refs[target_name].append(Ref(offset=..., ...))
|
||||
```
|
||||
|
||||
There is shorthand for the most common elements:
|
||||
```python3
|
||||
my_pattern.polygon(layer=layer, vertices=vertices, ...)
|
||||
my_pattern.rect(layer=layer, xctr=..., xmin=..., ymax=..., ly=...) # rectangle; pick 4 of 6 constraints
|
||||
my_pattern.rect(layer=layer, ymin=..., ymax=..., xctr=..., lx=...)
|
||||
my_pattern.path(...)
|
||||
my_pattern.label(layer, 'my_text')
|
||||
my_pattern.ref(target_name, offset=..., ...)
|
||||
```
|
||||
|
||||
### Accessing ports
|
||||
```python3
|
||||
# Square brackets pull from the underlying `.ports` dict:
|
||||
assert pattern['input'] is pattern.ports['input']
|
||||
|
||||
# And you can use them to read multiple ports at once:
|
||||
assert pattern[('input', 'output')] == {
|
||||
'input': pattern.ports['input'],
|
||||
'output': pattern.ports['output'],
|
||||
}
|
||||
|
||||
# But you shouldn't use them for anything except reading
|
||||
pattern['input'] = Port(...) # Error!
|
||||
has_input = ('input' in pattern) # Error!
|
||||
```
|
||||
|
||||
### Building patterns
|
||||
```python3
|
||||
library = Library(...)
|
||||
my_pattern_name, my_pattern = library.mkpat(some_name_generator())
|
||||
...
|
||||
def _make_my_subpattern() -> str:
|
||||
# This function can draw from the outer scope (e.g. `library`) but will not pollute the outer scope
|
||||
# (e.g. the variable `subpattern` will not be accessible from outside the function; you must load it
|
||||
# from within `library`).
|
||||
subpattern_name, subpattern = library.mkpat(...)
|
||||
subpattern.rect(...)
|
||||
...
|
||||
return subpattern_name
|
||||
my_pattern.ref(_make_my_subpattern(), offset=..., ...)
|
||||
```
|
||||
## Translation
|
||||
- `Pattern`: OASIS or GDS "Cell", DXF "Block"
|
||||
- `SubPattern`: GDS "AREF/SREF", OASIS "Placement"
|
||||
- `Shape`: OASIS or GDS "Geometry element", DXF "LWPolyline" or "Polyline"
|
||||
- `repetition`: OASIS "repetition". GDS "AREF" is a `SubPattern` combined with a `Grid` repetition.
|
||||
- `Label`: OASIS, GDS, DXF "Text".
|
||||
- `annotation`: OASIS or GDS "property"
|
||||
|
||||
|
||||
## TODO
|
||||
@ -230,8 +47,5 @@ my_pattern.ref(_make_my_subpattern(), offset=..., ...)
|
||||
* Better interface for polygon operations (e.g. with `pyclipper`)
|
||||
- de-embedding
|
||||
- boolean ops
|
||||
* Tests tests tests
|
||||
* check renderpather
|
||||
* pather and renderpather examples
|
||||
* context manager for retool
|
||||
* allow a specific mismatch when connecting ports
|
||||
* Construct polygons from bitmap using `skimage.find_contours`
|
||||
* Deal with shape repetitions for dxf, svg
|
||||
|
@ -2,33 +2,29 @@
|
||||
|
||||
import numpy
|
||||
|
||||
from masque.file import gdsii
|
||||
from masque import Arc, Pattern
|
||||
import masque
|
||||
import masque.file.klamath
|
||||
from masque import shapes
|
||||
|
||||
|
||||
def main():
|
||||
pat = Pattern()
|
||||
layer = (0, 0)
|
||||
pat.shapes[layer].extend([
|
||||
Arc(
|
||||
pat = masque.Pattern(name='ellip_grating')
|
||||
for rmin in numpy.arange(10, 15, 0.5):
|
||||
pat.shapes.append(shapes.Arc(
|
||||
radii=(rmin, rmin),
|
||||
width=0.1,
|
||||
angles=(-numpy.pi/4, numpy.pi/4),
|
||||
)
|
||||
for rmin in numpy.arange(10, 15, 0.5)]
|
||||
)
|
||||
layer=(0, 0),
|
||||
))
|
||||
|
||||
pat.label(string='grating centerline', offset=(1, 0), layer=(1, 2))
|
||||
pat.labels.append(masque.Label(string='grating centerline', offset=(1, 0), layer=(1, 2)))
|
||||
|
||||
pat.scale_by(1000)
|
||||
pat.visualize()
|
||||
pat2 = pat.copy()
|
||||
pat2.name = 'grating2'
|
||||
|
||||
lib = {
|
||||
'ellip_grating': pat,
|
||||
'grating2': pat.copy(),
|
||||
}
|
||||
|
||||
gdsii.writefile(lib, 'out.gds.gz', meters_per_unit=1e-9, logical_units_per_unit=1e-3)
|
||||
masque.file.klamath.writefile((pat, pat2), 'out.gds.gz', 1e-9, 1e-3)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -1,29 +0,0 @@
|
||||
import numpy
|
||||
from pyclipper import (
|
||||
Pyclipper, PT_CLIP, PT_SUBJECT, CT_UNION, CT_INTERSECTION, PFT_NONZERO,
|
||||
scale_to_clipper, scale_from_clipper,
|
||||
)
|
||||
p = Pyclipper()
|
||||
p.AddPaths([
|
||||
[(-10, -10), (-10, 10), (-9, 10), (-9, -10)],
|
||||
[(-10, 10), (10, 10), (10, 9), (-10, 9)],
|
||||
[(10, 10), (10, -10), (9, -10), (9, 10)],
|
||||
[(10, -10), (-10, -10), (-10, -9), (10, -9)],
|
||||
], PT_SUBJECT, closed=True)
|
||||
#p.Execute2?
|
||||
#p.Execute?
|
||||
p.Execute(PT_UNION, PT_NONZERO, PT_NONZERO)
|
||||
p.Execute(CT_UNION, PT_NONZERO, PT_NONZERO)
|
||||
p.Execute(CT_UNION, PFT_NONZERO, PFT_NONZERO)
|
||||
|
||||
p = Pyclipper()
|
||||
p.AddPaths([
|
||||
[(-10, -10), (-10, 10), (-9, 10), (-9, -10)],
|
||||
[(-10, 10), (10, 10), (10, 9), (-10, 9)],
|
||||
[(10, 10), (10, -10), (9, -10), (9, 10)],
|
||||
[(10, -10), (-10, -10), (-10, -9), (10, -9)],
|
||||
], PT_SUBJECT, closed=True)
|
||||
r = p.Execute2(CT_UNION, PFT_NONZERO, PFT_NONZERO)
|
||||
|
||||
#r.Childs
|
||||
|
@ -1,43 +0,0 @@
|
||||
# pip install pillow scikit-image
|
||||
# or
|
||||
# sudo apt install python3-pil python3-skimage
|
||||
|
||||
from PIL import Image
|
||||
from skimage.measure import find_contours
|
||||
from matplotlib import pyplot
|
||||
import numpy
|
||||
|
||||
from masque import Pattern, Polygon
|
||||
from masque.file.gdsii import writefile
|
||||
|
||||
#
|
||||
# Read the image into a numpy array
|
||||
#
|
||||
im = Image.open('./Desktop/Camera/IMG_20220626_091101.jpg')
|
||||
|
||||
aa = numpy.array(im.convert(mode='L').getdata()).reshape(im.height, im.width)
|
||||
|
||||
threshold = (aa.max() - aa.min()) / 2
|
||||
|
||||
#
|
||||
# Find edge contours and plot them
|
||||
#
|
||||
contours = find_contours(aa, threshold)
|
||||
|
||||
pyplot.imshow(aa)
|
||||
for contour in contours:
|
||||
pyplot.plot(contour[:, 1], contour[:, 0], linewidth=2)
|
||||
pyplot.show(block=False)
|
||||
|
||||
#
|
||||
# Create the layout from the contours
|
||||
#
|
||||
pat = Pattern()
|
||||
pat.shapes[(0, 0)].extend([
|
||||
Polygon(vertices=vv) for vv in contours if len(vv) < 1_000
|
||||
])
|
||||
|
||||
lib = {}
|
||||
lib['my_mask_name'] = pat
|
||||
|
||||
writefile(lib, 'test_contours.gds', meters_per_unit=1e-9)
|
@ -1,138 +1,103 @@
|
||||
from pprint import pprint
|
||||
from pathlib import Path
|
||||
|
||||
import numpy
|
||||
from numpy import pi
|
||||
|
||||
import masque
|
||||
from masque import Pattern, Ref, Arc, Library
|
||||
import masque.file.gdsii
|
||||
import masque.file.klamath
|
||||
import masque.file.dxf
|
||||
import masque.file.oasis
|
||||
from masque import shapes, Pattern, SubPattern
|
||||
from masque.repetition import Grid
|
||||
from masque.file import gdsii, dxf, oasis
|
||||
|
||||
from pprint import pprint
|
||||
|
||||
|
||||
def main():
|
||||
lib = Library()
|
||||
|
||||
cell_name = 'ellip_grating'
|
||||
pat = masque.Pattern()
|
||||
|
||||
layer = (0, 0)
|
||||
pat = masque.Pattern(name='ellip_grating')
|
||||
for rmin in numpy.arange(10, 15, 0.5):
|
||||
pat.shapes[layer].append(Arc(
|
||||
pat.shapes.append(shapes.Arc(
|
||||
radii=(rmin, rmin),
|
||||
width=0.1,
|
||||
angles=(0 * -pi/4, pi/4),
|
||||
angles=(0*-numpy.pi/4, numpy.pi/4),
|
||||
annotations={'1': ['blah']},
|
||||
))
|
||||
))
|
||||
|
||||
pat.scale_by(1000)
|
||||
# pat.visualize()
|
||||
lib[cell_name] = pat
|
||||
print(f'\nAdded {cell_name}:')
|
||||
pat2 = pat.copy()
|
||||
pat2.name = 'grating2'
|
||||
|
||||
pat3 = Pattern('sref_test')
|
||||
pat3.subpatterns = [
|
||||
SubPattern(pat, offset=(1e5, 3e5), annotations={'4': ['Hello I am the base subpattern']}),
|
||||
SubPattern(pat, offset=(2e5, 3e5), rotation=pi/3),
|
||||
SubPattern(pat, offset=(3e5, 3e5), rotation=pi/2),
|
||||
SubPattern(pat, offset=(4e5, 3e5), rotation=pi),
|
||||
SubPattern(pat, offset=(5e5, 3e5), rotation=3*pi/2),
|
||||
SubPattern(pat, mirrored=(True, False), offset=(1e5, 4e5)),
|
||||
SubPattern(pat, mirrored=(True, False), offset=(2e5, 4e5), rotation=pi/3),
|
||||
SubPattern(pat, mirrored=(True, False), offset=(3e5, 4e5), rotation=pi/2),
|
||||
SubPattern(pat, mirrored=(True, False), offset=(4e5, 4e5), rotation=pi),
|
||||
SubPattern(pat, mirrored=(True, False), offset=(5e5, 4e5), rotation=3*pi/2),
|
||||
SubPattern(pat, mirrored=(False, True), offset=(1e5, 5e5)),
|
||||
SubPattern(pat, mirrored=(False, True), offset=(2e5, 5e5), rotation=pi/3),
|
||||
SubPattern(pat, mirrored=(False, True), offset=(3e5, 5e5), rotation=pi/2),
|
||||
SubPattern(pat, mirrored=(False, True), offset=(4e5, 5e5), rotation=pi),
|
||||
SubPattern(pat, mirrored=(False, True), offset=(5e5, 5e5), rotation=3*pi/2),
|
||||
SubPattern(pat, mirrored=(True, True), offset=(1e5, 6e5)),
|
||||
SubPattern(pat, mirrored=(True, True), offset=(2e5, 6e5), rotation=pi/3),
|
||||
SubPattern(pat, mirrored=(True, True), offset=(3e5, 6e5), rotation=pi/2),
|
||||
SubPattern(pat, mirrored=(True, True), offset=(4e5, 6e5), rotation=pi),
|
||||
SubPattern(pat, mirrored=(True, True), offset=(5e5, 6e5), rotation=3*pi/2),
|
||||
]
|
||||
|
||||
pprint(pat3)
|
||||
pprint(pat3.subpatterns)
|
||||
pprint(pat.shapes)
|
||||
|
||||
new_name = lib.get_name(cell_name)
|
||||
lib[new_name] = pat.copy()
|
||||
print(f'\nAdded a copy of {cell_name} as {new_name}')
|
||||
|
||||
pat3 = Pattern()
|
||||
pat3.refs[cell_name] = [
|
||||
Ref(offset=(1e5, 3e5), annotations={'4': ['Hello I am the base Ref']}),
|
||||
Ref(offset=(2e5, 3e5), rotation=pi/3),
|
||||
Ref(offset=(3e5, 3e5), rotation=pi/2),
|
||||
Ref(offset=(4e5, 3e5), rotation=pi),
|
||||
Ref(offset=(5e5, 3e5), rotation=3*pi/2),
|
||||
Ref(mirrored=True, offset=(1e5, 4e5)),
|
||||
Ref(mirrored=True, offset=(2e5, 4e5), rotation=pi/3),
|
||||
Ref(mirrored=True, offset=(3e5, 4e5), rotation=pi/2),
|
||||
Ref(mirrored=True, offset=(4e5, 4e5), rotation=pi),
|
||||
Ref(mirrored=True, offset=(5e5, 4e5), rotation=3*pi/2),
|
||||
Ref(offset=(1e5, 5e5)).mirror_target(1),
|
||||
Ref(offset=(2e5, 5e5), rotation=pi/3).mirror_target(1),
|
||||
Ref(offset=(3e5, 5e5), rotation=pi/2).mirror_target(1),
|
||||
Ref(offset=(4e5, 5e5), rotation=pi).mirror_target(1),
|
||||
Ref(offset=(5e5, 5e5), rotation=3*pi/2).mirror_target(1),
|
||||
Ref(offset=(1e5, 6e5)).mirror2d_target(True, True),
|
||||
Ref(offset=(2e5, 6e5), rotation=pi/3).mirror2d_target(True, True),
|
||||
Ref(offset=(3e5, 6e5), rotation=pi/2).mirror2d_target(True, True),
|
||||
Ref(offset=(4e5, 6e5), rotation=pi).mirror2d_target(True, True),
|
||||
Ref(offset=(5e5, 6e5), rotation=3*pi/2).mirror2d_target(True, True),
|
||||
rep = Grid(a_vector=[1e4, 0],
|
||||
b_vector=[0, 1.5e4],
|
||||
a_count=3,
|
||||
b_count=2,)
|
||||
pat4 = Pattern('aref_test')
|
||||
pat4.subpatterns = [
|
||||
SubPattern(pat, repetition=rep, offset=(1e5, 3e5)),
|
||||
SubPattern(pat, repetition=rep, offset=(2e5, 3e5), rotation=pi/3),
|
||||
SubPattern(pat, repetition=rep, offset=(3e5, 3e5), rotation=pi/2),
|
||||
SubPattern(pat, repetition=rep, offset=(4e5, 3e5), rotation=pi),
|
||||
SubPattern(pat, repetition=rep, offset=(5e5, 3e5), rotation=3*pi/2),
|
||||
SubPattern(pat, repetition=rep, mirrored=(True, False), offset=(1e5, 4e5)),
|
||||
SubPattern(pat, repetition=rep, mirrored=(True, False), offset=(2e5, 4e5), rotation=pi/3),
|
||||
SubPattern(pat, repetition=rep, mirrored=(True, False), offset=(3e5, 4e5), rotation=pi/2),
|
||||
SubPattern(pat, repetition=rep, mirrored=(True, False), offset=(4e5, 4e5), rotation=pi),
|
||||
SubPattern(pat, repetition=rep, mirrored=(True, False), offset=(5e5, 4e5), rotation=3*pi/2),
|
||||
SubPattern(pat, repetition=rep, mirrored=(False, True), offset=(1e5, 5e5)),
|
||||
SubPattern(pat, repetition=rep, mirrored=(False, True), offset=(2e5, 5e5), rotation=pi/3),
|
||||
SubPattern(pat, repetition=rep, mirrored=(False, True), offset=(3e5, 5e5), rotation=pi/2),
|
||||
SubPattern(pat, repetition=rep, mirrored=(False, True), offset=(4e5, 5e5), rotation=pi),
|
||||
SubPattern(pat, repetition=rep, mirrored=(False, True), offset=(5e5, 5e5), rotation=3*pi/2),
|
||||
SubPattern(pat, repetition=rep, mirrored=(True, True), offset=(1e5, 6e5)),
|
||||
SubPattern(pat, repetition=rep, mirrored=(True, True), offset=(2e5, 6e5), rotation=pi/3),
|
||||
SubPattern(pat, repetition=rep, mirrored=(True, True), offset=(3e5, 6e5), rotation=pi/2),
|
||||
SubPattern(pat, repetition=rep, mirrored=(True, True), offset=(4e5, 6e5), rotation=pi),
|
||||
SubPattern(pat, repetition=rep, mirrored=(True, True), offset=(5e5, 6e5), rotation=3*pi/2),
|
||||
]
|
||||
|
||||
lib['sref_test'] = pat3
|
||||
print('\nAdded sref_test:')
|
||||
pprint(pat3)
|
||||
pprint(pat3.refs)
|
||||
folder = 'layouts/'
|
||||
masque.file.klamath.writefile((pat, pat2, pat3, pat4), folder + 'rep.gds.gz', 1e-9, 1e-3)
|
||||
|
||||
rep = Grid(
|
||||
a_vector=[1e4, 0],
|
||||
b_vector=[0, 1.5e4],
|
||||
a_count=3,
|
||||
b_count=2,
|
||||
)
|
||||
pat4 = Pattern()
|
||||
pat4.refs[cell_name] = [
|
||||
Ref(repetition=rep, offset=(1e5, 3e5)),
|
||||
Ref(repetition=rep, offset=(2e5, 3e5), rotation=pi/3),
|
||||
Ref(repetition=rep, offset=(3e5, 3e5), rotation=pi/2),
|
||||
Ref(repetition=rep, offset=(4e5, 3e5), rotation=pi),
|
||||
Ref(repetition=rep, offset=(5e5, 3e5), rotation=3*pi/2),
|
||||
Ref(repetition=rep, mirrored=True, offset=(1e5, 4e5)),
|
||||
Ref(repetition=rep, mirrored=True, offset=(2e5, 4e5), rotation=pi/3),
|
||||
Ref(repetition=rep, mirrored=True, offset=(3e5, 4e5), rotation=pi/2),
|
||||
Ref(repetition=rep, mirrored=True, offset=(4e5, 4e5), rotation=pi),
|
||||
Ref(repetition=rep, mirrored=True, offset=(5e5, 4e5), rotation=3*pi/2),
|
||||
Ref(repetition=rep, offset=(1e5, 5e5)).mirror_target(1),
|
||||
Ref(repetition=rep, offset=(2e5, 5e5), rotation=pi/3).mirror_target(1),
|
||||
Ref(repetition=rep, offset=(3e5, 5e5), rotation=pi/2).mirror_target(1),
|
||||
Ref(repetition=rep, offset=(4e5, 5e5), rotation=pi).mirror_target(1),
|
||||
Ref(repetition=rep, offset=(5e5, 5e5), rotation=3*pi/2).mirror_target(1),
|
||||
Ref(repetition=rep, offset=(1e5, 6e5)).mirror2d_target(True, True),
|
||||
Ref(repetition=rep, offset=(2e5, 6e5), rotation=pi/3).mirror2d_target(True, True),
|
||||
Ref(repetition=rep, offset=(3e5, 6e5), rotation=pi/2).mirror2d_target(True, True),
|
||||
Ref(repetition=rep, offset=(4e5, 6e5), rotation=pi).mirror2d_target(True, True),
|
||||
Ref(repetition=rep, offset=(5e5, 6e5), rotation=3*pi/2).mirror2d_target(True, True),
|
||||
]
|
||||
cells = list(masque.file.klamath.readfile(folder + 'rep.gds.gz')[0].values())
|
||||
masque.file.klamath.writefile(cells, folder + 'rerep.gds.gz', 1e-9, 1e-3)
|
||||
|
||||
lib['aref_test'] = pat4
|
||||
print('\nAdded aref_test')
|
||||
|
||||
folder = Path('./layouts/')
|
||||
folder.mkdir(exist_ok=True)
|
||||
print(f'...writing files to {folder}...')
|
||||
|
||||
gds1 = folder / 'rep.gds.gz'
|
||||
gds2 = folder / 'rerep.gds.gz'
|
||||
print(f'Initial write to {gds1}')
|
||||
gdsii.writefile(lib, gds1, 1e-9, 1e-3)
|
||||
|
||||
print(f'Read back and rewrite to {gds2}')
|
||||
readback_lib, _info = gdsii.readfile(gds1)
|
||||
gdsii.writefile(readback_lib, gds2, 1e-9, 1e-3)
|
||||
|
||||
dxf1 = folder / 'rep.dxf.gz'
|
||||
dxf2 = folder / 'rerep.dxf.gz'
|
||||
print(f'Write aref_test to {dxf1}')
|
||||
dxf.writefile(lib, 'aref_test', dxf1)
|
||||
|
||||
print(f'Read back and rewrite to {dxf2}')
|
||||
dxf_lib, _info = dxf.readfile(dxf1)
|
||||
print(Library(dxf_lib))
|
||||
dxf.writefile(dxf_lib, 'Model', dxf2)
|
||||
masque.file.dxf.writefile(pat4, folder + 'rep.dxf.gz')
|
||||
dxf, info = masque.file.dxf.readfile(folder + 'rep.dxf.gz')
|
||||
masque.file.dxf.writefile(dxf, folder + 'rerep.dxf.gz')
|
||||
|
||||
layer_map = {'base': (0,0), 'mylabel': (1,2)}
|
||||
oas1 = folder / 'rep.oas'
|
||||
oas2 = folder / 'rerep.oas'
|
||||
print(f'Write lib to {oas1}')
|
||||
oasis.writefile(lib, oas1, 1000, layer_map=layer_map)
|
||||
|
||||
print(f'Read back and rewrite to {oas2}')
|
||||
oas_lib, oas_info = oasis.readfile(oas1)
|
||||
oasis.writefile(oas_lib, oas2, 1000, layer_map=layer_map)
|
||||
|
||||
print('OASIS info:')
|
||||
pprint(oas_info)
|
||||
masque.file.oasis.writefile((pat, pat2, pat3, pat4), folder + 'rep.oas.gz', 1000, layer_map=layer_map)
|
||||
oas, info = masque.file.oasis.readfile(folder + 'rep.oas.gz')
|
||||
masque.file.oasis.writefile(list(oas.values()), folder + 'rerep.oas.gz', 1000, layer_map=layer_map)
|
||||
print(info)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -1,39 +0,0 @@
|
||||
masque Tutorial
|
||||
===============
|
||||
|
||||
Contents
|
||||
--------
|
||||
|
||||
- [basic_shapes](basic_shapes.py):
|
||||
* Draw basic geometry
|
||||
* Export to GDS
|
||||
- [devices](devices.py)
|
||||
* Reference other patterns
|
||||
* Add ports to a pattern
|
||||
* Snap ports together to build a circuit
|
||||
* Check for dangling references
|
||||
- [library](library.py)
|
||||
* Create a `LazyLibrary`, which loads / generates patterns only when they are first used
|
||||
* Explore alternate ways of specifying a pattern for `.plug()` and `.place()`
|
||||
* Design a pattern which is meant to plug into an existing pattern (via `.interface()`)
|
||||
- [pather](pather.py)
|
||||
* Use `Pather` to route individual wires and wire bundles
|
||||
* Use `BasicTool` to generate paths
|
||||
* Use `BasicTool` to automatically transition between path types
|
||||
- [renderpather](rendpather.py)
|
||||
* Use `RenderPather` and `PathTool` to build a layout similar to the one in [pather](pather.py),
|
||||
but using `Path` shapes instead of `Polygon`s.
|
||||
|
||||
|
||||
Additionaly, [pcgen](pcgen.py) is a utility module for generating photonic crystal lattices.
|
||||
|
||||
|
||||
Running
|
||||
-------
|
||||
|
||||
Run from inside the examples directory:
|
||||
```bash
|
||||
cd examples/tutorial
|
||||
python3 basic_shapes.py
|
||||
klayout -e basic_shapes.gds
|
||||
```
|
@ -1,21 +1,21 @@
|
||||
from collections.abc import Sequence
|
||||
from typing import Tuple, Sequence
|
||||
|
||||
import numpy
|
||||
from numpy import pi
|
||||
|
||||
from masque import (
|
||||
layer_t, Pattern, Label, Port,
|
||||
Circle, Arc, Polygon,
|
||||
)
|
||||
from masque import layer_t, Pattern, SubPattern, Label
|
||||
from masque.shapes import Circle, Arc, Polygon
|
||||
from masque.builder import Device, Port
|
||||
from masque.library import Library, DeviceLibrary
|
||||
import masque.file.gdsii
|
||||
|
||||
|
||||
# Note that masque units are arbitrary, and are only given
|
||||
# physical significance when writing to a file.
|
||||
GDS_OPTS = dict(
|
||||
meters_per_unit = 1e-9, # GDS database unit, 1 nanometer
|
||||
logical_units_per_unit = 1e-3, # GDS display unit, 1 micron
|
||||
)
|
||||
GDS_OPTS = {
|
||||
'meters_per_unit': 1e-9, # GDS database unit, 1 nanometer
|
||||
'logical_units_per_unit': 1e-3, # GDS display unit, 1 micron
|
||||
}
|
||||
|
||||
|
||||
def hole(
|
||||
@ -30,12 +30,11 @@ def hole(
|
||||
layer: Layer to draw the circle on.
|
||||
|
||||
Returns:
|
||||
Pattern containing a circle.
|
||||
Pattern, named `'hole'`
|
||||
"""
|
||||
pat = Pattern()
|
||||
pat.shapes[layer].append(
|
||||
Circle(radius=radius, offset=(0, 0))
|
||||
)
|
||||
pat = Pattern('hole', shapes=[
|
||||
Circle(radius=radius, offset=(0, 0), layer=layer)
|
||||
])
|
||||
return pat
|
||||
|
||||
|
||||
@ -51,17 +50,16 @@ def triangle(
|
||||
layer: Layer to draw the circle on.
|
||||
|
||||
Returns:
|
||||
Pattern containing a triangle
|
||||
Pattern, named `'triangle'`
|
||||
"""
|
||||
vertices = numpy.array([
|
||||
(numpy.cos( pi / 2), numpy.sin( pi / 2)),
|
||||
(numpy.cos(pi + pi / 6), numpy.sin(pi + pi / 6)),
|
||||
(numpy.cos( - pi / 6), numpy.sin( - pi / 6)),
|
||||
]) * radius
|
||||
]) * radius
|
||||
|
||||
pat = Pattern()
|
||||
pat.shapes[layer].extend([
|
||||
Polygon(offset=(0, 0), vertices=vertices),
|
||||
pat = Pattern('triangle', shapes=[
|
||||
Polygon(offset=(0, 0), layer=layer, vertices=vertices),
|
||||
])
|
||||
return pat
|
||||
|
||||
@ -80,40 +78,37 @@ def smile(
|
||||
secondary_layer: Layer to draw eyes and smile on.
|
||||
|
||||
Returns:
|
||||
Pattern containing a smiley face
|
||||
Pattern, named `'smile'`
|
||||
"""
|
||||
# Make an empty pattern
|
||||
pat = Pattern()
|
||||
pat = Pattern('smile')
|
||||
|
||||
# Add all the shapes we want
|
||||
pat.shapes[layer] += [
|
||||
Circle(radius=radius, offset=(0, 0)), # Outer circle
|
||||
]
|
||||
|
||||
pat.shapes[secondary_layer] += [
|
||||
Circle(radius=radius / 10, offset=(radius / 3, radius / 3)),
|
||||
Circle(radius=radius / 10, offset=(-radius / 3, radius / 3)),
|
||||
Arc(
|
||||
radii=(radius * 2 / 3, radius * 2 / 3), # Underlying ellipse radii
|
||||
pat.shapes += [
|
||||
Circle(radius=radius, offset=(0, 0), layer=layer), # Outer circle
|
||||
Circle(radius=radius / 10, offset=(radius / 3, radius / 3), layer=secondary_layer),
|
||||
Circle(radius=radius / 10, offset=(-radius / 3, radius / 3), layer=secondary_layer),
|
||||
Arc(radii=(radius * 2 / 3, radius * 2 / 3), # Underlying ellipse radii
|
||||
angles=(7 / 6 * pi, 11 / 6 * pi), # Angles limiting the arc
|
||||
width=radius / 10,
|
||||
offset=(0, 0),
|
||||
),
|
||||
layer=secondary_layer),
|
||||
]
|
||||
|
||||
return pat
|
||||
|
||||
|
||||
def main() -> None:
|
||||
lib = {}
|
||||
hole_pat = hole(1000)
|
||||
smile_pat = smile(1000)
|
||||
tri_pat = triangle(1000)
|
||||
|
||||
lib['hole'] = hole(1000)
|
||||
lib['smile'] = smile(1000)
|
||||
lib['triangle'] = triangle(1000)
|
||||
units_per_meter = 1e-9
|
||||
units_per_display_unit = 1e-3
|
||||
|
||||
masque.file.gdsii.writefile(lib, 'basic_shapes.gds', **GDS_OPTS)
|
||||
masque.file.gdsii.writefile([hole_pat, tri_pat, smile_pat], 'basic_shapes.gds', **GDS_OPTS)
|
||||
|
||||
lib['triangle'].visualize()
|
||||
smile_pat.visualize()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -1,14 +1,12 @@
|
||||
from collections.abc import Sequence, Mapping
|
||||
from typing import Tuple, Sequence, Dict
|
||||
|
||||
import numpy
|
||||
from numpy import pi
|
||||
|
||||
from masque import (
|
||||
layer_t, Pattern, Ref, Label, Builder, Port, Polygon,
|
||||
Library, ILibraryView,
|
||||
)
|
||||
from masque.utils import ports2data
|
||||
from masque.file.gdsii import writefile, check_valid_names
|
||||
from masque import layer_t, Pattern, SubPattern, Label
|
||||
from masque.shapes import Polygon
|
||||
from masque.builder import Device, Port, port_utils
|
||||
from masque.file.gdsii import writefile
|
||||
|
||||
import pcgen
|
||||
import basic_shapes
|
||||
@ -19,41 +17,40 @@ LATTICE_CONSTANT = 512
|
||||
RADIUS = LATTICE_CONSTANT / 2 * 0.75
|
||||
|
||||
|
||||
def ports_to_data(pat: Pattern) -> Pattern:
|
||||
def dev2pat(dev: Device) -> Pattern:
|
||||
"""
|
||||
Bake port information into the pattern.
|
||||
Bake port information into the device.
|
||||
This places a label at each port location on layer (3, 0) with text content
|
||||
'name:ptype angle_deg'
|
||||
"""
|
||||
return ports2data.ports_to_data(pat, layer=(3, 0))
|
||||
return port_utils.dev2pat(dev, layer=(3, 0))
|
||||
|
||||
|
||||
def data_to_ports(lib: Mapping[str, Pattern], name: str, pat: Pattern) -> Pattern:
|
||||
def pat2dev(pat: Pattern) -> Device:
|
||||
"""
|
||||
Scan the Pattern to determine port locations. Same port format as `ports_to_data`
|
||||
Scans the Pattern to determine port locations. Same format as `dev2pat`
|
||||
"""
|
||||
return ports2data.data_to_ports(layers=[(3, 0)], library=lib, pattern=pat, name=name)
|
||||
return port_utils.pat2dev(pat, layers=[(3, 0)])
|
||||
|
||||
|
||||
def perturbed_l3(
|
||||
lattice_constant: float,
|
||||
hole: str,
|
||||
hole_lib: Mapping[str, Pattern],
|
||||
hole: Pattern,
|
||||
trench_dose: float = 1.0,
|
||||
trench_layer: layer_t = (1, 0),
|
||||
shifts_a: Sequence[float] = (0.15, 0, 0.075),
|
||||
shifts_r: Sequence[float] = (1.0, 1.0, 1.0),
|
||||
xy_size: tuple[int, int] = (10, 10),
|
||||
xy_size: Tuple[int, int] = (10, 10),
|
||||
perturbed_radius: float = 1.1,
|
||||
trench_width: float = 1200,
|
||||
) -> Pattern:
|
||||
) -> Device:
|
||||
"""
|
||||
Generate a `Pattern` representing a perturbed L3 cavity.
|
||||
Generate a `Device` representing a perturbed L3 cavity.
|
||||
|
||||
Args:
|
||||
lattice_constant: Distance between nearest neighbor holes
|
||||
hole: name of a `Pattern` containing a single hole
|
||||
hole_lib: Library which contains the `Pattern` object for hole.
|
||||
Necessary because we need to know how big it is...
|
||||
hole: `Pattern` object containing a single hole
|
||||
trench_dose: Dose for the trenches. Default 1.0. (Hole dose is 1.0.)
|
||||
trench_layer: Layer for the trenches, default `(1, 0)`.
|
||||
shifts_a: passed to `pcgen.l3_shift`; specifies lattice constant
|
||||
(1 - multiplicative factor) for shifting holes adjacent to
|
||||
@ -69,10 +66,8 @@ def perturbed_l3(
|
||||
trench width: Width of the undercut trenches. Default 1200.
|
||||
|
||||
Returns:
|
||||
`Pattern` object representing the L3 design.
|
||||
`Device` object representing the L3 design.
|
||||
"""
|
||||
print('Generating perturbed L3...')
|
||||
|
||||
# Get hole positions and radii
|
||||
xyr = pcgen.l3_shift_perturbed_defect(mirror_dims=xy_size,
|
||||
perturbed_radius=perturbed_radius,
|
||||
@ -80,206 +75,188 @@ def perturbed_l3(
|
||||
shifts_r=shifts_r)
|
||||
|
||||
# Build L3 cavity, using references to the provided hole pattern
|
||||
pat = Pattern()
|
||||
pat.refs[hole] += [
|
||||
Ref(scale=r, offset=(lattice_constant * x,
|
||||
lattice_constant * y))
|
||||
pat = Pattern(f'L3p-a{lattice_constant:g}rp{perturbed_radius:g}')
|
||||
pat.subpatterns += [
|
||||
SubPattern(hole, scale=r,
|
||||
offset=(lattice_constant * x,
|
||||
lattice_constant * y))
|
||||
for x, y, r in xyr]
|
||||
|
||||
# Add rectangular undercut aids
|
||||
min_xy, max_xy = pat.get_bounds_nonempty(hole_lib)
|
||||
min_xy, max_xy = pat.get_bounds_nonempty()
|
||||
trench_dx = max_xy[0] - min_xy[0]
|
||||
|
||||
pat.shapes[trench_layer] += [
|
||||
Polygon.rect(ymin=max_xy[1], xmin=min_xy[0], lx=trench_dx, ly=trench_width),
|
||||
Polygon.rect(ymax=min_xy[1], xmin=min_xy[0], lx=trench_dx, ly=trench_width),
|
||||
pat.shapes += [
|
||||
Polygon.rect(ymin=max_xy[1], xmin=min_xy[0], lx=trench_dx, ly=trench_width,
|
||||
layer=trench_layer, dose=trench_dose),
|
||||
Polygon.rect(ymax=min_xy[1], xmin=min_xy[0], lx=trench_dx, ly=trench_width,
|
||||
layer=trench_layer, dose=trench_dose),
|
||||
]
|
||||
|
||||
# Ports are at outer extents of the device (with y=0)
|
||||
extent = lattice_constant * xy_size[0]
|
||||
pat.ports = dict(
|
||||
input=Port((-extent, 0), rotation=0, ptype='pcwg'),
|
||||
output=Port((extent, 0), rotation=pi, ptype='pcwg'),
|
||||
)
|
||||
ports = {
|
||||
'input': Port((-extent, 0), rotation=0, ptype='pcwg'),
|
||||
'output': Port((extent, 0), rotation=pi, ptype='pcwg'),
|
||||
}
|
||||
|
||||
ports_to_data(pat)
|
||||
return pat
|
||||
return Device(pat, ports)
|
||||
|
||||
|
||||
def waveguide(
|
||||
lattice_constant: float,
|
||||
hole: str,
|
||||
hole: Pattern,
|
||||
length: int,
|
||||
mirror_periods: int,
|
||||
) -> Pattern:
|
||||
) -> Device:
|
||||
"""
|
||||
Generate a `Pattern` representing a photonic crystal line-defect waveguide.
|
||||
Generate a `Device` representing a photonic crystal line-defect waveguide.
|
||||
|
||||
Args:
|
||||
lattice_constant: Distance between nearest neighbor holes
|
||||
hole: name of a `Pattern` containing a single hole
|
||||
hole: `Pattern` object containing a single hole
|
||||
length: Distance (number of mirror periods) between the input and output ports.
|
||||
Ports are placed at lattice sites.
|
||||
mirror_periods: Number of hole rows on each side of the line defect
|
||||
|
||||
Returns:
|
||||
`Pattern` object representing the waveguide.
|
||||
`Device` object representing the waveguide.
|
||||
"""
|
||||
# Generate hole locations
|
||||
xy = pcgen.waveguide(length=length, num_mirror=mirror_periods)
|
||||
|
||||
# Build the pattern
|
||||
pat = Pattern()
|
||||
pat.refs[hole] += [
|
||||
Ref(offset=(lattice_constant * x,
|
||||
lattice_constant * y))
|
||||
for x, y in xy]
|
||||
pat = Pattern(f'_wg-a{lattice_constant:g}l{length}')
|
||||
pat.subpatterns += [SubPattern(hole, offset=(lattice_constant * x,
|
||||
lattice_constant * y))
|
||||
for x, y in xy]
|
||||
|
||||
# Ports are at outer edges, with y=0
|
||||
extent = lattice_constant * length / 2
|
||||
pat.ports = dict(
|
||||
left=Port((-extent, 0), rotation=0, ptype='pcwg'),
|
||||
right=Port((extent, 0), rotation=pi, ptype='pcwg'),
|
||||
)
|
||||
|
||||
ports_to_data(pat)
|
||||
return pat
|
||||
ports = {
|
||||
'left': Port((-extent, 0), rotation=0, ptype='pcwg'),
|
||||
'right': Port((extent, 0), rotation=pi, ptype='pcwg'),
|
||||
}
|
||||
return Device(pat, ports)
|
||||
|
||||
|
||||
def bend(
|
||||
lattice_constant: float,
|
||||
hole: str,
|
||||
hole: Pattern,
|
||||
mirror_periods: int,
|
||||
) -> Pattern:
|
||||
) -> Device:
|
||||
"""
|
||||
Generate a `Pattern` representing a 60-degree counterclockwise bend in a photonic crystal
|
||||
Generate a `Device` representing a 60-degree counterclockwise bend in a photonic crystal
|
||||
line-defect waveguide.
|
||||
|
||||
Args:
|
||||
lattice_constant: Distance between nearest neighbor holes
|
||||
hole: name of a `Pattern` containing a single hole
|
||||
hole: `Pattern` object containing a single hole
|
||||
mirror_periods: Minimum number of mirror periods on each side of the line defect.
|
||||
|
||||
Returns:
|
||||
`Pattern` object representing the waveguide bend.
|
||||
`Device` object representing the waveguide bend.
|
||||
Ports are named 'left' (input) and 'right' (output).
|
||||
"""
|
||||
# Generate hole locations
|
||||
xy = pcgen.wgbend(num_mirror=mirror_periods)
|
||||
|
||||
# Build the pattern
|
||||
pat= Pattern()
|
||||
pat.refs[hole] += [
|
||||
Ref(offset=(lattice_constant * x,
|
||||
lattice_constant * y))
|
||||
pat= Pattern(f'_wgbend-a{lattice_constant:g}l{mirror_periods}')
|
||||
pat.subpatterns += [
|
||||
SubPattern(hole, offset=(lattice_constant * x,
|
||||
lattice_constant * y))
|
||||
for x, y in xy]
|
||||
|
||||
# Figure out port locations.
|
||||
extent = lattice_constant * mirror_periods
|
||||
pat.ports = dict(
|
||||
left=Port((-extent, 0), rotation=0, ptype='pcwg'),
|
||||
right=Port((extent / 2,
|
||||
extent * numpy.sqrt(3) / 2),
|
||||
rotation=pi * 4 / 3, ptype='pcwg'),
|
||||
)
|
||||
ports_to_data(pat)
|
||||
return pat
|
||||
ports = {
|
||||
'left': Port((-extent, 0), rotation=0, ptype='pcwg'),
|
||||
'right': Port((extent / 2,
|
||||
extent * numpy.sqrt(3) / 2),
|
||||
rotation=pi * 4 / 3, ptype='pcwg'),
|
||||
}
|
||||
return Device(pat, ports)
|
||||
|
||||
|
||||
def y_splitter(
|
||||
lattice_constant: float,
|
||||
hole: str,
|
||||
hole: Pattern,
|
||||
mirror_periods: int,
|
||||
) -> Pattern:
|
||||
) -> Device:
|
||||
"""
|
||||
Generate a `Pattern` representing a photonic crystal line-defect waveguide y-splitter.
|
||||
Generate a `Device` representing a photonic crystal line-defect waveguide y-splitter.
|
||||
|
||||
Args:
|
||||
lattice_constant: Distance between nearest neighbor holes
|
||||
hole: name of a `Pattern` containing a single hole
|
||||
hole: `Pattern` object containing a single hole
|
||||
mirror_periods: Minimum number of mirror periods on each side of the line defect.
|
||||
|
||||
Returns:
|
||||
`Pattern` object representing the y-splitter.
|
||||
`Device` object representing the y-splitter.
|
||||
Ports are named 'in', 'top', and 'bottom'.
|
||||
"""
|
||||
# Generate hole locations
|
||||
xy = pcgen.y_splitter(num_mirror=mirror_periods)
|
||||
|
||||
# Build pattern
|
||||
pat = Pattern()
|
||||
pat.refs[hole] += [
|
||||
Ref(offset=(lattice_constant * x,
|
||||
lattice_constant * y))
|
||||
pat = Pattern(f'_wgsplit_half-a{lattice_constant:g}l{mirror_periods}')
|
||||
pat.subpatterns += [
|
||||
SubPattern(hole, offset=(lattice_constant * x,
|
||||
lattice_constant * y))
|
||||
for x, y in xy]
|
||||
|
||||
# Determine port locations
|
||||
extent = lattice_constant * mirror_periods
|
||||
pat.ports = {
|
||||
ports = {
|
||||
'in': Port((-extent, 0), rotation=0, ptype='pcwg'),
|
||||
'top': Port((extent / 2, extent * numpy.sqrt(3) / 2), rotation=pi * 4 / 3, ptype='pcwg'),
|
||||
'bot': Port((extent / 2, -extent * numpy.sqrt(3) / 2), rotation=pi * 2 / 3, ptype='pcwg'),
|
||||
}
|
||||
|
||||
ports_to_data(pat)
|
||||
return pat
|
||||
return Device(pat, ports)
|
||||
|
||||
|
||||
|
||||
def main(interactive: bool = True) -> None:
|
||||
def main(interactive: bool = True):
|
||||
# Generate some basic hole patterns
|
||||
shape_lib = {
|
||||
'smile': basic_shapes.smile(RADIUS),
|
||||
'hole': basic_shapes.hole(RADIUS),
|
||||
}
|
||||
smile = basic_shapes.smile(RADIUS)
|
||||
hole = basic_shapes.hole(RADIUS)
|
||||
|
||||
# Build some devices
|
||||
a = LATTICE_CONSTANT
|
||||
wg10 = waveguide(lattice_constant=a, hole=hole, length=10, mirror_periods=5).rename('wg10')
|
||||
wg05 = waveguide(lattice_constant=a, hole=hole, length=5, mirror_periods=5).rename('wg05')
|
||||
wg28 = waveguide(lattice_constant=a, hole=hole, length=28, mirror_periods=5).rename('wg28')
|
||||
bend0 = bend(lattice_constant=a, hole=hole, mirror_periods=5).rename('bend0')
|
||||
ysplit = y_splitter(lattice_constant=a, hole=hole, mirror_periods=5).rename('ysplit')
|
||||
l3cav = perturbed_l3(lattice_constant=a, hole=smile, xy_size=(4, 10)).rename('l3cav') # uses smile :)
|
||||
|
||||
devices = {}
|
||||
devices['wg05'] = waveguide(lattice_constant=a, hole='hole', length=5, mirror_periods=5)
|
||||
devices['wg10'] = waveguide(lattice_constant=a, hole='hole', length=10, mirror_periods=5)
|
||||
devices['wg28'] = waveguide(lattice_constant=a, hole='hole', length=28, mirror_periods=5)
|
||||
devices['wg90'] = waveguide(lattice_constant=a, hole='hole', length=90, mirror_periods=5)
|
||||
devices['bend0'] = bend(lattice_constant=a, hole='hole', mirror_periods=5)
|
||||
devices['ysplit'] = y_splitter(lattice_constant=a, hole='hole', mirror_periods=5)
|
||||
devices['l3cav'] = perturbed_l3(lattice_constant=a, hole='smile', hole_lib=shape_lib, xy_size=(4, 10)) # uses smile :)
|
||||
|
||||
# Turn our dict of devices into a Library.
|
||||
# This provides some convenience functions in the future!
|
||||
lib = Library(devices)
|
||||
# Autogenerate port labels so that GDS will also contain port data
|
||||
for device in [wg10, wg05, wg28, l3cav, ysplit, bend0]:
|
||||
dev2pat(device)
|
||||
|
||||
#
|
||||
# Build a circuit
|
||||
#
|
||||
# Create a `Builder`, and add the circuit to our library as "my_circuit".
|
||||
circ = Builder(library=lib, name='my_circuit')
|
||||
circ = Device(name='my_circuit', ports={})
|
||||
|
||||
# Start by placing a waveguide. Call its ports "in" and "signal".
|
||||
circ.place('wg10', offset=(0, 0), port_map={'left': 'in', 'right': 'signal'})
|
||||
circ.place(wg10, offset=(0, 0), port_map={'left': 'in', 'right': 'signal'})
|
||||
|
||||
# Extend the signal path by attaching the "left" port of a waveguide.
|
||||
# Since there is only one other port ("right") on the waveguide we
|
||||
# are attaching (wg10), it automatically inherits the name "signal".
|
||||
circ.plug('wg10', {'signal': 'left'})
|
||||
|
||||
# We could have done the following instead:
|
||||
# circ_pat = Pattern()
|
||||
# lib['my_circuit'] = circ_pat
|
||||
# circ_pat.place(lib.abstract('wg10'), ...)
|
||||
# circ_pat.plug(lib.abstract('wg10'), ...)
|
||||
# but `Builder` lets us omit some of the repetition of `lib.abstract(...)`, and uses similar
|
||||
# syntax to `Pather` and `RenderPather`, which add wire/waveguide routing functionality.
|
||||
circ.plug(wg10, {'signal': 'left'})
|
||||
|
||||
# Attach a y-splitter to the signal path.
|
||||
# Since the y-splitter has 3 ports total, we can't auto-inherit the
|
||||
# port name, so we have to specify what we want to name the unattached
|
||||
# ports. We can call them "signal1" and "signal2".
|
||||
circ.plug('ysplit', {'signal': 'in'}, {'top': 'signal1', 'bot': 'signal2'})
|
||||
circ.plug(ysplit, {'signal': 'in'}, {'top': 'signal1', 'bot': 'signal2'})
|
||||
|
||||
# Add a waveguide to both signal ports, inheriting their names.
|
||||
circ.plug('wg05', {'signal1': 'left'})
|
||||
circ.plug('wg05', {'signal2': 'left'})
|
||||
circ.plug(wg05, {'signal1': 'left'})
|
||||
circ.plug(wg05, {'signal2': 'left'})
|
||||
|
||||
# Add a bend to both ports.
|
||||
# Our bend's ports "left" and "right" refer to the original counterclockwise
|
||||
@ -288,22 +265,22 @@ def main(interactive: bool = True) -> None:
|
||||
# to "signal2" to bend counterclockwise.
|
||||
# We could also use `mirrored=(True, False)` to mirror one of the devices
|
||||
# and then use same device port on both paths.
|
||||
circ.plug('bend0', {'signal1': 'right'})
|
||||
circ.plug('bend0', {'signal2': 'left'})
|
||||
circ.plug(bend0, {'signal1': 'right'})
|
||||
circ.plug(bend0, {'signal2': 'left'})
|
||||
|
||||
# We add some waveguides and a cavity to "signal1".
|
||||
circ.plug('wg10', {'signal1': 'left'})
|
||||
circ.plug('l3cav', {'signal1': 'input'})
|
||||
circ.plug('wg10', {'signal1': 'left'})
|
||||
circ.plug(wg10, {'signal1': 'left'})
|
||||
circ.plug(l3cav, {'signal1': 'input'})
|
||||
circ.plug(wg10, {'signal1': 'left'})
|
||||
|
||||
# "signal2" just gets a single of equivalent length
|
||||
circ.plug('wg28', {'signal2': 'left'})
|
||||
circ.plug(wg28, {'signal2': 'left'})
|
||||
|
||||
# Now we bend both waveguides back towards each other
|
||||
circ.plug('bend0', {'signal1': 'right'})
|
||||
circ.plug('bend0', {'signal2': 'left'})
|
||||
circ.plug('wg05', {'signal1': 'left'})
|
||||
circ.plug('wg05', {'signal2': 'left'})
|
||||
circ.plug(bend0, {'signal1': 'right'})
|
||||
circ.plug(bend0, {'signal2': 'left'})
|
||||
circ.plug(wg05, {'signal1': 'left'})
|
||||
circ.plug(wg05, {'signal2': 'left'})
|
||||
|
||||
# To join the waveguides, we attach a second y-junction.
|
||||
# We plug "signal1" into the "bot" port, and "signal2" into the "top" port.
|
||||
@ -311,34 +288,23 @@ def main(interactive: bool = True) -> None:
|
||||
# This operation would raise an exception if the ports did not line up
|
||||
# correctly (i.e. they required different rotations or translations of the
|
||||
# y-junction device).
|
||||
circ.plug('ysplit', {'signal1': 'bot', 'signal2': 'top'}, {'in': 'signal_out'})
|
||||
circ.plug(ysplit, {'signal1': 'bot', 'signal2': 'top'}, {'in': 'signal_out'})
|
||||
|
||||
# Finally, add some more waveguide to "signal_out".
|
||||
circ.plug('wg10', {'signal_out': 'left'})
|
||||
|
||||
# We can also add text labels for our circuit's ports.
|
||||
# They will appear at the uppermost hierarchy level, while the individual
|
||||
# device ports will appear further down, in their respective cells.
|
||||
ports_to_data(circ.pattern)
|
||||
|
||||
# Check if we forgot to include any patterns... ooops!
|
||||
if dangling := lib.dangling_refs():
|
||||
print('Warning: The following patterns are referenced, but not present in the'
|
||||
f' library! {dangling}')
|
||||
print('We\'ll solve this by merging in shape_lib, which contains those shapes...')
|
||||
|
||||
lib.add(shape_lib)
|
||||
assert not lib.dangling_refs()
|
||||
circ.plug(wg10, {'signal_out': 'left'})
|
||||
|
||||
# We can visualize the design. Usually it's easier to just view the GDS.
|
||||
if interactive:
|
||||
print('Visualizing... this step may be slow')
|
||||
circ.pattern.visualize(lib)
|
||||
circ.pattern.visualize()
|
||||
|
||||
#Write out to GDS, only keeping patterns referenced by our circuit (including itself)
|
||||
subtree = lib.subtree('my_circuit') # don't include wg90, which we don't use
|
||||
check_valid_names(subtree.keys())
|
||||
writefile(subtree, 'circuit.gds', **GDS_OPTS)
|
||||
# We can also add text labels for our circuit's ports.
|
||||
# They will appear at the uppermost hierarchy level, while the individual
|
||||
# device ports will appear further down, in their respective cells.
|
||||
dev2pat(circ)
|
||||
|
||||
# Write out to GDS
|
||||
writefile(circ.pattern, 'circuit.gds', **GDS_OPTS)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -1,83 +1,81 @@
|
||||
from typing import Any
|
||||
from collections.abc import Sequence, Callable
|
||||
from typing import Tuple, Sequence, Callable
|
||||
from pprint import pformat
|
||||
|
||||
import numpy
|
||||
from numpy import pi
|
||||
|
||||
from masque import Pattern, Builder, LazyLibrary
|
||||
from masque.builder import Device
|
||||
from masque.library import Library, LibDeviceLibrary
|
||||
from masque.file.gdsii import writefile, load_libraryfile
|
||||
|
||||
import pcgen
|
||||
import basic_shapes
|
||||
import devices
|
||||
from devices import ports_to_data, data_to_ports
|
||||
from devices import pat2dev, dev2pat
|
||||
from basic_shapes import GDS_OPTS
|
||||
|
||||
|
||||
def main() -> None:
|
||||
# Define a `LazyLibrary`, which provides lazy evaluation for generating
|
||||
# patterns and lazy-loading of GDS contents.
|
||||
lib = LazyLibrary()
|
||||
# Define a `Library`-backed `DeviceLibrary`, which provides lazy evaluation
|
||||
# for device generation code and lazy-loading of GDS contents.
|
||||
device_lib = LibDeviceLibrary()
|
||||
|
||||
#
|
||||
# Load some devices from a GDS file
|
||||
#
|
||||
|
||||
# Scan circuit.gds and prepare to lazy-load its contents
|
||||
gds_lib, _properties = load_libraryfile('circuit.gds', postprocess=data_to_ports)
|
||||
pattern_lib, _properties = load_libraryfile('circuit.gds', tag='mycirc01')
|
||||
|
||||
# Add it into the device library by providing a way to read port info
|
||||
# This maintains the lazy evaluation from above, so no patterns
|
||||
# are actually read yet.
|
||||
lib.add(gds_lib)
|
||||
device_lib.add_library(pattern_lib, pat2dev=pat2dev)
|
||||
|
||||
print('Devices loaded from GDS into library:\n' + pformat(list(device_lib.keys())))
|
||||
|
||||
print('Patterns loaded from GDS into library:\n' + pformat(list(lib.keys())))
|
||||
|
||||
#
|
||||
# Add some new devices to the library, this time from python code rather than GDS
|
||||
#
|
||||
|
||||
lib['triangle'] = lambda: basic_shapes.triangle(devices.RADIUS)
|
||||
opts: dict[str, Any] = dict(
|
||||
lattice_constant = devices.LATTICE_CONSTANT,
|
||||
hole = 'triangle',
|
||||
)
|
||||
a = devices.LATTICE_CONSTANT
|
||||
tri = basic_shapes.triangle(devices.RADIUS)
|
||||
|
||||
# Convenience function for adding devices
|
||||
# This is roughly equivalent to
|
||||
# `device_lib[name] = lambda: dev2pat(fn())`
|
||||
# but it also guarantees that the resulting pattern is named `name`.
|
||||
def add(name: str, fn: Callable[[], Device]) -> None:
|
||||
device_lib.add_device(name=name, fn=fn, dev2pat=dev2pat)
|
||||
|
||||
# Triangle-based variants. These are defined here, but they won't run until they're
|
||||
# retrieved from the library.
|
||||
lib['tri_wg10'] = lambda: devices.waveguide(length=10, mirror_periods=5, **opts)
|
||||
lib['tri_wg05'] = lambda: devices.waveguide(length=5, mirror_periods=5, **opts)
|
||||
lib['tri_wg28'] = lambda: devices.waveguide(length=28, mirror_periods=5, **opts)
|
||||
lib['tri_bend0'] = lambda: devices.bend(mirror_periods=5, **opts)
|
||||
lib['tri_ysplit'] = lambda: devices.y_splitter(mirror_periods=5, **opts)
|
||||
lib['tri_l3cav'] = lambda: devices.perturbed_l3(xy_size=(4, 10), **opts, hole_lib=lib)
|
||||
add('tri_wg10', lambda: devices.waveguide(lattice_constant=a, hole=tri, length=10, mirror_periods=5))
|
||||
add('tri_wg05', lambda: devices.waveguide(lattice_constant=a, hole=tri, length=5, mirror_periods=5))
|
||||
add('tri_wg28', lambda: devices.waveguide(lattice_constant=a, hole=tri, length=28, mirror_periods=5))
|
||||
add('tri_bend0', lambda: devices.bend(lattice_constant=a, hole=tri, mirror_periods=5))
|
||||
add('tri_ysplit', lambda: devices.y_splitter(lattice_constant=a, hole=tri, mirror_periods=5))
|
||||
add('tri_l3cav', lambda: devices.perturbed_l3(lattice_constant=a, hole=tri, xy_size=(4, 10)))
|
||||
|
||||
|
||||
#
|
||||
# Build a mixed waveguide with an L3 cavity in the middle
|
||||
#
|
||||
|
||||
# Immediately start building from an instance of the L3 cavity
|
||||
circ2 = Builder(library=lib, ports='tri_l3cav')
|
||||
circ2 = device_lib['tri_l3cav'].build('mixed_wg_cav')
|
||||
|
||||
# First way to get abstracts is `lib.abstract(name)`
|
||||
# We can use this syntax directly with `Pattern.plug()` and `Pattern.place()` as well as through `Builder`.
|
||||
circ2.plug(lib.abstract('wg10'), {'input': 'right'})
|
||||
|
||||
# Second way to get abstracts is to use an AbstractView
|
||||
# This also works directly with `Pattern.plug()` / `Pattern.place()`.
|
||||
abstracts = lib.abstract_view()
|
||||
circ2.plug(abstracts['wg10'], {'output': 'left'})
|
||||
|
||||
# Third way to specify an abstract works by automatically getting
|
||||
# it from the library already within the Builder object.
|
||||
# This wouldn't work if we only had a `Pattern` (not a `Builder`).
|
||||
# Just pass the pattern name!
|
||||
circ2.plug('tri_wg10', {'input': 'right'})
|
||||
circ2.plug('tri_wg10', {'output': 'left'})
|
||||
print(device_lib['wg10'].ports)
|
||||
circ2.plug(device_lib['wg10'], {'input': 'right'})
|
||||
circ2.plug(device_lib['wg10'], {'output': 'left'})
|
||||
circ2.plug(device_lib['tri_wg10'], {'input': 'right'})
|
||||
circ2.plug(device_lib['tri_wg10'], {'output': 'left'})
|
||||
|
||||
# Add the circuit to the device library.
|
||||
lib['mixed_wg_cav'] = circ2.pattern
|
||||
# It has already been generated, so we can use `set_const` as a shorthand for
|
||||
# `device_lib['mixed_wg_cav'] = lambda: circ2`
|
||||
device_lib.set_const(circ2)
|
||||
|
||||
|
||||
#
|
||||
@ -85,26 +83,29 @@ def main() -> None:
|
||||
#
|
||||
|
||||
# We'll be designing against an existing device's interface...
|
||||
circ3 = Builder.interface(source=circ2)
|
||||
|
||||
circ3 = circ2.as_interface('loop_segment')
|
||||
# ... that lets us continue from where we left off.
|
||||
circ3.plug('tri_bend0', {'input': 'right'})
|
||||
circ3.plug('tri_bend0', {'input': 'left'}, mirrored=True) # mirror since no tri y-symmetry
|
||||
circ3.plug('tri_bend0', {'input': 'right'})
|
||||
circ3.plug('bend0', {'output': 'left'})
|
||||
circ3.plug('bend0', {'output': 'left'})
|
||||
circ3.plug('bend0', {'output': 'left'})
|
||||
circ3.plug('tri_wg10', {'input': 'right'})
|
||||
circ3.plug('tri_wg28', {'input': 'right'})
|
||||
circ3.plug('tri_wg10', {'input': 'right', 'output': 'left'})
|
||||
circ3.plug(device_lib['tri_bend0'], {'input': 'right'})
|
||||
circ3.plug(device_lib['tri_bend0'], {'input': 'left'}, mirrored=(True, False)) # mirror since no tri y-symmetry
|
||||
circ3.plug(device_lib['tri_bend0'], {'input': 'right'})
|
||||
circ3.plug(device_lib['bend0'], {'output': 'left'})
|
||||
circ3.plug(device_lib['bend0'], {'output': 'left'})
|
||||
circ3.plug(device_lib['bend0'], {'output': 'left'})
|
||||
circ3.plug(device_lib['tri_wg10'], {'input': 'right'})
|
||||
circ3.plug(device_lib['tri_wg28'], {'input': 'right'})
|
||||
circ3.plug(device_lib['tri_wg10'], {'input': 'right', 'output': 'left'})
|
||||
|
||||
lib['loop_segment'] = circ3.pattern
|
||||
device_lib.set_const(circ3)
|
||||
|
||||
#
|
||||
# Write all devices into a GDS file
|
||||
#
|
||||
print('Writing library to file...')
|
||||
writefile(lib, 'library.gds', **GDS_OPTS)
|
||||
|
||||
# This line could be slow, since it generates or loads many of the devices
|
||||
# since they were not all accessed above.
|
||||
all_device_pats = [dev.pattern for dev in device_lib.values()]
|
||||
|
||||
writefile(all_device_pats, 'library.gds', **GDS_OPTS)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
@ -115,21 +116,22 @@ if __name__ == '__main__':
|
||||
#class prout:
|
||||
# def place(
|
||||
# self,
|
||||
# other: Pattern,
|
||||
# other: Device,
|
||||
# label_layer: layer_t = 'WATLAYER',
|
||||
# *,
|
||||
# port_map: Dict[str, str | None] | None = None,
|
||||
# port_map: Optional[Dict[str, Optional[str]]] = None,
|
||||
# **kwargs,
|
||||
# ) -> 'prout':
|
||||
#
|
||||
# Pattern.place(self, other, port_map=port_map, **kwargs)
|
||||
# name: str | None
|
||||
# Device.place(self, other, port_map=port_map, **kwargs)
|
||||
# name: Optional[str]
|
||||
# for name in other.ports:
|
||||
# if port_map:
|
||||
# assert(name is not None)
|
||||
# name = port_map.get(name, name)
|
||||
# if name is None:
|
||||
# continue
|
||||
# self.pattern.label(string=name, offset=self.ports[name].offset, layer=label_layer)
|
||||
# self.pattern.labels += [
|
||||
# Label(string=name, offset=self.ports[name].offset, layer=layer)]
|
||||
# return self
|
||||
#
|
||||
|
@ -1,277 +0,0 @@
|
||||
"""
|
||||
Manual wire routing tutorial: Pather and BasicTool
|
||||
"""
|
||||
from collections.abc import Callable
|
||||
from numpy import pi
|
||||
from masque import Pather, RenderPather, Library, Pattern, Port, layer_t, map_layers
|
||||
from masque.builder.tools import BasicTool, PathTool
|
||||
from masque.file.gdsii import writefile
|
||||
|
||||
from basic_shapes import GDS_OPTS
|
||||
|
||||
#
|
||||
# Define some basic wire widths, in nanometers
|
||||
# M2 is the top metal; M1 is below it and connected with vias on V1
|
||||
#
|
||||
M1_WIDTH = 1000
|
||||
V1_WIDTH = 500
|
||||
M2_WIDTH = 4000
|
||||
|
||||
#
|
||||
# First, we can define some functions for generating our wire geometry
|
||||
#
|
||||
|
||||
def make_pad() -> Pattern:
|
||||
"""
|
||||
Create a pattern with a single rectangle of M2, with a single port on the bottom
|
||||
|
||||
Every pad will be an instance of the same pattern, so we will only call this function once.
|
||||
"""
|
||||
pat = Pattern()
|
||||
pat.rect(layer='M2', xctr=0, yctr=0, lx=3 * M2_WIDTH, ly=4 * M2_WIDTH)
|
||||
pat.ports['wire_port'] = Port((0, -2 * M2_WIDTH), rotation=pi / 2, ptype='m2wire')
|
||||
return pat
|
||||
|
||||
|
||||
def make_via(
|
||||
layer_top: layer_t,
|
||||
layer_via: layer_t,
|
||||
layer_bot: layer_t,
|
||||
width_top: float,
|
||||
width_via: float,
|
||||
width_bot: float,
|
||||
ptype_top: str,
|
||||
ptype_bot: str,
|
||||
) -> Pattern:
|
||||
"""
|
||||
Generate three concentric squares, on the provided layers
|
||||
(`layer_top`, `layer_via`, `layer_bot`) and with the provided widths
|
||||
(`width_top`, `width_via`, `width_bot`).
|
||||
|
||||
Two ports are added, with the provided ptypes (`ptype_top`, `ptype_bot`).
|
||||
They are placed at the left edge of the top layer and right edge of the
|
||||
bottom layer, respectively.
|
||||
|
||||
We only have one via type, so we will only call this function once.
|
||||
"""
|
||||
pat = Pattern()
|
||||
pat.rect(layer=layer_via, xctr=0, yctr=0, lx=width_via, ly=width_via)
|
||||
pat.rect(layer=layer_bot, xctr=0, yctr=0, lx=width_bot, ly=width_bot)
|
||||
pat.rect(layer=layer_top, xctr=0, yctr=0, lx=width_top, ly=width_top)
|
||||
pat.ports = {
|
||||
'top': Port(offset=(-width_top / 2, 0), rotation=0, ptype=ptype_top),
|
||||
'bottom': Port(offset=(width_bot / 2, 0), rotation=pi, ptype=ptype_bot),
|
||||
}
|
||||
return pat
|
||||
|
||||
|
||||
def make_bend(layer: layer_t, width: float, ptype: str) -> Pattern:
|
||||
"""
|
||||
Generate a triangular wire, with ports at the left (input) and bottom (output) edges.
|
||||
This is effectively a clockwise wire bend.
|
||||
|
||||
Every bend will be the same, so we only need to call this twice (once each for M1 and M2).
|
||||
We could call it additional times for different wire widths or bend types (e.g. squares).
|
||||
"""
|
||||
pat = Pattern()
|
||||
pat.polygon(layer=layer, vertices=[(0, -width / 2), (0, width / 2), (width, -width / 2)])
|
||||
pat.ports = {
|
||||
'input': Port(offset=(0, 0), rotation=0, ptype=ptype),
|
||||
'output': Port(offset=(width / 2, -width / 2), rotation=pi / 2, ptype=ptype),
|
||||
}
|
||||
return pat
|
||||
|
||||
|
||||
def make_straight_wire(layer: layer_t, width: float, ptype: str, length: float) -> Pattern:
|
||||
"""
|
||||
Generate a straight wire with ports along either end (x=0 and x=length).
|
||||
|
||||
Every waveguide will be single-use, so we'll need to create lots of (mostly unique)
|
||||
`Pattern`s, and this function will get called very often.
|
||||
"""
|
||||
pat = Pattern()
|
||||
pat.rect(layer=layer, xmin=0, xmax=length, yctr=0, ly=width)
|
||||
pat.ports = {
|
||||
'input': Port(offset=(0, 0), rotation=0, ptype=ptype),
|
||||
'output': Port(offset=(length, 0), rotation=pi, ptype=ptype),
|
||||
}
|
||||
return pat
|
||||
|
||||
|
||||
def map_layer(layer: layer_t) -> layer_t:
|
||||
"""
|
||||
Map from a strings to GDS layer numbers
|
||||
"""
|
||||
layer_mapping = {
|
||||
'M1': (10, 0),
|
||||
'M2': (20, 0),
|
||||
'V1': (30, 0),
|
||||
}
|
||||
return layer_mapping.get(layer, layer)
|
||||
|
||||
|
||||
#
|
||||
# Now we can start building up our library (collection of static cells) and pathing tools.
|
||||
#
|
||||
# If any of the operations below are confusing, you can cross-reference against the `RenderPather`
|
||||
# tutorial, which handles some things more explicitly (e.g. via placement) and simplifies others
|
||||
# (e.g. geometry definition).
|
||||
#
|
||||
def main() -> None:
|
||||
# Build some patterns (static cells) using the above functions and store them in a library
|
||||
library = Library()
|
||||
library['pad'] = make_pad()
|
||||
library['m1_bend'] = make_bend(layer='M1', ptype='m1wire', width=M1_WIDTH)
|
||||
library['m2_bend'] = make_bend(layer='M2', ptype='m2wire', width=M2_WIDTH)
|
||||
library['v1_via'] = make_via(
|
||||
layer_top='M2',
|
||||
layer_via='V1',
|
||||
layer_bot='M1',
|
||||
width_top=M2_WIDTH,
|
||||
width_via=V1_WIDTH,
|
||||
width_bot=M1_WIDTH,
|
||||
ptype_bot='m1wire',
|
||||
ptype_top='m2wire',
|
||||
)
|
||||
|
||||
#
|
||||
# Now, define two tools.
|
||||
# M1_tool will route on M1, using wires with M1_WIDTH
|
||||
# M2_tool will route on M2, using wires with M2_WIDTH
|
||||
# Both tools are able to automatically transition from the other wire type (with a via)
|
||||
#
|
||||
# Note that while we use BasicTool for this tutorial, you can define your own `Tool`
|
||||
# with arbitrary logic inside -- e.g. with single-use bends, complex transition rules,
|
||||
# transmission line geometry, or other features.
|
||||
#
|
||||
M1_tool = BasicTool(
|
||||
straight = (
|
||||
# First, we need a function which takes in a length and spits out an M1 wire
|
||||
lambda length: make_straight_wire(layer='M1', ptype='m1wire', width=M1_WIDTH, length=length),
|
||||
'input', # When we get a pattern from make_straight_wire, use the port named 'input' as the input
|
||||
'output', # and use the port named 'output' as the output
|
||||
),
|
||||
bend = (
|
||||
library.abstract('m1_bend'), # When we need a bend, we'll reference the pattern we generated earlier
|
||||
'input', # To orient it clockwise, use the port named 'input' as the input
|
||||
'output', # and 'output' as the output
|
||||
),
|
||||
transitions = { # We can automate transitions for different (normally incompatible) port types
|
||||
'm2wire': ( # For example, when we're attaching to a port with type 'm2wire'
|
||||
library.abstract('v1_via'), # we can place a V1 via
|
||||
'top', # using the port named 'top' as the input (i.e. the M2 side of the via)
|
||||
'bottom', # and using the port named 'bottom' as the output
|
||||
),
|
||||
},
|
||||
default_out_ptype = 'm1wire', # Unless otherwise requested, we'll default to trying to stay on M1
|
||||
)
|
||||
|
||||
M2_tool = BasicTool(
|
||||
straight = (
|
||||
# Again, we use make_straight_wire, but this time we set parameters for M2
|
||||
lambda length: make_straight_wire(layer='M2', ptype='m2wire', width=M2_WIDTH, length=length),
|
||||
'input',
|
||||
'output',
|
||||
),
|
||||
bend = (
|
||||
library.abstract('m2_bend'), # and we use an M2 bend
|
||||
'input',
|
||||
'output',
|
||||
),
|
||||
transitions = {
|
||||
'm1wire': (
|
||||
library.abstract('v1_via'), # We still use the same via,
|
||||
'bottom', # but the input port is now 'bottom'
|
||||
'top', # and the output port is now 'top'
|
||||
),
|
||||
},
|
||||
default_out_ptype = 'm2wire', # We default to trying to stay on M2
|
||||
)
|
||||
|
||||
#
|
||||
# Create a new pather which writes to `library` and uses `M2_tool` as its default tool.
|
||||
# Then, place some pads and start routing wires!
|
||||
#
|
||||
pather = Pather(library, tools=M2_tool)
|
||||
|
||||
# Place two pads, and define their ports as 'VCC' and 'GND'
|
||||
pather.place('pad', offset=(18_000, 30_000), port_map={'wire_port': 'VCC'})
|
||||
pather.place('pad', offset=(18_000, 60_000), port_map={'wire_port': 'GND'})
|
||||
# Add some labels to make the pads easier to distinguish
|
||||
pather.pattern.label(layer='M2', string='VCC', offset=(18e3, 30e3))
|
||||
pather.pattern.label(layer='M2', string='GND', offset=(18e3, 60e3))
|
||||
|
||||
# Path VCC forward (in this case south) and turn clockwise 90 degrees (ccw=False)
|
||||
# The total distance forward (including the bend's forward component) must be 6um
|
||||
pather.path('VCC', ccw=False, length=6_000)
|
||||
|
||||
# Now path VCC to x=0. This time, don't include any bend (ccw=None).
|
||||
# Note that if we tried y=0 here, we would get an error since the VCC port is facing in the x-direction.
|
||||
pather.path_to('VCC', ccw=None, x=0)
|
||||
|
||||
# Path GND forward by 5um, turning clockwise 90 degrees.
|
||||
# This time we use shorthand (bool(0) == False) and omit the parameter labels
|
||||
# Note that although ccw=0 is equivalent to ccw=False, ccw=None is not!
|
||||
pather.path('GND', 0, 5_000)
|
||||
|
||||
# This time, path GND until it matches the current x-coordinate of VCC. Don't place a bend.
|
||||
pather.path_to('GND', None, x=pather['VCC'].offset[0])
|
||||
|
||||
# Now, start using M1_tool for GND.
|
||||
# Since we have defined an M2-to-M1 transition for BasicPather, we don't need to place one ourselves.
|
||||
# If we wanted to place our via manually, we could add `pather.plug('m1_via', {'GND': 'top'})` here
|
||||
# and achieve the same result without having to define any transitions in M1_tool.
|
||||
# Note that even though we have changed the tool used for GND, the via doesn't get placed until
|
||||
# the next time we draw a path on GND (the pather.mpath() statement below).
|
||||
pather.retool(M1_tool, keys=['GND'])
|
||||
|
||||
# Bundle together GND and VCC, and path the bundle forward and counterclockwise.
|
||||
# Pick the distance so that the leading/outermost wire (in this case GND) ends up at x=-10_000.
|
||||
# Other wires in the bundle (in this case VCC) should be spaced at 5_000 pitch (so VCC ends up at x=-5_000)
|
||||
#
|
||||
# Since we recently retooled GND, its path starts with a via down to M1 (included in the distance
|
||||
# calculation), and its straight segment and bend will be drawn using M1 while VCC's are drawn with M2.
|
||||
pather.mpath(['GND', 'VCC'], ccw=True, xmax=-10_000, spacing=5_000)
|
||||
|
||||
# Now use M1_tool as the default tool for all ports/signals.
|
||||
# Since VCC does not have an explicitly assigned tool, it will now transition down to M1.
|
||||
pather.retool(M1_tool)
|
||||
|
||||
# Path the GND + VCC bundle forward and counterclockwise by 90 degrees.
|
||||
# The total extension (travel distance along the forward direction) for the longest segment (in
|
||||
# this case the segment being added to GND) should be exactly 50um.
|
||||
# After turning, the wire pitch should be reduced only 1.2um.
|
||||
pather.mpath(['GND', 'VCC'], ccw=True, emax=50_000, spacing=1_200)
|
||||
|
||||
# Make a U-turn with the bundle and expand back out to 4.5um wire pitch.
|
||||
# Here, emin specifies the travel distance for the shortest segment. For the first mpath() call
|
||||
# that applies to VCC, and for teh second call, that applies to GND; the relative lengths of the
|
||||
# segments depend on their starting positions and their ordering within the bundle.
|
||||
pather.mpath(['GND', 'VCC'], ccw=False, emin=1_000, spacing=1_200)
|
||||
pather.mpath(['GND', 'VCC'], ccw=False, emin=2_000, spacing=4_500)
|
||||
|
||||
# Now, set the default tool back to M2_tool. Note that GND remains on M1 since it has been
|
||||
# explicitly assigned a tool. We could `del pather.tools['GND']` to force it to use the default.
|
||||
pather.retool(M2_tool)
|
||||
|
||||
# Now path both ports to x=-28_000.
|
||||
# When ccw is not None, xmin constrains the trailing/innermost port to stop at the target x coordinate,
|
||||
# However, with ccw=None, all ports stop at the same coordinate, and so specifying xmin= or xmax= is
|
||||
# equivalent.
|
||||
pather.mpath(['GND', 'VCC'], None, xmin=-28_000)
|
||||
|
||||
# Further extend VCC out to x=-50_000, and specify that we would like to get an output on M1.
|
||||
# This results in a via at the end of the wire (instead of having one at the start like we got
|
||||
# when using pather.retool().
|
||||
pather.path_to('VCC', None, -50_000, out_ptype='m1wire')
|
||||
|
||||
# Save the pather's pattern into our library
|
||||
library['Pather_and_BasicTool'] = pather.pattern
|
||||
|
||||
# Convert from text-based layers to numeric layers for GDS, and output the file
|
||||
library.map_layers(map_layer)
|
||||
writefile(library, 'pather.gds', **GDS_OPTS)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@ -2,7 +2,7 @@
|
||||
Routines for creating normalized 2D lattices and common photonic crystal
|
||||
cavity designs.
|
||||
"""
|
||||
from collection.abc import Sequence
|
||||
from typing import Sequence, Tuple
|
||||
|
||||
import numpy
|
||||
from numpy.typing import ArrayLike, NDArray
|
||||
@ -29,11 +29,8 @@ def triangular_lattice(
|
||||
Returns:
|
||||
`[[x0, y0], [x1, 1], ...]` denoting lattice sites.
|
||||
"""
|
||||
sx, sy = numpy.meshgrid(
|
||||
numpy.arange(dims[0], dtype=float),
|
||||
numpy.arange(dims[1], dtype=float),
|
||||
indexing='ij',
|
||||
)
|
||||
sx, sy = numpy.meshgrid(numpy.arange(dims[0], dtype=float),
|
||||
numpy.arange(dims[1], dtype=float), indexing='ij')
|
||||
|
||||
sx[sy % 2 == 1] += 0.5
|
||||
sy *= numpy.sqrt(3) / 2
|
||||
@ -233,8 +230,8 @@ def ln_shift_defect(
|
||||
|
||||
# Shift holes
|
||||
# Expand shifts as necessary
|
||||
tmp_a = numpy.asarray(shifts_a)
|
||||
tmp_r = numpy.asarray(shifts_r)
|
||||
tmp_a = numpy.array(shifts_a)
|
||||
tmp_r = numpy.array(shifts_r)
|
||||
n_shifted = max(tmp_a.size, tmp_r.size)
|
||||
|
||||
shifts_a = numpy.ones(n_shifted)
|
||||
|
@ -1,96 +0,0 @@
|
||||
"""
|
||||
Manual wire routing tutorial: RenderPather an PathTool
|
||||
"""
|
||||
from collections.abc import Callable
|
||||
from masque import RenderPather, Library, Pattern, Port, layer_t, map_layers
|
||||
from masque.builder.tools import PathTool
|
||||
from masque.file.gdsii import writefile
|
||||
|
||||
from basic_shapes import GDS_OPTS
|
||||
from pather import M1_WIDTH, V1_WIDTH, M2_WIDTH, map_layer, make_pad, make_via
|
||||
|
||||
|
||||
def main() -> None:
|
||||
#
|
||||
# To illustrate the advantages of using `RenderPather`, we use `PathTool` instead
|
||||
# of `BasicTool`. `PathTool` lacks some sophistication (e.g. no automatic transitions)
|
||||
# but when used with `RenderPather`, it can consolidate multiple routing steps into
|
||||
# a single `Path` shape.
|
||||
#
|
||||
# We'll try to nearly replicate the layout from the `Pather` tutorial; see `pather.py`
|
||||
# for more detailed descriptions of the individual pathing steps.
|
||||
#
|
||||
|
||||
# First, we make a library and generate some of the same patterns as in the pather tutorial
|
||||
library = Library()
|
||||
library['pad'] = make_pad()
|
||||
library['v1_via'] = make_via(
|
||||
layer_top='M2',
|
||||
layer_via='V1',
|
||||
layer_bot='M1',
|
||||
width_top=M2_WIDTH,
|
||||
width_via=V1_WIDTH,
|
||||
width_bot=M1_WIDTH,
|
||||
ptype_bot='m1wire',
|
||||
ptype_top='m2wire',
|
||||
)
|
||||
|
||||
# `PathTool` is more limited than `BasicTool`. It only generates one type of shape
|
||||
# (`Path`), so it only needs to know what layer to draw on, what width to draw with,
|
||||
# and what port type to present.
|
||||
M1_ptool = PathTool(layer='M1', width=M1_WIDTH, ptype='m1wire')
|
||||
M2_ptool = PathTool(layer='M2', width=M2_WIDTH, ptype='m2wire')
|
||||
rpather = RenderPather(tools=M2_ptool, library=library)
|
||||
|
||||
# As in the pather tutorial, we make soem pads and labels...
|
||||
rpather.place('pad', offset=(18_000, 30_000), port_map={'wire_port': 'VCC'})
|
||||
rpather.place('pad', offset=(18_000, 60_000), port_map={'wire_port': 'GND'})
|
||||
rpather.pattern.label(layer='M2', string='VCC', offset=(18e3, 30e3))
|
||||
rpather.pattern.label(layer='M2', string='GND', offset=(18e3, 60e3))
|
||||
|
||||
# ...and start routing the signals.
|
||||
rpather.path('VCC', ccw=False, length=6_000)
|
||||
rpather.path_to('VCC', ccw=None, x=0)
|
||||
rpather.path('GND', 0, 5_000)
|
||||
rpather.path_to('GND', None, x=rpather['VCC'].offset[0])
|
||||
|
||||
# `PathTool` doesn't know how to transition betwen metal layers, so we have to
|
||||
# `plug` the via into the GND wire ourselves.
|
||||
rpather.plug('v1_via', {'GND': 'top'})
|
||||
rpather.retool(M1_ptool, keys=['GND'])
|
||||
rpather.mpath(['GND', 'VCC'], ccw=True, xmax=-10_000, spacing=5_000)
|
||||
|
||||
# Same thing on the VCC wire when it goes down to M1.
|
||||
rpather.plug('v1_via', {'VCC': 'top'})
|
||||
rpather.retool(M1_ptool)
|
||||
rpather.mpath(['GND', 'VCC'], ccw=True, emax=50_000, spacing=1_200)
|
||||
rpather.mpath(['GND', 'VCC'], ccw=False, emin=1_000, spacing=1_200)
|
||||
rpather.mpath(['GND', 'VCC'], ccw=False, emin=2_000, spacing=4_500)
|
||||
|
||||
# And again when VCC goes back up to M2.
|
||||
rpather.plug('v1_via', {'VCC': 'bottom'})
|
||||
rpather.retool(M2_ptool)
|
||||
rpather.mpath(['GND', 'VCC'], None, xmin=-28_000)
|
||||
|
||||
# Finally, since PathTool has no conception of transitions, we can't
|
||||
# just ask it to transition to an 'm1wire' port at the end of the final VCC segment.
|
||||
# Instead, we have to calculate the via size ourselves, and adjust the final position
|
||||
# to account for it.
|
||||
via_size = abs(
|
||||
library['v1_via'].ports['top'].offset[0]
|
||||
- library['v1_via'].ports['bottom'].offset[0]
|
||||
)
|
||||
rpather.path_to('VCC', None, -50_000 + via_size)
|
||||
rpather.plug('v1_via', {'VCC': 'top'})
|
||||
|
||||
rpather.render()
|
||||
library['RenderPather_and_PathTool'] = rpather.pattern
|
||||
|
||||
|
||||
# Convert from text-based layers to numeric layers for GDS, and output the file
|
||||
library.map_layers(map_layer)
|
||||
writefile(library, 'render_pather.gds', **GDS_OPTS)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@ -1,16 +1,16 @@
|
||||
"""
|
||||
masque 2D CAD library
|
||||
|
||||
masque is an attempt to make a relatively compact library for designing lithography
|
||||
masque is an attempt to make a relatively small library for designing lithography
|
||||
masks. The general idea is to implement something resembling the GDSII and OASIS file-formats,
|
||||
but with some additional vectorized element types (eg. ellipses, not just polygons), and the
|
||||
ability to interface with multiple file formats.
|
||||
but with some additional vectorized element types (eg. ellipses, not just polygons), better
|
||||
support for E-beam doses, and the ability to interface with multiple file formats.
|
||||
|
||||
`Pattern` is a basic object containing a 2D lithography mask, composed of a list of `Shape`
|
||||
objects, a list of `Label` objects, and a list of references to other `Patterns` (using
|
||||
`Ref`).
|
||||
`SubPattern`).
|
||||
|
||||
`Ref` provides basic support for nesting `Pattern` objects within each other, by adding
|
||||
`SubPattern` provides basic support for nesting `Pattern` objects within each other, by adding
|
||||
offset, rotation, scaling, repetition, and other such properties to a Pattern reference.
|
||||
|
||||
Note that the methods for these classes try to avoid copying wherever possible, so unless
|
||||
@ -20,73 +20,24 @@
|
||||
NOTES ON INTERNALS
|
||||
==========================
|
||||
- Many of `masque`'s classes make use of `__slots__` to make them faster / smaller.
|
||||
Since `__slots__` doesn't play well with multiple inheritance, often they are left
|
||||
empty for superclasses and it is the subclass's responsibility to set them correctly.
|
||||
- File I/O submodules are not imported by `masque.file` to avoid creating hard dependencies
|
||||
on external file-format reader/writers
|
||||
- Try to accept the broadest-possible inputs: e.g., don't demand an `ILibraryView` if you
|
||||
can accept a `Mapping[str, Pattern]` and wrap it in a `LibraryView` internally.
|
||||
Since `__slots__` doesn't play well with multiple inheritance, the `masque.utils.AutoSlots`
|
||||
metaclass is used to auto-generate slots based on superclass type annotations.
|
||||
- File I/O submodules are imported by `masque.file` to avoid creating hard dependencies on
|
||||
external file-format reader/writers
|
||||
- Pattern locking/unlocking is quite slow for large hierarchies.
|
||||
|
||||
"""
|
||||
|
||||
from .utils import (
|
||||
layer_t as layer_t,
|
||||
annotations_t as annotations_t,
|
||||
SupportsBool as SupportsBool,
|
||||
)
|
||||
from .error import (
|
||||
MasqueError as MasqueError,
|
||||
PatternError as PatternError,
|
||||
LibraryError as LibraryError,
|
||||
BuildError as BuildError,
|
||||
)
|
||||
from .shapes import (
|
||||
Shape as Shape,
|
||||
Polygon as Polygon,
|
||||
Path as Path,
|
||||
Circle as Circle,
|
||||
Arc as Arc,
|
||||
Ellipse as Ellipse,
|
||||
)
|
||||
from .label import Label as Label
|
||||
from .ref import Ref as Ref
|
||||
from .pattern import (
|
||||
Pattern as Pattern,
|
||||
map_layers as map_layers,
|
||||
map_targets as map_targets,
|
||||
chain_elements as chain_elements,
|
||||
)
|
||||
|
||||
from .library import (
|
||||
ILibraryView as ILibraryView,
|
||||
ILibrary as ILibrary,
|
||||
LibraryView as LibraryView,
|
||||
Library as Library,
|
||||
LazyLibrary as LazyLibrary,
|
||||
AbstractView as AbstractView,
|
||||
TreeView as TreeView,
|
||||
Tree as Tree,
|
||||
)
|
||||
from .ports import (
|
||||
Port as Port,
|
||||
PortList as PortList,
|
||||
)
|
||||
from .abstract import Abstract as Abstract
|
||||
from .builder import (
|
||||
Builder as Builder,
|
||||
Tool as Tool,
|
||||
Pather as Pather,
|
||||
RenderPather as RenderPather,
|
||||
RenderStep as RenderStep,
|
||||
BasicTool as BasicTool,
|
||||
PathTool as PathTool,
|
||||
)
|
||||
from .utils import (
|
||||
ports2data as ports2data,
|
||||
oneshot as oneshot,
|
||||
)
|
||||
from .error import PatternError, PatternLockedError
|
||||
from .shapes import Shape
|
||||
from .label import Label
|
||||
from .subpattern import SubPattern
|
||||
from .pattern import Pattern
|
||||
from .utils import layer_t, annotations_t
|
||||
from .library import Library, DeviceLibrary
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
__version__ = '3.2'
|
||||
__version__ = '2.7'
|
||||
version = __version__ # legacy
|
||||
|
@ -1,217 +0,0 @@
|
||||
from typing import Self
|
||||
import copy
|
||||
import logging
|
||||
|
||||
import numpy
|
||||
from numpy.typing import ArrayLike
|
||||
|
||||
from .ref import Ref
|
||||
from .ports import PortList, Port
|
||||
from .utils import rotation_matrix_2d
|
||||
|
||||
#if TYPE_CHECKING:
|
||||
# from .builder import Builder, Tool
|
||||
# from .library import ILibrary
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class Abstract(PortList):
|
||||
"""
|
||||
An `Abstract` is a container for a name and associated ports.
|
||||
|
||||
When snapping a sub-component to an existing pattern, only the name (not contained
|
||||
in a `Pattern` object) and port info is needed, and not the geometry itself.
|
||||
"""
|
||||
__slots__ = ('name', '_ports')
|
||||
|
||||
name: str
|
||||
""" Name of the pattern this device references """
|
||||
|
||||
_ports: dict[str, Port]
|
||||
""" Uniquely-named ports which can be used to instances together"""
|
||||
|
||||
@property
|
||||
def ports(self) -> dict[str, Port]:
|
||||
return self._ports
|
||||
|
||||
@ports.setter
|
||||
def ports(self, value: dict[str, Port]) -> None:
|
||||
self._ports = value
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
name: str,
|
||||
ports: dict[str, Port],
|
||||
) -> None:
|
||||
self.name = name
|
||||
self.ports = copy.deepcopy(ports)
|
||||
|
||||
# TODO do we want to store a Ref instead of just a name? then we can translate/rotate/mirror...
|
||||
|
||||
def __repr__(self) -> str:
|
||||
s = f'<Abstract {self.name} ['
|
||||
for name, port in self.ports.items():
|
||||
s += f'\n\t{name}: {port}'
|
||||
s += ']>'
|
||||
return s
|
||||
|
||||
def translate_ports(self, offset: ArrayLike) -> Self:
|
||||
"""
|
||||
Translates all ports by the given offset.
|
||||
|
||||
Args:
|
||||
offset: (x, y) to translate by
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
for port in self.ports.values():
|
||||
port.translate(offset)
|
||||
return self
|
||||
|
||||
def scale_by(self, c: float) -> Self:
|
||||
"""
|
||||
Scale this Abstract by the given value
|
||||
(all port offsets are scaled)
|
||||
|
||||
Args:
|
||||
c: factor to scale by
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
for port in self.ports.values():
|
||||
port.offset *= c
|
||||
return self
|
||||
|
||||
def rotate_around(self, pivot: ArrayLike, rotation: float) -> Self:
|
||||
"""
|
||||
Rotate the Abstract around the a location.
|
||||
|
||||
Args:
|
||||
pivot: (x, y) location to rotate around
|
||||
rotation: Angle to rotate by (counter-clockwise, radians)
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
pivot = numpy.asarray(pivot, dtype=float)
|
||||
self.translate_ports(-pivot)
|
||||
self.rotate_ports(rotation)
|
||||
self.rotate_port_offsets(rotation)
|
||||
self.translate_ports(+pivot)
|
||||
return self
|
||||
|
||||
def rotate_port_offsets(self, rotation: float) -> Self:
|
||||
"""
|
||||
Rotate the offsets of all ports around (0, 0)
|
||||
|
||||
Args:
|
||||
rotation: Angle to rotate by (counter-clockwise, radians)
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
for port in self.ports.values():
|
||||
port.offset = rotation_matrix_2d(rotation) @ port.offset
|
||||
return self
|
||||
|
||||
def rotate_ports(self, rotation: float) -> Self:
|
||||
"""
|
||||
Rotate each port around its offset (i.e. in place)
|
||||
|
||||
Args:
|
||||
rotation: Angle to rotate by (counter-clockwise, radians)
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
for port in self.ports.values():
|
||||
port.rotate(rotation)
|
||||
return self
|
||||
|
||||
def mirror_port_offsets(self, across_axis: int = 0) -> Self:
|
||||
"""
|
||||
Mirror the offsets of all shapes, labels, and refs across an axis
|
||||
|
||||
Args:
|
||||
across_axis: Axis to mirror across
|
||||
(0: mirror across x axis, 1: mirror across y axis)
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
for port in self.ports.values():
|
||||
port.offset[across_axis - 1] *= -1
|
||||
return self
|
||||
|
||||
def mirror_ports(self, across_axis: int = 0) -> Self:
|
||||
"""
|
||||
Mirror each port's rotation across an axis, relative to its
|
||||
offset
|
||||
|
||||
Args:
|
||||
across_axis: Axis to mirror across
|
||||
(0: mirror across x axis, 1: mirror across y axis)
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
for port in self.ports.values():
|
||||
port.mirror(across_axis)
|
||||
return self
|
||||
|
||||
def mirror(self, across_axis: int = 0) -> Self:
|
||||
"""
|
||||
Mirror the Pattern across an axis
|
||||
|
||||
Args:
|
||||
axis: Axis to mirror across
|
||||
(0: mirror across x axis, 1: mirror across y axis)
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.mirror_ports(across_axis)
|
||||
self.mirror_port_offsets(across_axis)
|
||||
return self
|
||||
|
||||
def apply_ref_transform(self, ref: Ref) -> Self:
|
||||
"""
|
||||
Apply the transform from a `Ref` to the ports of this `Abstract`.
|
||||
This changes the port locations to where they would be in the Ref's parent pattern.
|
||||
|
||||
Args:
|
||||
ref: The ref whose transform should be applied.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
if ref.mirrored:
|
||||
self.mirror()
|
||||
self.rotate_ports(ref.rotation)
|
||||
self.rotate_port_offsets(ref.rotation)
|
||||
self.translate_ports(ref.offset)
|
||||
return self
|
||||
|
||||
def undo_ref_transform(self, ref: Ref) -> Self:
|
||||
"""
|
||||
Apply the inverse transform from a `Ref` to the ports of this `Abstract`.
|
||||
This changes the port locations to where they would be in the Ref's target (from the parent).
|
||||
|
||||
Args:
|
||||
ref: The ref whose (inverse) transform should be applied.
|
||||
|
||||
Returns:
|
||||
self
|
||||
|
||||
# TODO test undo_ref_transform
|
||||
"""
|
||||
self.translate_ports(-ref.offset)
|
||||
self.rotate_port_offsets(-ref.rotation)
|
||||
self.rotate_ports(-ref.rotation)
|
||||
if ref.mirrored:
|
||||
self.mirror(0)
|
||||
return self
|
@ -1,10 +1,3 @@
|
||||
from .builder import Builder as Builder
|
||||
from .pather import Pather as Pather
|
||||
from .renderpather import RenderPather as RenderPather
|
||||
from .utils import ell as ell
|
||||
from .tools import (
|
||||
Tool as Tool,
|
||||
RenderStep as RenderStep,
|
||||
BasicTool as BasicTool,
|
||||
PathTool as PathTool,
|
||||
)
|
||||
from .devices import Port, Device
|
||||
from .utils import ell
|
||||
from .tools import Tool
|
||||
|
@ -1,436 +0,0 @@
|
||||
"""
|
||||
Simplified Pattern assembly (`Builder`)
|
||||
"""
|
||||
from typing import Self
|
||||
from collections.abc import Sequence, Mapping
|
||||
import copy
|
||||
import logging
|
||||
from functools import wraps
|
||||
|
||||
from numpy.typing import ArrayLike
|
||||
|
||||
from ..pattern import Pattern
|
||||
from ..library import ILibrary, TreeView
|
||||
from ..error import BuildError
|
||||
from ..ports import PortList, Port
|
||||
from ..abstract import Abstract
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class Builder(PortList):
|
||||
"""
|
||||
A `Builder` is a helper object used for snapping together multiple
|
||||
lower-level patterns at their `Port`s.
|
||||
|
||||
The `Builder` mostly just holds context, in the form of a `Library`,
|
||||
in addition to its underlying pattern. This simplifies some calls
|
||||
to `plug` and `place`, by making the library implicit.
|
||||
|
||||
`Builder` can also be `set_dead()`, at which point further calls to `plug()`
|
||||
and `place()` are ignored (intended for debugging).
|
||||
|
||||
|
||||
Examples: Creating a Builder
|
||||
===========================
|
||||
- `Builder(library, ports={'A': port_a, 'C': port_c}, name='mypat')` makes
|
||||
an empty pattern, adds the given ports, and places it into `library`
|
||||
under the name `'mypat'`.
|
||||
|
||||
- `Builder(library)` makes an empty pattern with no ports. The pattern
|
||||
is not added into `library` and must later be added with e.g.
|
||||
`library['mypat'] = builder.pattern`
|
||||
|
||||
- `Builder(library, pattern=pattern, name='mypat')` uses an existing
|
||||
pattern (including its ports) and sets `library['mypat'] = pattern`.
|
||||
|
||||
- `Builder.interface(other_pat, port_map=['A', 'B'], library=library)`
|
||||
makes a new (empty) pattern, copies over ports 'A' and 'B' from
|
||||
`other_pat`, and creates additional ports 'in_A' and 'in_B' facing
|
||||
in the opposite directions. This can be used to build a device which
|
||||
can plug into `other_pat` (using the 'in_*' ports) but which does not
|
||||
itself include `other_pat` as a subcomponent.
|
||||
|
||||
- `Builder.interface(other_builder, ...)` does the same thing as
|
||||
`Builder.interface(other_builder.pattern, ...)` but also uses
|
||||
`other_builder.library` as its library by default.
|
||||
|
||||
|
||||
Examples: Adding to a pattern
|
||||
=============================
|
||||
- `my_device.plug(subdevice, {'A': 'C', 'B': 'B'}, map_out={'D': 'myport'})`
|
||||
instantiates `subdevice` into `my_device`, plugging ports 'A' and 'B'
|
||||
of `my_device` into ports 'C' and 'B' of `subdevice`. The connected ports
|
||||
are removed and any unconnected ports from `subdevice` are added to
|
||||
`my_device`. Port 'D' of `subdevice` (unconnected) is renamed to 'myport'.
|
||||
|
||||
- `my_device.plug(wire, {'myport': 'A'})` places port 'A' of `wire` at 'myport'
|
||||
of `my_device`. If `wire` has only two ports (e.g. 'A' and 'B'), no `map_out`,
|
||||
argument is provided, and the `inherit_name` argument is not explicitly
|
||||
set to `False`, the unconnected port of `wire` is automatically renamed to
|
||||
'myport'. This allows easy extension of existing ports without changing
|
||||
their names or having to provide `map_out` each time `plug` is called.
|
||||
|
||||
- `my_device.place(pad, offset=(10, 10), rotation=pi / 2, port_map={'A': 'gnd'})`
|
||||
instantiates `pad` at the specified (x, y) offset and with the specified
|
||||
rotation, adding its ports to those of `my_device`. Port 'A' of `pad` is
|
||||
renamed to 'gnd' so that further routing can use this signal or net name
|
||||
rather than the port name on the original `pad` device.
|
||||
"""
|
||||
__slots__ = ('pattern', 'library', '_dead')
|
||||
|
||||
pattern: Pattern
|
||||
""" Layout of this device """
|
||||
|
||||
library: ILibrary
|
||||
"""
|
||||
Library from which patterns should be referenced
|
||||
"""
|
||||
|
||||
_dead: bool
|
||||
""" If True, plug()/place() are skipped (for debugging)"""
|
||||
|
||||
@property
|
||||
def ports(self) -> dict[str, Port]:
|
||||
return self.pattern.ports
|
||||
|
||||
@ports.setter
|
||||
def ports(self, value: dict[str, Port]) -> None:
|
||||
self.pattern.ports = value
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
library: ILibrary,
|
||||
*,
|
||||
pattern: Pattern | None = None,
|
||||
ports: str | Mapping[str, Port] | None = None,
|
||||
name: str | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
library: The library from which referenced patterns will be taken
|
||||
pattern: The pattern which will be modified by subsequent operations.
|
||||
If `None` (default), a new pattern is created.
|
||||
ports: Allows specifying the initial set of ports, if `pattern` does
|
||||
not already have any ports (or is not provided). May be a string,
|
||||
in which case it is interpreted as a name in `library`.
|
||||
Default `None` (no ports).
|
||||
name: If specified, `library[name]` is set to `self.pattern`.
|
||||
"""
|
||||
self._dead = False
|
||||
self.library = library
|
||||
if pattern is not None:
|
||||
self.pattern = pattern
|
||||
else:
|
||||
self.pattern = Pattern()
|
||||
|
||||
if ports is not None:
|
||||
if self.pattern.ports:
|
||||
raise BuildError('Ports supplied for pattern with pre-existing ports!')
|
||||
if isinstance(ports, str):
|
||||
ports = library.abstract(ports).ports
|
||||
|
||||
self.pattern.ports.update(copy.deepcopy(dict(ports)))
|
||||
|
||||
if name is not None:
|
||||
library[name] = self.pattern
|
||||
|
||||
@classmethod
|
||||
def interface(
|
||||
cls: type['Builder'],
|
||||
source: PortList | Mapping[str, Port] | str,
|
||||
*,
|
||||
library: ILibrary | None = None,
|
||||
in_prefix: str = 'in_',
|
||||
out_prefix: str = '',
|
||||
port_map: dict[str, str] | Sequence[str] | None = None,
|
||||
name: str | None = None,
|
||||
) -> 'Builder':
|
||||
"""
|
||||
Wrapper for `Pattern.interface()`, which returns a Builder instead.
|
||||
|
||||
Args:
|
||||
source: A collection of ports (e.g. Pattern, Builder, or dict)
|
||||
from which to create the interface. May be a pattern name if
|
||||
`library` is provided.
|
||||
library: Library from which existing patterns should be referenced,
|
||||
and to which the new one should be added (if named). If not provided,
|
||||
`source.library` must exist and will be used.
|
||||
in_prefix: Prepended to port names for newly-created ports with
|
||||
reversed directions compared to the current device.
|
||||
out_prefix: Prepended to port names for ports which are directly
|
||||
copied from the current device.
|
||||
port_map: Specification for ports to copy into the new device:
|
||||
- If `None`, all ports are copied.
|
||||
- If a sequence, only the listed ports are copied
|
||||
- If a mapping, the listed ports (keys) are copied and
|
||||
renamed (to the values).
|
||||
|
||||
Returns:
|
||||
The new builder, with an empty pattern and 2x as many ports as
|
||||
listed in port_map.
|
||||
|
||||
Raises:
|
||||
`PortError` if `port_map` contains port names not present in the
|
||||
current device.
|
||||
`PortError` if applying the prefixes results in duplicate port
|
||||
names.
|
||||
"""
|
||||
if library is None:
|
||||
if hasattr(source, 'library') and isinstance(source.library, ILibrary):
|
||||
library = source.library
|
||||
else:
|
||||
raise BuildError('No library was given, and `source.library` does not have one either.')
|
||||
|
||||
if isinstance(source, str):
|
||||
source = library.abstract(source).ports
|
||||
|
||||
pat = Pattern.interface(source, in_prefix=in_prefix, out_prefix=out_prefix, port_map=port_map)
|
||||
new = Builder(library=library, pattern=pat, name=name)
|
||||
return new
|
||||
|
||||
@wraps(Pattern.label)
|
||||
def label(self, *args, **kwargs) -> Self:
|
||||
self.pattern.label(*args, **kwargs)
|
||||
return self
|
||||
|
||||
@wraps(Pattern.ref)
|
||||
def ref(self, *args, **kwargs) -> Self:
|
||||
self.pattern.ref(*args, **kwargs)
|
||||
return self
|
||||
|
||||
@wraps(Pattern.polygon)
|
||||
def polygon(self, *args, **kwargs) -> Self:
|
||||
self.pattern.polygon(*args, **kwargs)
|
||||
return self
|
||||
|
||||
@wraps(Pattern.rect)
|
||||
def rect(self, *args, **kwargs) -> Self:
|
||||
self.pattern.rect(*args, **kwargs)
|
||||
return self
|
||||
|
||||
# Note: We're a superclass of `Pather`, where path() means something different...
|
||||
#@wraps(Pattern.path)
|
||||
#def path(self, *args, **kwargs) -> Self:
|
||||
# self.pattern.path(*args, **kwargs)
|
||||
# return self
|
||||
|
||||
def plug(
|
||||
self,
|
||||
other: Abstract | str | Pattern | TreeView,
|
||||
map_in: dict[str, str],
|
||||
map_out: dict[str, str | None] | None = None,
|
||||
*,
|
||||
mirrored: bool = False,
|
||||
inherit_name: bool = True,
|
||||
set_rotation: bool | None = None,
|
||||
append: bool = False,
|
||||
) -> Self:
|
||||
"""
|
||||
Wrapper around `Pattern.plug` which allows a string for `other`.
|
||||
|
||||
The `Builder`'s library is used to dereference the string (or `Abstract`, if
|
||||
one is passed with `append=True`). If a `TreeView` is passed, it is first
|
||||
added into `self.library`.
|
||||
|
||||
Args:
|
||||
other: An `Abstract`, string, `Pattern`, or `TreeView` describing the
|
||||
device to be instatiated. If it is a `TreeView`, it is first
|
||||
added into `self.library`, after which the topcell is plugged;
|
||||
an equivalent statement is `self.plug(self.library << other, ...)`.
|
||||
map_in: dict of `{'self_port': 'other_port'}` mappings, specifying
|
||||
port connections between the two devices.
|
||||
map_out: dict of `{'old_name': 'new_name'}` mappings, specifying
|
||||
new names for ports in `other`.
|
||||
mirrored: Enables mirroring `other` across the x axis prior to
|
||||
connecting any ports.
|
||||
inherit_name: If `True`, and `map_in` specifies only a single port,
|
||||
and `map_out` is `None`, and `other` has only two ports total,
|
||||
then automatically renames the output port of `other` to the
|
||||
name of the port from `self` that appears in `map_in`. This
|
||||
makes it easy to extend a device with simple 2-port devices
|
||||
(e.g. wires) without providing `map_out` each time `plug` is
|
||||
called. See "Examples" above for more info. Default `True`.
|
||||
set_rotation: If the necessary rotation cannot be determined from
|
||||
the ports being connected (i.e. all pairs have at least one
|
||||
port with `rotation=None`), `set_rotation` must be provided
|
||||
to indicate how much `other` should be rotated. Otherwise,
|
||||
`set_rotation` must remain `None`.
|
||||
append: If `True`, `other` is appended instead of being referenced.
|
||||
Note that this does not flatten `other`, so its refs will still
|
||||
be refs (now inside `self`).
|
||||
|
||||
Returns:
|
||||
self
|
||||
|
||||
Raises:
|
||||
`PortError` if any ports specified in `map_in` or `map_out` do not
|
||||
exist in `self.ports` or `other_names`.
|
||||
`PortError` if there are any duplicate names after `map_in` and `map_out`
|
||||
are applied.
|
||||
`PortError` if the specified port mapping is not achieveable (the ports
|
||||
do not line up)
|
||||
"""
|
||||
if self._dead:
|
||||
logger.error('Skipping plug() since device is dead')
|
||||
return self
|
||||
|
||||
if not isinstance(other, str | Abstract | Pattern):
|
||||
# We got a Tree; add it into self.library and grab an Abstract for it
|
||||
other = self.library << other
|
||||
|
||||
if isinstance(other, str):
|
||||
other = self.library.abstract(other)
|
||||
if append and isinstance(other, Abstract):
|
||||
other = self.library[other.name]
|
||||
|
||||
self.pattern.plug(
|
||||
other=other,
|
||||
map_in=map_in,
|
||||
map_out=map_out,
|
||||
mirrored=mirrored,
|
||||
inherit_name=inherit_name,
|
||||
set_rotation=set_rotation,
|
||||
append=append,
|
||||
)
|
||||
return self
|
||||
|
||||
def place(
|
||||
self,
|
||||
other: Abstract | str | Pattern | TreeView,
|
||||
*,
|
||||
offset: ArrayLike = (0, 0),
|
||||
rotation: float = 0,
|
||||
pivot: ArrayLike = (0, 0),
|
||||
mirrored: bool = False,
|
||||
port_map: dict[str, str | None] | None = None,
|
||||
skip_port_check: bool = False,
|
||||
append: bool = False,
|
||||
) -> Self:
|
||||
"""
|
||||
Wrapper around `Pattern.place` which allows a string or `TreeView` for `other`.
|
||||
|
||||
The `Builder`'s library is used to dereference the string (or `Abstract`, if
|
||||
one is passed with `append=True`). If a `TreeView` is passed, it is first
|
||||
added into `self.library`.
|
||||
|
||||
Args:
|
||||
other: An `Abstract`, string, `Pattern`, or `TreeView` describing the
|
||||
device to be instatiated. If it is a `TreeView`, it is first
|
||||
added into `self.library`, after which the topcell is plugged;
|
||||
an equivalent statement is `self.plug(self.library << other, ...)`.
|
||||
offset: Offset at which to place the instance. Default (0, 0).
|
||||
rotation: Rotation applied to the instance before placement. Default 0.
|
||||
pivot: Rotation is applied around this pivot point (default (0, 0)).
|
||||
Rotation is applied prior to translation (`offset`).
|
||||
mirrored: Whether theinstance should be mirrored across the x axis.
|
||||
Mirroring is applied before translation and rotation.
|
||||
port_map: dict of `{'old_name': 'new_name'}` mappings, specifying
|
||||
new names for ports in the instantiated device. New names can be
|
||||
`None`, which will delete those ports.
|
||||
skip_port_check: Can be used to skip the internal call to `check_ports`,
|
||||
in case it has already been performed elsewhere.
|
||||
append: If `True`, `other` is appended instead of being referenced.
|
||||
Note that this does not flatten `other`, so its refs will still
|
||||
be refs (now inside `self`).
|
||||
|
||||
Returns:
|
||||
self
|
||||
|
||||
Raises:
|
||||
`PortError` if any ports specified in `map_in` or `map_out` do not
|
||||
exist in `self.ports` or `other.ports`.
|
||||
`PortError` if there are any duplicate names after `map_in` and `map_out`
|
||||
are applied.
|
||||
"""
|
||||
if self._dead:
|
||||
logger.error('Skipping place() since device is dead')
|
||||
return self
|
||||
|
||||
if not isinstance(other, str | Abstract | Pattern):
|
||||
# We got a Tree; add it into self.library and grab an Abstract for it
|
||||
other = self.library << other
|
||||
|
||||
if isinstance(other, str):
|
||||
other = self.library.abstract(other)
|
||||
if append and isinstance(other, Abstract):
|
||||
other = self.library[other.name]
|
||||
|
||||
self.pattern.place(
|
||||
other=other,
|
||||
offset=offset,
|
||||
rotation=rotation,
|
||||
pivot=pivot,
|
||||
mirrored=mirrored,
|
||||
port_map=port_map,
|
||||
skip_port_check=skip_port_check,
|
||||
append=append,
|
||||
)
|
||||
return self
|
||||
|
||||
def translate(self, offset: ArrayLike) -> Self:
|
||||
"""
|
||||
Translate the pattern and all ports.
|
||||
|
||||
Args:
|
||||
offset: (x, y) distance to translate by
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.pattern.translate_elements(offset)
|
||||
return self
|
||||
|
||||
def rotate_around(self, pivot: ArrayLike, angle: float) -> Self:
|
||||
"""
|
||||
Rotate the pattern and all ports.
|
||||
|
||||
Args:
|
||||
angle: angle (radians, counterclockwise) to rotate by
|
||||
pivot: location to rotate around
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.pattern.rotate_around(pivot, angle)
|
||||
for port in self.ports.values():
|
||||
port.rotate_around(pivot, angle)
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int = 0) -> Self:
|
||||
"""
|
||||
Mirror the pattern and all ports across the specified axis.
|
||||
|
||||
Args:
|
||||
axis: Axis to mirror across (x=0, y=1)
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.pattern.mirror(axis)
|
||||
return self
|
||||
|
||||
def set_dead(self) -> Self:
|
||||
"""
|
||||
Disallows further changes through `plug()` or `place()`.
|
||||
This is meant for debugging:
|
||||
```
|
||||
dev.plug(a, ...)
|
||||
dev.set_dead() # added for debug purposes
|
||||
dev.plug(b, ...) # usually raises an error, but now skipped
|
||||
dev.plug(c, ...) # also skipped
|
||||
dev.pattern.visualize() # shows the device as of the set_dead() call
|
||||
```
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self._dead = True
|
||||
return self
|
||||
|
||||
def __repr__(self) -> str:
|
||||
s = f'<Builder {self.pattern} L({len(self.library)})>'
|
||||
return s
|
||||
|
||||
|
892
masque/builder/devices.py
Normal file
892
masque/builder/devices.py
Normal file
@ -0,0 +1,892 @@
|
||||
from typing import Dict, Iterable, List, Tuple, Union, TypeVar, Any, Iterator, Optional, Sequence
|
||||
from typing import overload, KeysView, ValuesView
|
||||
import copy
|
||||
import warnings
|
||||
import traceback
|
||||
import logging
|
||||
from collections import Counter
|
||||
|
||||
import numpy
|
||||
from numpy import pi
|
||||
from numpy.typing import ArrayLike, NDArray
|
||||
|
||||
from ..pattern import Pattern
|
||||
from ..subpattern import SubPattern
|
||||
from ..traits import PositionableImpl, Rotatable, PivotableImpl, Copyable, Mirrorable
|
||||
from ..utils import AutoSlots, rotation_matrix_2d
|
||||
from ..error import DeviceError
|
||||
from .tools import Tool
|
||||
from .utils import ell
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
P = TypeVar('P', bound='Port')
|
||||
D = TypeVar('D', bound='Device')
|
||||
O = TypeVar('O', bound='Device')
|
||||
|
||||
|
||||
class Port(PositionableImpl, Rotatable, PivotableImpl, Copyable, Mirrorable, metaclass=AutoSlots):
|
||||
"""
|
||||
A point at which a `Device` can be snapped to another `Device`.
|
||||
|
||||
Each port has an `offset` ((x, y) position) and may also have a
|
||||
`rotation` (orientation) and a `ptype` (port type).
|
||||
|
||||
The `rotation` is an angle, in radians, measured counterclockwise
|
||||
from the +x axis, pointing inwards into the device which owns the port.
|
||||
The rotation may be set to `None`, indicating that any orientation is
|
||||
allowed (e.g. for a DC electrical port). It is stored modulo 2pi.
|
||||
|
||||
The `ptype` is an arbitrary string, default of `unk` (unknown).
|
||||
"""
|
||||
__slots__ = ('ptype', '_rotation')
|
||||
|
||||
_rotation: Optional[float]
|
||||
""" radians counterclockwise from +x, pointing into device body.
|
||||
Can be `None` to signify undirected port """
|
||||
|
||||
ptype: str
|
||||
""" Port types must match to be plugged together if both are non-zero """
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
offset: ArrayLike,
|
||||
rotation: Optional[float],
|
||||
ptype: str = 'unk',
|
||||
) -> None:
|
||||
self.offset = offset
|
||||
self.rotation = rotation
|
||||
self.ptype = ptype
|
||||
|
||||
@property
|
||||
def rotation(self) -> Optional[float]:
|
||||
""" Rotation, radians counterclockwise, pointing into device body. Can be None. """
|
||||
return self._rotation
|
||||
|
||||
@rotation.setter
|
||||
def rotation(self, val: float) -> None:
|
||||
if val is None:
|
||||
self._rotation = None
|
||||
else:
|
||||
if not numpy.size(val) == 1:
|
||||
raise DeviceError('Rotation must be a scalar')
|
||||
self._rotation = val % (2 * pi)
|
||||
|
||||
def get_bounds(self):
|
||||
return numpy.vstack((self.offset, self.offset))
|
||||
|
||||
def set_ptype(self: P, ptype: str) -> P:
|
||||
""" Chainable setter for `ptype` """
|
||||
self.ptype = ptype
|
||||
return self
|
||||
|
||||
def mirror(self: P, axis: int) -> P:
|
||||
self.offset[1 - axis] *= -1
|
||||
if self.rotation is not None:
|
||||
self.rotation *= -1
|
||||
self.rotation += axis * pi
|
||||
return self
|
||||
|
||||
def rotate(self: P, rotation: float) -> P:
|
||||
if self.rotation is not None:
|
||||
self.rotation += rotation
|
||||
return self
|
||||
|
||||
def set_rotation(self: P, rotation: Optional[float]) -> P:
|
||||
self.rotation = rotation
|
||||
return self
|
||||
|
||||
def __repr__(self) -> str:
|
||||
if self.rotation is None:
|
||||
rot = 'any'
|
||||
else:
|
||||
rot = str(numpy.rad2deg(self.rotation))
|
||||
return f'<{self.offset}, {rot}, [{self.ptype}]>'
|
||||
|
||||
|
||||
class Device(Copyable, Mirrorable):
|
||||
"""
|
||||
A `Device` is a combination of a `Pattern` with a set of named `Port`s
|
||||
which can be used to "snap" devices together to make complex layouts.
|
||||
|
||||
`Device`s can be as simple as one or two ports (e.g. an electrical pad
|
||||
or wire), but can also be used to build and represent a large routed
|
||||
layout (e.g. a logical block with multiple I/O connections or even a
|
||||
full chip).
|
||||
|
||||
For convenience, ports can be read out using square brackets:
|
||||
- `device['A'] == Port((0, 0), 0)`
|
||||
- `device[['A', 'B']] == {'A': Port((0, 0), 0), 'B': Port((0, 0), pi)}`
|
||||
|
||||
Examples: Creating a Device
|
||||
===========================
|
||||
- `Device(pattern, ports={'A': port_a, 'C': port_c})` uses an existing
|
||||
pattern and defines some ports.
|
||||
|
||||
- `Device(name='my_dev_name', ports=None)` makes a new empty pattern with
|
||||
default ports ('A' and 'B', in opposite directions, at (0, 0)).
|
||||
|
||||
- `my_device.build('my_layout')` makes a new pattern and instantiates
|
||||
`my_device` in it with offset (0, 0) as a base for further building.
|
||||
|
||||
- `my_device.as_interface('my_component', port_map=['A', 'B'])` makes a new
|
||||
(empty) pattern, copies over ports 'A' and 'B' from `my_device`, and
|
||||
creates additional ports 'in_A' and 'in_B' facing in the opposite
|
||||
directions. This can be used to build a device which can plug into
|
||||
`my_device` (using the 'in_*' ports) but which does not itself include
|
||||
`my_device` as a subcomponent.
|
||||
|
||||
Examples: Adding to a Device
|
||||
============================
|
||||
- `my_device.plug(subdevice, {'A': 'C', 'B': 'B'}, map_out={'D': 'myport'})`
|
||||
instantiates `subdevice` into `my_device`, plugging ports 'A' and 'B'
|
||||
of `my_device` into ports 'C' and 'B' of `subdevice`. The connected ports
|
||||
are removed and any unconnected ports from `subdevice` are added to
|
||||
`my_device`. Port 'D' of `subdevice` (unconnected) is renamed to 'myport'.
|
||||
|
||||
- `my_device.plug(wire, {'myport': 'A'})` places port 'A' of `wire` at 'myport'
|
||||
of `my_device`. If `wire` has only two ports (e.g. 'A' and 'B'), no `map_out`,
|
||||
argument is provided, and the `inherit_name` argument is not explicitly
|
||||
set to `False`, the unconnected port of `wire` is automatically renamed to
|
||||
'myport'. This allows easy extension of existing ports without changing
|
||||
their names or having to provide `map_out` each time `plug` is called.
|
||||
|
||||
- `my_device.place(pad, offset=(10, 10), rotation=pi / 2, port_map={'A': 'gnd'})`
|
||||
instantiates `pad` at the specified (x, y) offset and with the specified
|
||||
rotation, adding its ports to those of `my_device`. Port 'A' of `pad` is
|
||||
renamed to 'gnd' so that further routing can use this signal or net name
|
||||
rather than the port name on the original `pad` device.
|
||||
"""
|
||||
__slots__ = ('pattern', 'ports', 'tools', '_dead')
|
||||
|
||||
pattern: Pattern
|
||||
""" Layout of this device """
|
||||
|
||||
ports: Dict[str, Port]
|
||||
""" Uniquely-named ports which can be used to snap to other Device instances"""
|
||||
|
||||
tools: Dict[Optional[str], Tool]
|
||||
"""
|
||||
Tool objects are used to dynamically generate new single-use Devices
|
||||
(e.g wires or waveguides) to be plugged into this device.
|
||||
"""
|
||||
|
||||
_dead: bool
|
||||
""" If True, plug()/place() are skipped (for debugging)"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
pattern: Optional[Pattern] = None,
|
||||
ports: Optional[Dict[str, Port]] = None,
|
||||
*,
|
||||
tools: Union[None, Tool, Dict[Optional[str], Tool]] = None,
|
||||
name: Optional[str] = None,
|
||||
) -> None:
|
||||
"""
|
||||
If `ports` is `None`, two default ports ('A' and 'B') are created.
|
||||
Both are placed at (0, 0) and have default `ptype`, but 'A' has rotation 0
|
||||
(attached devices will be placed to the left) and 'B' has rotation
|
||||
pi (attached devices will be placed to the right).
|
||||
"""
|
||||
if pattern is not None:
|
||||
if name is not None:
|
||||
raise DeviceError('Only one of `pattern` and `name` may be specified')
|
||||
self.pattern = pattern
|
||||
else:
|
||||
if name is None:
|
||||
raise DeviceError('Must specify either `pattern` or `name`')
|
||||
self.pattern = Pattern(name=name)
|
||||
|
||||
if ports is None:
|
||||
self.ports = {
|
||||
'A': Port([0, 0], rotation=0),
|
||||
'B': Port([0, 0], rotation=pi),
|
||||
}
|
||||
else:
|
||||
self.ports = copy.deepcopy(ports)
|
||||
|
||||
if tools is None:
|
||||
self.tools = {}
|
||||
elif isinstance(tools, Tool):
|
||||
self.tools = {None: tools}
|
||||
else:
|
||||
self.tools = tools
|
||||
|
||||
self._dead = False
|
||||
|
||||
@overload
|
||||
def __getitem__(self, key: str) -> Port:
|
||||
pass
|
||||
|
||||
@overload
|
||||
def __getitem__(self, key: Union[List[str], Tuple[str, ...], KeysView[str], ValuesView[str]]) -> Dict[str, Port]:
|
||||
pass
|
||||
|
||||
def __getitem__(self, key: Union[str, Iterable[str]]) -> Union[Port, Dict[str, Port]]:
|
||||
"""
|
||||
For convenience, ports can be read out using square brackets:
|
||||
- `device['A'] == Port((0, 0), 0)`
|
||||
- `device[['A', 'B']] == {'A': Port((0, 0), 0),
|
||||
'B': Port((0, 0), pi)}`
|
||||
"""
|
||||
if isinstance(key, str):
|
||||
return self.ports[key]
|
||||
else:
|
||||
return {k: self.ports[k] for k in key}
|
||||
|
||||
def rename_ports(
|
||||
self: D,
|
||||
mapping: Dict[str, Optional[str]],
|
||||
overwrite: bool = False,
|
||||
) -> D:
|
||||
"""
|
||||
Renames ports as specified by `mapping`.
|
||||
Ports can be explicitly deleted by mapping them to `None`.
|
||||
|
||||
Args:
|
||||
mapping: Dict of `{'old_name': 'new_name'}` pairs. Names can be mapped
|
||||
to `None` to perform an explicit deletion. `'new_name'` can also
|
||||
overwrite an existing non-renamed port to implicitly delete it if
|
||||
`overwrite` is set to `True`.
|
||||
overwrite: Allows implicit deletion of ports if set to `True`; see `mapping`.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
if not overwrite:
|
||||
duplicates = (set(self.ports.keys()) - set(mapping.keys())) & set(mapping.values())
|
||||
if duplicates:
|
||||
raise DeviceError(f'Unrenamed ports would be overwritten: {duplicates}')
|
||||
|
||||
renamed = {mapping[k]: self.ports.pop(k) for k in mapping.keys()}
|
||||
if None in renamed:
|
||||
del renamed[None]
|
||||
|
||||
self.ports.update(renamed) # type: ignore
|
||||
return self
|
||||
|
||||
def check_ports(
|
||||
self: D,
|
||||
other_names: Iterable[str],
|
||||
map_in: Optional[Dict[str, str]] = None,
|
||||
map_out: Optional[Dict[str, Optional[str]]] = None,
|
||||
) -> D:
|
||||
"""
|
||||
Given the provided port mappings, check that:
|
||||
- All of the ports specified in the mappings exist
|
||||
- There are no duplicate port names after all the mappings are performed
|
||||
|
||||
Args:
|
||||
other_names: List of port names being considered for inclusion into
|
||||
`self.ports` (before mapping)
|
||||
map_in: Dict of `{'self_port': 'other_port'}` mappings, specifying
|
||||
port connections between the two devices.
|
||||
map_out: Dict of `{'old_name': 'new_name'}` mappings, specifying
|
||||
new names for unconnected `other_names` ports.
|
||||
|
||||
Returns:
|
||||
self
|
||||
|
||||
Raises:
|
||||
`DeviceError` if any ports specified in `map_in` or `map_out` do not
|
||||
exist in `self.ports` or `other_names`.
|
||||
`DeviceError` if there are any duplicate names after `map_in` and `map_out`
|
||||
are applied.
|
||||
"""
|
||||
if map_in is None:
|
||||
map_in = {}
|
||||
|
||||
if map_out is None:
|
||||
map_out = {}
|
||||
|
||||
other = set(other_names)
|
||||
|
||||
missing_inkeys = set(map_in.keys()) - set(self.ports.keys())
|
||||
if missing_inkeys:
|
||||
raise DeviceError(f'`map_in` keys not present in device: {missing_inkeys}')
|
||||
|
||||
missing_invals = set(map_in.values()) - other
|
||||
if missing_invals:
|
||||
raise DeviceError(f'`map_in` values not present in other device: {missing_invals}')
|
||||
|
||||
missing_outkeys = set(map_out.keys()) - other
|
||||
if missing_outkeys:
|
||||
raise DeviceError(f'`map_out` keys not present in other device: {missing_outkeys}')
|
||||
|
||||
orig_remaining = set(self.ports.keys()) - set(map_in.keys())
|
||||
other_remaining = other - set(map_out.keys()) - set(map_in.values())
|
||||
mapped_vals = set(map_out.values())
|
||||
mapped_vals.discard(None)
|
||||
|
||||
conflicts_final = orig_remaining & (other_remaining | mapped_vals)
|
||||
if conflicts_final:
|
||||
raise DeviceError(f'Device ports conflict with existing ports: {conflicts_final}')
|
||||
|
||||
conflicts_partial = other_remaining & mapped_vals
|
||||
if conflicts_partial:
|
||||
raise DeviceError(f'`map_out` targets conflict with non-mapped outputs: {conflicts_partial}')
|
||||
|
||||
map_out_counts = Counter(map_out.values())
|
||||
map_out_counts[None] = 0
|
||||
conflicts_out = {k for k, v in map_out_counts.items() if v > 1}
|
||||
if conflicts_out:
|
||||
raise DeviceError(f'Duplicate targets in `map_out`: {conflicts_out}')
|
||||
|
||||
return self
|
||||
|
||||
def build(self, name: str) -> 'Device':
|
||||
"""
|
||||
Begin building a new device around an instance of the current device
|
||||
(rather than modifying the current device).
|
||||
|
||||
Args:
|
||||
name: A name for the new device
|
||||
|
||||
Returns:
|
||||
The new `Device` object.
|
||||
"""
|
||||
pat = Pattern(name)
|
||||
pat.addsp(self.pattern)
|
||||
new = Device(pat, ports=self.ports, tools=self.tools)
|
||||
return new
|
||||
|
||||
def as_interface(
|
||||
self,
|
||||
name: str,
|
||||
in_prefix: str = 'in_',
|
||||
out_prefix: str = '',
|
||||
port_map: Optional[Union[Dict[str, str], Sequence[str]]] = None
|
||||
) -> 'Device':
|
||||
"""
|
||||
Begin building a new device based on all or some of the ports in the
|
||||
current device. Do not include the current device; instead use it
|
||||
to define ports (the "interface") for the new device.
|
||||
|
||||
The ports specified by `port_map` (default: all ports) are copied to
|
||||
new device, and additional (input) ports are created facing in the
|
||||
opposite directions. The specified `in_prefix` and `out_prefix` are
|
||||
prepended to the port names to differentiate them.
|
||||
|
||||
By default, the flipped ports are given an 'in_' prefix and unflipped
|
||||
ports keep their original names, enabling intuitive construction of
|
||||
a device that will "plug into" the current device; the 'in_*' ports
|
||||
are used for plugging the devices together while the original port
|
||||
names are used for building the new device.
|
||||
|
||||
Another use-case could be to build the new device using the 'in_'
|
||||
ports, creating a new device which could be used in place of the
|
||||
current device.
|
||||
|
||||
Args:
|
||||
name: Name for the new device
|
||||
in_prefix: Prepended to port names for newly-created ports with
|
||||
reversed directions compared to the current device.
|
||||
out_prefix: Prepended to port names for ports which are directly
|
||||
copied from the current device.
|
||||
port_map: Specification for ports to copy into the new device:
|
||||
- If `None`, all ports are copied.
|
||||
- If a sequence, only the listed ports are copied
|
||||
- If a mapping, the listed ports (keys) are copied and
|
||||
renamed (to the values).
|
||||
|
||||
Returns:
|
||||
The new device, with an empty pattern and 2x as many ports as
|
||||
listed in port_map.
|
||||
|
||||
Raises:
|
||||
`DeviceError` if `port_map` contains port names not present in the
|
||||
current device.
|
||||
`DeviceError` if applying the prefixes results in duplicate port
|
||||
names.
|
||||
"""
|
||||
if port_map:
|
||||
if isinstance(port_map, dict):
|
||||
missing_inkeys = set(port_map.keys()) - set(self.ports.keys())
|
||||
orig_ports = {port_map[k]: v for k, v in self.ports.items() if k in port_map}
|
||||
else:
|
||||
port_set = set(port_map)
|
||||
missing_inkeys = port_set - set(self.ports.keys())
|
||||
orig_ports = {k: v for k, v in self.ports.items() if k in port_set}
|
||||
|
||||
if missing_inkeys:
|
||||
raise DeviceError(f'`port_map` keys not present in device: {missing_inkeys}')
|
||||
else:
|
||||
orig_ports = self.ports
|
||||
|
||||
ports_in = {f'{in_prefix}{name}': port.deepcopy().rotate(pi)
|
||||
for name, port in orig_ports.items()}
|
||||
ports_out = {f'{out_prefix}{name}': port.deepcopy()
|
||||
for name, port in orig_ports.items()}
|
||||
|
||||
duplicates = set(ports_out.keys()) & set(ports_in.keys())
|
||||
if duplicates:
|
||||
raise DeviceError(f'Duplicate keys after prefixing, try a different prefix: {duplicates}')
|
||||
|
||||
new = Device(name=name, ports={**ports_in, **ports_out}, tools=self.tools)
|
||||
return new
|
||||
|
||||
def plug(
|
||||
self: D,
|
||||
other: O,
|
||||
map_in: Dict[str, str],
|
||||
map_out: Optional[Dict[str, Optional[str]]] = None,
|
||||
*,
|
||||
mirrored: Tuple[bool, bool] = (False, False),
|
||||
inherit_name: bool = True,
|
||||
set_rotation: Optional[bool] = None,
|
||||
) -> D:
|
||||
"""
|
||||
Instantiate the device `other` into the current device, connecting
|
||||
the ports specified by `map_in` and renaming the unconnected
|
||||
ports specified by `map_out`.
|
||||
|
||||
Examples:
|
||||
=========
|
||||
- `my_device.plug(subdevice, {'A': 'C', 'B': 'B'}, map_out={'D': 'myport'})`
|
||||
instantiates `subdevice` into `my_device`, plugging ports 'A' and 'B'
|
||||
of `my_device` into ports 'C' and 'B' of `subdevice`. The connected ports
|
||||
are removed and any unconnected ports from `subdevice` are added to
|
||||
`my_device`. Port 'D' of `subdevice` (unconnected) is renamed to 'myport'.
|
||||
|
||||
- `my_device.plug(wire, {'myport': 'A'})` places port 'A' of `wire` at 'myport'
|
||||
of `my_device`. If `wire` has only two ports (e.g. 'A' and 'B'), no `map_out`,
|
||||
argument is provided, and the `inherit_name` argument is not explicitly
|
||||
set to `False`, the unconnected port of `wire` is automatically renamed to
|
||||
'myport'. This allows easy extension of existing ports without changing
|
||||
their names or having to provide `map_out` each time `plug` is called.
|
||||
|
||||
Args:
|
||||
other: A device to instantiate into the current device.
|
||||
map_in: Dict of `{'self_port': 'other_port'}` mappings, specifying
|
||||
port connections between the two devices.
|
||||
map_out: Dict of `{'old_name': 'new_name'}` mappings, specifying
|
||||
new names for ports in `other`.
|
||||
mirrored: Enables mirroring `other` across the x or y axes prior
|
||||
to connecting any ports.
|
||||
inherit_name: If `True`, and `map_in` specifies only a single port,
|
||||
and `map_out` is `None`, and `other` has only two ports total,
|
||||
then automatically renames the output port of `other` to the
|
||||
name of the port from `self` that appears in `map_in`. This
|
||||
makes it easy to extend a device with simple 2-port devices
|
||||
(e.g. wires) without providing `map_out` each time `plug` is
|
||||
called. See "Examples" above for more info. Default `True`.
|
||||
set_rotation: If the necessary rotation cannot be determined from
|
||||
the ports being connected (i.e. all pairs have at least one
|
||||
port with `rotation=None`), `set_rotation` must be provided
|
||||
to indicate how much `other` should be rotated. Otherwise,
|
||||
`set_rotation` must remain `None`.
|
||||
|
||||
Returns:
|
||||
self
|
||||
|
||||
Raises:
|
||||
`DeviceError` if any ports specified in `map_in` or `map_out` do not
|
||||
exist in `self.ports` or `other_names`.
|
||||
`DeviceError` if there are any duplicate names after `map_in` and `map_out`
|
||||
are applied.
|
||||
`DeviceError` if the specified port mapping is not achieveable (the ports
|
||||
do not line up)
|
||||
"""
|
||||
if self._dead:
|
||||
logger.error('Skipping plug() since device is dead')
|
||||
return self
|
||||
|
||||
if (inherit_name
|
||||
and not map_out
|
||||
and len(map_in) == 1
|
||||
and len(other.ports) == 2):
|
||||
out_port_name = next(iter(set(other.ports.keys()) - set(map_in.values())))
|
||||
map_out = {out_port_name: next(iter(map_in.keys()))}
|
||||
|
||||
if map_out is None:
|
||||
map_out = {}
|
||||
map_out = copy.deepcopy(map_out)
|
||||
|
||||
self.check_ports(other.ports.keys(), map_in, map_out)
|
||||
translation, rotation, pivot = self.find_transform(other, map_in, mirrored=mirrored,
|
||||
set_rotation=set_rotation)
|
||||
|
||||
# get rid of plugged ports
|
||||
for ki, vi in map_in.items():
|
||||
del self.ports[ki]
|
||||
map_out[vi] = None
|
||||
|
||||
self.place(other, offset=translation, rotation=rotation, pivot=pivot,
|
||||
mirrored=mirrored, port_map=map_out, skip_port_check=True)
|
||||
return self
|
||||
|
||||
def place(
|
||||
self: D,
|
||||
other: O,
|
||||
*,
|
||||
offset: ArrayLike = (0, 0),
|
||||
rotation: float = 0,
|
||||
pivot: ArrayLike = (0, 0),
|
||||
mirrored: Tuple[bool, bool] = (False, False),
|
||||
port_map: Optional[Dict[str, Optional[str]]] = None,
|
||||
skip_port_check: bool = False,
|
||||
) -> D:
|
||||
"""
|
||||
Instantiate the device `other` into the current device, adding its
|
||||
ports to those of the current device (but not connecting any ports).
|
||||
|
||||
Mirroring is applied before rotation; translation (`offset`) is applied last.
|
||||
|
||||
Examples:
|
||||
=========
|
||||
- `my_device.place(pad, offset=(10, 10), rotation=pi / 2, port_map={'A': 'gnd'})`
|
||||
instantiates `pad` at the specified (x, y) offset and with the specified
|
||||
rotation, adding its ports to those of `my_device`. Port 'A' of `pad` is
|
||||
renamed to 'gnd' so that further routing can use this signal or net name
|
||||
rather than the port name on the original `pad` device.
|
||||
|
||||
Args:
|
||||
other: A device to instantiate into the current device.
|
||||
offset: Offset at which to place `other`. Default (0, 0).
|
||||
rotation: Rotation applied to `other` before placement. Default 0.
|
||||
pivot: Rotation is applied around this pivot point (default (0, 0)).
|
||||
Rotation is applied prior to translation (`offset`).
|
||||
mirrored: Whether `other` should be mirrored across the x and y axes.
|
||||
Mirroring is applied before translation and rotation.
|
||||
port_map: Dict of `{'old_name': 'new_name'}` mappings, specifying
|
||||
new names for ports in `other`. New names can be `None`, which will
|
||||
delete those ports.
|
||||
skip_port_check: Can be used to skip the internal call to `check_ports`,
|
||||
in case it has already been performed elsewhere.
|
||||
|
||||
Returns:
|
||||
self
|
||||
|
||||
Raises:
|
||||
`DeviceError` if any ports specified in `map_in` or `map_out` do not
|
||||
exist in `self.ports` or `other_names`.
|
||||
`DeviceError` if there are any duplicate names after `map_in` and `map_out`
|
||||
are applied.
|
||||
"""
|
||||
if self._dead:
|
||||
logger.error('Skipping place() since device is dead')
|
||||
return self
|
||||
|
||||
if port_map is None:
|
||||
port_map = {}
|
||||
|
||||
if not skip_port_check:
|
||||
self.check_ports(other.ports.keys(), map_in=None, map_out=port_map)
|
||||
|
||||
ports = {}
|
||||
for name, port in other.ports.items():
|
||||
new_name = port_map.get(name, name)
|
||||
if new_name is None:
|
||||
continue
|
||||
ports[new_name] = port
|
||||
|
||||
for name, port in ports.items():
|
||||
p = port.deepcopy()
|
||||
p.mirror2d(mirrored)
|
||||
p.rotate_around(pivot, rotation)
|
||||
p.translate(offset)
|
||||
self.ports[name] = p
|
||||
|
||||
sp = SubPattern(other.pattern, mirrored=mirrored)
|
||||
sp.rotate_around(pivot, rotation)
|
||||
sp.translate(offset)
|
||||
self.pattern.subpatterns.append(sp)
|
||||
return self
|
||||
|
||||
def find_transform(
|
||||
self: D,
|
||||
other: O,
|
||||
map_in: Dict[str, str],
|
||||
*,
|
||||
mirrored: Tuple[bool, bool] = (False, False),
|
||||
set_rotation: Optional[bool] = None,
|
||||
) -> Tuple[NDArray[numpy.float64], float, NDArray[numpy.float64]]:
|
||||
"""
|
||||
Given a device `other` and a mapping `map_in` specifying port connections,
|
||||
find the transform which will correctly align the specified ports.
|
||||
|
||||
Args:
|
||||
other: a device
|
||||
map_in: Dict of `{'self_port': 'other_port'}` mappings, specifying
|
||||
port connections between the two devices.
|
||||
mirrored: Mirrors `other` across the x or y axes prior to
|
||||
connecting any ports.
|
||||
set_rotation: If the necessary rotation cannot be determined from
|
||||
the ports being connected (i.e. all pairs have at least one
|
||||
port with `rotation=None`), `set_rotation` must be provided
|
||||
to indicate how much `other` should be rotated. Otherwise,
|
||||
`set_rotation` must remain `None`.
|
||||
|
||||
Returns:
|
||||
- The (x, y) translation (performed last)
|
||||
- The rotation (radians, counterclockwise)
|
||||
- The (x, y) pivot point for the rotation
|
||||
|
||||
The rotation should be performed before the translation.
|
||||
"""
|
||||
s_ports = self[map_in.keys()]
|
||||
o_ports = other[map_in.values()]
|
||||
|
||||
s_offsets = numpy.array([p.offset for p in s_ports.values()])
|
||||
o_offsets = numpy.array([p.offset for p in o_ports.values()])
|
||||
s_types = [p.ptype for p in s_ports.values()]
|
||||
o_types = [p.ptype for p in o_ports.values()]
|
||||
|
||||
s_rotations = numpy.array([p.rotation if p.rotation is not None else 0 for p in s_ports.values()])
|
||||
o_rotations = numpy.array([p.rotation if p.rotation is not None else 0 for p in o_ports.values()])
|
||||
s_has_rot = numpy.array([p.rotation is not None for p in s_ports.values()], dtype=bool)
|
||||
o_has_rot = numpy.array([p.rotation is not None for p in o_ports.values()], dtype=bool)
|
||||
has_rot = s_has_rot & o_has_rot
|
||||
|
||||
if mirrored[0]:
|
||||
o_offsets[:, 1] *= -1
|
||||
o_rotations *= -1
|
||||
if mirrored[1]:
|
||||
o_offsets[:, 0] *= -1
|
||||
o_rotations *= -1
|
||||
o_rotations += pi
|
||||
|
||||
type_conflicts = numpy.array([st != ot and st != 'unk' and ot != 'unk'
|
||||
for st, ot in zip(s_types, o_types)])
|
||||
if type_conflicts.any():
|
||||
ports = numpy.where(type_conflicts)
|
||||
msg = 'Ports have conflicting types:\n'
|
||||
for nn, (k, v) in enumerate(map_in.items()):
|
||||
if type_conflicts[nn]:
|
||||
msg += f'{k} | {s_types[nn]}:{o_types[nn]} | {v}\n'
|
||||
msg = ''.join(traceback.format_stack()) + '\n' + msg
|
||||
warnings.warn(msg, stacklevel=2)
|
||||
|
||||
rotations = numpy.mod(s_rotations - o_rotations - pi, 2 * pi)
|
||||
if not has_rot.any():
|
||||
if set_rotation is None:
|
||||
DeviceError('Must provide set_rotation if rotation is indeterminate')
|
||||
rotations[:] = set_rotation
|
||||
else:
|
||||
rotations[~has_rot] = rotations[has_rot][0]
|
||||
|
||||
if not numpy.allclose(rotations[:1], rotations):
|
||||
rot_deg = numpy.rad2deg(rotations)
|
||||
msg = f'Port orientations do not match:\n'
|
||||
for nn, (k, v) in enumerate(map_in.items()):
|
||||
msg += f'{k} | {rot_deg[nn]:g} | {v}\n'
|
||||
raise DeviceError(msg)
|
||||
|
||||
pivot = o_offsets[0].copy()
|
||||
rotate_offsets_around(o_offsets, pivot, rotations[0])
|
||||
translations = s_offsets - o_offsets
|
||||
if not numpy.allclose(translations[:1], translations):
|
||||
msg = f'Port translations do not match:\n'
|
||||
for nn, (k, v) in enumerate(map_in.items()):
|
||||
msg += f'{k} | {translations[nn]} | {v}\n'
|
||||
raise DeviceError(msg)
|
||||
|
||||
return translations[0], rotations[0], o_offsets[0]
|
||||
|
||||
def translate(self: D, offset: ArrayLike) -> D:
|
||||
"""
|
||||
Translate the pattern and all ports.
|
||||
|
||||
Args:
|
||||
offset: (x, y) distance to translate by
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.pattern.translate_elements(offset)
|
||||
for port in self.ports.values():
|
||||
port.translate(offset)
|
||||
return self
|
||||
|
||||
def rotate_around(self: D, pivot: ArrayLike, angle: float) -> D:
|
||||
"""
|
||||
Translate the pattern and all ports.
|
||||
|
||||
Args:
|
||||
offset: (x, y) distance to translate by
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.pattern.rotate_around(pivot, angle)
|
||||
for port in self.ports.values():
|
||||
port.rotate_around(pivot, angle)
|
||||
return self
|
||||
|
||||
def mirror(self: D, axis: int) -> D:
|
||||
"""
|
||||
Translate the pattern and all ports across the specified axis.
|
||||
|
||||
Args:
|
||||
axis: Axis to mirror across (x=0, y=1)
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.pattern.mirror(axis)
|
||||
for p in self.ports.values():
|
||||
p.mirror(axis)
|
||||
return self
|
||||
|
||||
def set_dead(self: D) -> D:
|
||||
"""
|
||||
Disallows further changes through `plug()` or `place()`.
|
||||
This is meant for debugging:
|
||||
```
|
||||
dev.plug(a, ...)
|
||||
dev.set_dead() # added for debug purposes
|
||||
dev.plug(b, ...) # usually raises an error, but now skipped
|
||||
dev.plug(c, ...) # also skipped
|
||||
dev.pattern.visualize() # shows the device as of the set_dead() call
|
||||
```
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self._dead = True
|
||||
return self
|
||||
|
||||
def rename(self: D, name: str) -> D:
|
||||
"""
|
||||
Renames the pattern and returns the device
|
||||
|
||||
Args:
|
||||
name: The new name
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.pattern.name = name
|
||||
return self
|
||||
|
||||
def __repr__(self) -> str:
|
||||
s = f'<Device {self.pattern} ['
|
||||
for name, port in self.ports.items():
|
||||
s += f'\n\t{name}: {port}'
|
||||
s += ']>'
|
||||
return s
|
||||
|
||||
def retool(
|
||||
self: D,
|
||||
tool: Tool,
|
||||
keys: Union[Optional[str], Sequence[Optional[str]]] = None,
|
||||
) -> D:
|
||||
if keys is None or isinstance(keys, str):
|
||||
self.tools[keys] = tool
|
||||
else:
|
||||
for key in keys:
|
||||
self.tools[key] = tool
|
||||
return self
|
||||
|
||||
def path(
|
||||
self: D,
|
||||
portspec: str,
|
||||
ccw: Optional[bool],
|
||||
length: float,
|
||||
*,
|
||||
tool_port_names: Sequence[str] = ('A', 'B'),
|
||||
**kwargs,
|
||||
) -> D:
|
||||
if self._dead:
|
||||
logger.error('Skipping path() since device is dead')
|
||||
return self
|
||||
|
||||
tool = self.tools.get(portspec, self.tools[None])
|
||||
in_ptype = self.ports[portspec].ptype
|
||||
dev = tool.path(ccw, length, in_ptype=in_ptype, port_names=tool_port_names, **kwargs)
|
||||
return self.plug(dev, {portspec: tool_port_names[0]})
|
||||
|
||||
def path_to(
|
||||
self: D,
|
||||
portspec: str,
|
||||
ccw: Optional[bool],
|
||||
position: float,
|
||||
*,
|
||||
tool_port_names: Sequence[str] = ('A', 'B'),
|
||||
**kwargs,
|
||||
) -> D:
|
||||
if self._dead:
|
||||
logger.error('Skipping path_to() since device is dead')
|
||||
return self
|
||||
|
||||
port = self.ports[portspec]
|
||||
x, y = port.offset
|
||||
if port.rotation is None:
|
||||
raise DeviceError(f'Port {portspec} has no rotation and cannot be used for path_to()')
|
||||
|
||||
if not numpy.isclose(port.rotation % (pi / 2), 0):
|
||||
raise DeviceError('path_to was asked to route from non-manhattan port')
|
||||
|
||||
is_horizontal = numpy.isclose(port.rotation % pi, 0)
|
||||
if is_horizontal:
|
||||
if numpy.sign(numpy.cos(port.rotation)) == numpy.sign(position - x):
|
||||
raise DeviceError(f'path_to routing to behind source port: x={x:g} to {position:g}')
|
||||
length = numpy.abs(position - x)
|
||||
else:
|
||||
if numpy.sign(numpy.sin(port.rotation)) == numpy.sign(position - y):
|
||||
raise DeviceError(f'path_to routing to behind source port: y={y:g} to {position:g}')
|
||||
length = numpy.abs(position - y)
|
||||
|
||||
return self.path(portspec, ccw, length, tool_port_names=tool_port_names, **kwargs)
|
||||
|
||||
def busL(
|
||||
self: D,
|
||||
portspec: Union[str, Sequence[str]],
|
||||
ccw: Optional[bool],
|
||||
*,
|
||||
spacing: Optional[Union[float, ArrayLike]] = None,
|
||||
set_rotation: Optional[float] = None,
|
||||
tool_port_names: Sequence[str] = ('A', 'B'),
|
||||
container_name: str = '_busL',
|
||||
force_container: bool = False,
|
||||
**kwargs,
|
||||
) -> D:
|
||||
if self._dead:
|
||||
logger.error('Skipping busL() since device is dead')
|
||||
return self
|
||||
|
||||
bound_types = set()
|
||||
if 'bound_type' in kwargs:
|
||||
bound_types.add(kwargs['bound_type'])
|
||||
bound = kwargs['bound']
|
||||
for bt in ('emin', 'emax', 'pmin', 'pmax', 'min_past_furthest'):
|
||||
if bt in kwargs:
|
||||
bound_types.add(bt)
|
||||
bound = kwargs[bt]
|
||||
|
||||
if not bound_types:
|
||||
raise DeviceError('No bound type specified for busL')
|
||||
elif len(bound_types) > 1:
|
||||
raise DeviceError(f'Too many bound types specified for busL: {bound_types}')
|
||||
bound_type = tuple(bound_types)[0]
|
||||
|
||||
if isinstance(portspec, str):
|
||||
portspec = [portspec]
|
||||
ports = self[tuple(portspec)]
|
||||
|
||||
extensions = ell(ports, ccw, spacing=spacing, bound=bound, bound_type=bound_type, set_rotation=set_rotation)
|
||||
|
||||
if len(ports) == 1 and not force_container:
|
||||
# Not a bus, so having a container just adds noise to the layout
|
||||
port_name = tuple(portspec)[0]
|
||||
return self.path(port_name, ccw, extensions[port_name], tool_port_names=tool_port_names)
|
||||
else:
|
||||
dev = Device(name='', ports=ports, tools=self.tools).as_interface(container_name)
|
||||
for name, length in extensions.items():
|
||||
dev.path(name, ccw, length, tool_port_names=tool_port_names)
|
||||
return self.plug(dev, {sp: 'in_' + sp for sp in ports.keys()}) # TODO safe to use 'in_'?
|
||||
|
||||
# TODO def path_join() and def bus_join()?
|
||||
|
||||
|
||||
def rotate_offsets_around(
|
||||
offsets: NDArray[numpy.float64],
|
||||
pivot: NDArray[numpy.float64],
|
||||
angle: float,
|
||||
) -> NDArray[numpy.float64]:
|
||||
offsets -= pivot
|
||||
offsets[:] = (rotation_matrix_2d(angle) @ offsets.T).T
|
||||
offsets += pivot
|
||||
return offsets
|
@ -1,694 +0,0 @@
|
||||
"""
|
||||
Manual wire/waveguide routing (`Pather`)
|
||||
"""
|
||||
from typing import Self
|
||||
from collections.abc import Sequence, MutableMapping, Mapping
|
||||
import copy
|
||||
import logging
|
||||
from pprint import pformat
|
||||
|
||||
import numpy
|
||||
from numpy import pi
|
||||
from numpy.typing import ArrayLike
|
||||
|
||||
from ..pattern import Pattern
|
||||
from ..library import ILibrary, SINGLE_USE_PREFIX
|
||||
from ..error import PortError, BuildError
|
||||
from ..ports import PortList, Port
|
||||
from ..abstract import Abstract
|
||||
from ..utils import SupportsBool, rotation_matrix_2d
|
||||
from .tools import Tool
|
||||
from .utils import ell
|
||||
from .builder import Builder
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class Pather(Builder):
|
||||
"""
|
||||
An extension of `Builder` which provides functionality for routing and attaching
|
||||
single-use patterns (e.g. wires or waveguides) and bundles / buses of such patterns.
|
||||
|
||||
`Pather` is mostly concerned with calculating how long each wire should be. It calls
|
||||
out to `Tool.path` functions provided by subclasses of `Tool` to build the actual patterns.
|
||||
`Tool`s are assigned on a per-port basis and stored in `.tools`; a key of `None` represents
|
||||
a "default" `Tool` used for all ports which do not have a port-specific `Tool` assigned.
|
||||
|
||||
|
||||
Examples: Creating a Pather
|
||||
===========================
|
||||
- `Pather(library, tools=my_tool)` makes an empty pattern with no ports. The pattern
|
||||
is not added into `library` and must later be added with e.g.
|
||||
`library['mypat'] = pather.pattern`.
|
||||
The default wire/waveguide generating tool for all ports is set to `my_tool`.
|
||||
|
||||
- `Pather(library, ports={'in': Port(...), 'out': ...}, name='mypat', tools=my_tool)`
|
||||
makes an empty pattern, adds the given ports, and places it into `library`
|
||||
under the name `'mypat'`. The default wire/waveguide generating tool
|
||||
for all ports is set to `my_tool`
|
||||
|
||||
- `Pather(..., tools={'in': top_metal_40um, 'out': bottom_metal_1um, None: my_tool})`
|
||||
assigns specific tools to individual ports, and `my_tool` as a default for ports
|
||||
which are not specified.
|
||||
|
||||
- `Pather.interface(other_pat, port_map=['A', 'B'], library=library, tools=my_tool)`
|
||||
makes a new (empty) pattern, copies over ports 'A' and 'B' from
|
||||
`other_pat`, and creates additional ports 'in_A' and 'in_B' facing
|
||||
in the opposite directions. This can be used to build a device which
|
||||
can plug into `other_pat` (using the 'in_*' ports) but which does not
|
||||
itself include `other_pat` as a subcomponent.
|
||||
|
||||
- `Pather.interface(other_pather, ...)` does the same thing as
|
||||
`Builder.interface(other_builder.pattern, ...)` but also uses
|
||||
`other_builder.library` as its library by default.
|
||||
|
||||
|
||||
Examples: Adding to a pattern
|
||||
=============================
|
||||
- `pather.path('my_port', ccw=True, distance)` creates a "wire" for which the output
|
||||
port is `distance` units away along the axis of `'my_port'` and rotated 90 degrees
|
||||
counterclockwise (since `ccw=True`) relative to `'my_port'`. The wire is `plug`ged
|
||||
into the existing `'my_port'`, causing the port to move to the wire's output.
|
||||
|
||||
There is no formal guarantee about how far off-axis the output will be located;
|
||||
there may be a significant width to the bend that is used to accomplish the 90 degree
|
||||
turn. However, an error is raised if `distance` is too small to fit the bend.
|
||||
|
||||
- `pather.path('my_port', ccw=None, distance)` creates a straight wire with a length
|
||||
of `distance` and `plug`s it into `'my_port'`.
|
||||
|
||||
- `pather.path_to('my_port', ccw=False, position)` creates a wire which starts at
|
||||
`'my_port'` and has its output at the specified `position`, pointing 90 degrees
|
||||
clockwise relative to the input. Again, the off-axis position or distance to the
|
||||
output is not specified, so `position` takes the form of a single coordinate. To
|
||||
ease debugging, position may be specified as `x=position` or `y=position` and an
|
||||
error will be raised if the wrong coordinate is given.
|
||||
|
||||
- `pather.mpath(['A', 'B', 'C'], ..., spacing=spacing)` is a superset of `path`
|
||||
and `path_to` which can act on multiple ports simultaneously. Each port's wire is
|
||||
generated using its own `Tool` (or the default tool if left unspecified).
|
||||
The output ports are spaced out by `spacing` along the input ports' axis, unless
|
||||
`ccw=None` is specified (i.e. no bends) in which case they all end at the same
|
||||
destination coordinate.
|
||||
|
||||
- `pather.plug(wire, {'myport': 'A'})` places port 'A' of `wire` at 'myport'
|
||||
of `pather.pattern`. If `wire` has only two ports (e.g. 'A' and 'B'), no `map_out`,
|
||||
argument is provided, and the `inherit_name` argument is not explicitly
|
||||
set to `False`, the unconnected port of `wire` is automatically renamed to
|
||||
'myport'. This allows easy extension of existing ports without changing
|
||||
their names or having to provide `map_out` each time `plug` is called.
|
||||
|
||||
- `pather.place(pad, offset=(10, 10), rotation=pi / 2, port_map={'A': 'gnd'})`
|
||||
instantiates `pad` at the specified (x, y) offset and with the specified
|
||||
rotation, adding its ports to those of `pather.pattern`. Port 'A' of `pad` is
|
||||
renamed to 'gnd' so that further routing can use this signal or net name
|
||||
rather than the port name on the original `pad` device.
|
||||
|
||||
- `pather.retool(tool)` or `pather.retool(tool, ['in', 'out', None])` can change
|
||||
which tool is used for the given ports (or as the default tool). Useful
|
||||
when placing vias or using multiple waveguide types along a route.
|
||||
"""
|
||||
__slots__ = ('tools',)
|
||||
|
||||
library: ILibrary
|
||||
"""
|
||||
Library from which existing patterns should be referenced, and to which
|
||||
new ones should be added
|
||||
"""
|
||||
|
||||
tools: dict[str | None, Tool]
|
||||
"""
|
||||
Tool objects are used to dynamically generate new single-use `Pattern`s
|
||||
(e.g wires or waveguides) to be plugged into this device. A key of `None`
|
||||
indicates the default `Tool`.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
library: ILibrary,
|
||||
*,
|
||||
pattern: Pattern | None = None,
|
||||
ports: str | Mapping[str, Port] | None = None,
|
||||
tools: Tool | MutableMapping[str | None, Tool] | None = None,
|
||||
name: str | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
library: The library from which referenced patterns will be taken,
|
||||
and where new patterns (e.g. generated by the `tools`) will be placed.
|
||||
pattern: The pattern which will be modified by subsequent operations.
|
||||
If `None` (default), a new pattern is created.
|
||||
ports: Allows specifying the initial set of ports, if `pattern` does
|
||||
not already have any ports (or is not provided). May be a string,
|
||||
in which case it is interpreted as a name in `library`.
|
||||
Default `None` (no ports).
|
||||
tools: A mapping of {port: tool} which specifies what `Tool` should be used
|
||||
to generate waveguide or wire segments when `path`/`path_to`/`mpath`
|
||||
are called. Relies on `Tool.path` implementations.
|
||||
name: If specified, `library[name]` is set to `self.pattern`.
|
||||
"""
|
||||
self._dead = False
|
||||
self.library = library
|
||||
if pattern is not None:
|
||||
self.pattern = pattern
|
||||
else:
|
||||
self.pattern = Pattern()
|
||||
|
||||
if ports is not None:
|
||||
if self.pattern.ports:
|
||||
raise BuildError('Ports supplied for pattern with pre-existing ports!')
|
||||
if isinstance(ports, str):
|
||||
ports = library.abstract(ports).ports
|
||||
|
||||
self.pattern.ports.update(copy.deepcopy(dict(ports)))
|
||||
|
||||
if name is not None:
|
||||
library[name] = self.pattern
|
||||
|
||||
if tools is None:
|
||||
self.tools = {}
|
||||
elif isinstance(tools, Tool):
|
||||
self.tools = {None: tools}
|
||||
else:
|
||||
self.tools = dict(tools)
|
||||
|
||||
@classmethod
|
||||
def from_builder(
|
||||
cls: type['Pather'],
|
||||
builder: Builder,
|
||||
*,
|
||||
tools: Tool | MutableMapping[str | None, Tool] | None = None,
|
||||
) -> 'Pather':
|
||||
"""
|
||||
Construct a `Pather` by adding tools to a `Builder`.
|
||||
|
||||
Args:
|
||||
builder: Builder to turn into a Pather
|
||||
tools: Tools for the `Pather`
|
||||
|
||||
Returns:
|
||||
A new Pather object, using `builder.library` and `builder.pattern`.
|
||||
"""
|
||||
new = Pather(library=builder.library, tools=tools, pattern=builder.pattern)
|
||||
return new
|
||||
|
||||
@classmethod
|
||||
def interface(
|
||||
cls: type['Pather'],
|
||||
source: PortList | Mapping[str, Port] | str,
|
||||
*,
|
||||
library: ILibrary | None = None,
|
||||
tools: Tool | MutableMapping[str | None, Tool] | None = None,
|
||||
in_prefix: str = 'in_',
|
||||
out_prefix: str = '',
|
||||
port_map: dict[str, str] | Sequence[str] | None = None,
|
||||
name: str | None = None,
|
||||
) -> 'Pather':
|
||||
"""
|
||||
Wrapper for `Pattern.interface()`, which returns a Pather instead.
|
||||
|
||||
Args:
|
||||
source: A collection of ports (e.g. Pattern, Builder, or dict)
|
||||
from which to create the interface. May be a pattern name if
|
||||
`library` is provided.
|
||||
library: Library from which existing patterns should be referenced,
|
||||
and to which the new one should be added (if named). If not provided,
|
||||
`source.library` must exist and will be used.
|
||||
tools: `Tool`s which will be used by the pather for generating new wires
|
||||
or waveguides (via `path`/`path_to`/`mpath`).
|
||||
in_prefix: Prepended to port names for newly-created ports with
|
||||
reversed directions compared to the current device.
|
||||
out_prefix: Prepended to port names for ports which are directly
|
||||
copied from the current device.
|
||||
port_map: Specification for ports to copy into the new device:
|
||||
- If `None`, all ports are copied.
|
||||
- If a sequence, only the listed ports are copied
|
||||
- If a mapping, the listed ports (keys) are copied and
|
||||
renamed (to the values).
|
||||
|
||||
Returns:
|
||||
The new pather, with an empty pattern and 2x as many ports as
|
||||
listed in port_map.
|
||||
|
||||
Raises:
|
||||
`PortError` if `port_map` contains port names not present in the
|
||||
current device.
|
||||
`PortError` if applying the prefixes results in duplicate port
|
||||
names.
|
||||
"""
|
||||
if library is None:
|
||||
if hasattr(source, 'library') and isinstance(source.library, ILibrary):
|
||||
library = source.library
|
||||
else:
|
||||
raise BuildError('No library provided (and not present in `source.library`')
|
||||
|
||||
if tools is None and hasattr(source, 'tools') and isinstance(source.tools, dict):
|
||||
tools = source.tools
|
||||
|
||||
if isinstance(source, str):
|
||||
source = library.abstract(source).ports
|
||||
|
||||
pat = Pattern.interface(source, in_prefix=in_prefix, out_prefix=out_prefix, port_map=port_map)
|
||||
new = Pather(library=library, pattern=pat, name=name, tools=tools)
|
||||
return new
|
||||
|
||||
def __repr__(self) -> str:
|
||||
s = f'<Pather {self.pattern} L({len(self.library)}) {pformat(self.tools)}>'
|
||||
return s
|
||||
|
||||
def retool(
|
||||
self,
|
||||
tool: Tool,
|
||||
keys: str | Sequence[str | None] | None = None,
|
||||
) -> Self:
|
||||
"""
|
||||
Update the `Tool` which will be used when generating `Pattern`s for the ports
|
||||
given by `keys`.
|
||||
|
||||
Args:
|
||||
tool: The new `Tool` to use for the given ports.
|
||||
keys: Which ports the tool should apply to. `None` indicates the default tool,
|
||||
used when there is no matching entry in `self.tools` for the port in question.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
if keys is None or isinstance(keys, str):
|
||||
self.tools[keys] = tool
|
||||
else:
|
||||
for key in keys:
|
||||
self.tools[key] = tool
|
||||
return self
|
||||
|
||||
def path(
|
||||
self,
|
||||
portspec: str,
|
||||
ccw: SupportsBool | None,
|
||||
length: float,
|
||||
*,
|
||||
tool_port_names: tuple[str, str] = ('A', 'B'),
|
||||
plug_into: str | None = None,
|
||||
**kwargs,
|
||||
) -> Self:
|
||||
"""
|
||||
Create a "wire"/"waveguide" and `plug` it into the port `portspec`, with the aim
|
||||
of traveling exactly `length` distance.
|
||||
|
||||
The wire will travel `length` distance along the port's axis, an an unspecified
|
||||
(tool-dependent) distance in the perpendicular direction. The output port will
|
||||
be rotated (or not) based on the `ccw` parameter.
|
||||
|
||||
Args:
|
||||
portspec: The name of the port into which the wire will be plugged.
|
||||
ccw: If `None`, the output should be along the same axis as the input.
|
||||
Otherwise, cast to bool and turn counterclockwise if True
|
||||
and clockwise otherwise.
|
||||
length: The total distance from input to output, along the input's axis only.
|
||||
(There may be a tool-dependent offset along the other axis.)
|
||||
tool_port_names: The names of the ports on the generated pattern. It is unlikely
|
||||
that you will need to change these. The first port is the input (to be
|
||||
connected to `portspec`).
|
||||
plug_into: If not None, attempts to plug the wire's output port into the provided
|
||||
port on `self`.
|
||||
|
||||
Returns:
|
||||
self
|
||||
|
||||
Raises:
|
||||
BuildError if `distance` is too small to fit the bend (if a bend is present).
|
||||
LibraryError if no valid name could be picked for the pattern.
|
||||
"""
|
||||
if self._dead:
|
||||
logger.error('Skipping path() since device is dead')
|
||||
return self
|
||||
|
||||
tool = self.tools.get(portspec, self.tools[None])
|
||||
in_ptype = self.pattern[portspec].ptype
|
||||
tree = tool.path(ccw, length, in_ptype=in_ptype, port_names=tool_port_names, **kwargs)
|
||||
abstract = self.library << tree
|
||||
if plug_into is not None:
|
||||
output = {plug_into: tool_port_names[1]}
|
||||
else:
|
||||
output = {}
|
||||
return self.plug(abstract, {portspec: tool_port_names[0], **output})
|
||||
|
||||
def path_to(
|
||||
self,
|
||||
portspec: str,
|
||||
ccw: SupportsBool | None,
|
||||
position: float | None = None,
|
||||
*,
|
||||
x: float | None = None,
|
||||
y: float | None = None,
|
||||
tool_port_names: tuple[str, str] = ('A', 'B'),
|
||||
plug_into: str | None = None,
|
||||
**kwargs,
|
||||
) -> Self:
|
||||
"""
|
||||
Create a "wire"/"waveguide" and `plug` it into the port `portspec`, with the aim
|
||||
of ending exactly at a target position.
|
||||
|
||||
The wire will travel so that the output port will be placed at exactly the target
|
||||
position along the input port's axis. There can be an unspecified (tool-dependent)
|
||||
offset in the perpendicular direction. The output port will be rotated (or not)
|
||||
based on the `ccw` parameter.
|
||||
|
||||
Args:
|
||||
portspec: The name of the port into which the wire will be plugged.
|
||||
ccw: If `None`, the output should be along the same axis as the input.
|
||||
Otherwise, cast to bool and turn counterclockwise if True
|
||||
and clockwise otherwise.
|
||||
position: The final port position, along the input's axis only.
|
||||
(There may be a tool-dependent offset along the other axis.)
|
||||
Only one of `position`, `x`, and `y` may be specified.
|
||||
x: The final port position along the x axis.
|
||||
`portspec` must refer to a horizontal port if `x` is passed, otherwise a
|
||||
BuildError will be raised.
|
||||
y: The final port position along the y axis.
|
||||
`portspec` must refer to a vertical port if `y` is passed, otherwise a
|
||||
BuildError will be raised.
|
||||
tool_port_names: The names of the ports on the generated pattern. It is unlikely
|
||||
that you will need to change these. The first port is the input (to be
|
||||
connected to `portspec`).
|
||||
plug_into: If not None, attempts to plug the wire's output port into the provided
|
||||
port on `self`.
|
||||
|
||||
Returns:
|
||||
self
|
||||
|
||||
Raises:
|
||||
BuildError if `position`, `x`, or `y` is too close to fit the bend (if a bend
|
||||
is present).
|
||||
BuildError if `x` or `y` is specified but does not match the axis of `portspec`.
|
||||
BuildError if more than one of `x`, `y`, and `position` is specified.
|
||||
"""
|
||||
if self._dead:
|
||||
logger.error('Skipping path_to() since device is dead')
|
||||
return self
|
||||
|
||||
pos_count = sum(vv is not None for vv in (position, x, y))
|
||||
if pos_count > 1:
|
||||
raise BuildError('Only one of `position`, `x`, and `y` may be specified at once')
|
||||
if pos_count < 1:
|
||||
raise BuildError('One of `position`, `x`, and `y` must be specified')
|
||||
|
||||
port = self.pattern[portspec]
|
||||
if port.rotation is None:
|
||||
raise PortError(f'Port {portspec} has no rotation and cannot be used for path_to()')
|
||||
|
||||
if not numpy.isclose(port.rotation % (pi / 2), 0):
|
||||
raise BuildError('path_to was asked to route from non-manhattan port')
|
||||
|
||||
is_horizontal = numpy.isclose(port.rotation % pi, 0)
|
||||
if is_horizontal:
|
||||
if y is not None:
|
||||
raise BuildError('Asked to path to y-coordinate, but port is horizontal')
|
||||
if position is None:
|
||||
position = x
|
||||
else:
|
||||
if x is not None:
|
||||
raise BuildError('Asked to path to x-coordinate, but port is vertical')
|
||||
if position is None:
|
||||
position = y
|
||||
|
||||
x0, y0 = port.offset
|
||||
if is_horizontal:
|
||||
if numpy.sign(numpy.cos(port.rotation)) == numpy.sign(position - x0):
|
||||
raise BuildError(f'path_to routing to behind source port: x0={x0:g} to {position:g}')
|
||||
length = numpy.abs(position - x0)
|
||||
else:
|
||||
if numpy.sign(numpy.sin(port.rotation)) == numpy.sign(position - y0):
|
||||
raise BuildError(f'path_to routing to behind source port: y0={y0:g} to {position:g}')
|
||||
length = numpy.abs(position - y0)
|
||||
|
||||
return self.path(
|
||||
portspec,
|
||||
ccw,
|
||||
length,
|
||||
tool_port_names=tool_port_names,
|
||||
plug_into=plug_into,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def path_into(
|
||||
self,
|
||||
portspec_src: str,
|
||||
portspec_dst: str,
|
||||
*,
|
||||
tool_port_names: tuple[str, str] = ('A', 'B'),
|
||||
out_ptype: str | None = None,
|
||||
plug_destination: bool = True,
|
||||
**kwargs,
|
||||
) -> Self:
|
||||
"""
|
||||
Create a "wire"/"waveguide" and traveling between the ports `portspec_src` and
|
||||
`portspec_dst`, and `plug` it into both (or just the source port).
|
||||
|
||||
Only unambiguous scenarios are allowed:
|
||||
- Straight connector between facing ports
|
||||
- Single 90 degree bend
|
||||
- Jog between facing ports
|
||||
(jog is done as late as possible, i.e. only 2 L-shaped segments are used)
|
||||
|
||||
By default, the destination's `pytpe` will be used as the `out_ptype` for the
|
||||
wire, and the `portspec_dst` will be plugged (i.e. removed).
|
||||
|
||||
Args:
|
||||
portspec_src: The name of the starting port into which the wire will be plugged.
|
||||
portspec_dst: The name of the destination port.
|
||||
tool_port_names: The names of the ports on the generated pattern. It is unlikely
|
||||
that you will need to change these. The first port is the input (to be
|
||||
connected to `portspec`).
|
||||
out_ptype: Passed to the pathing tool in order to specify the desired port type
|
||||
to be generated at the destination end. If `None` (default), the destination
|
||||
port's `ptype` will be used.
|
||||
|
||||
Returns:
|
||||
self
|
||||
|
||||
Raises:
|
||||
PortError if either port does not have a specified rotation.
|
||||
BuildError if and invalid port config is encountered:
|
||||
- Non-manhattan ports
|
||||
- U-bend
|
||||
- Destination too close to (or behind) source
|
||||
"""
|
||||
if self._dead:
|
||||
logger.error('Skipping path_into() since device is dead')
|
||||
return self
|
||||
|
||||
port_src = self.pattern[portspec_src]
|
||||
port_dst = self.pattern[portspec_dst]
|
||||
|
||||
if out_ptype is None:
|
||||
out_ptype = port_dst.ptype
|
||||
|
||||
if port_src.rotation is None:
|
||||
raise PortError(f'Port {portspec_src} has no rotation and cannot be used for path_into()')
|
||||
if port_dst.rotation is None:
|
||||
raise PortError(f'Port {portspec_dst} has no rotation and cannot be used for path_into()')
|
||||
|
||||
if not numpy.isclose(port_src.rotation % (pi / 2), 0):
|
||||
raise BuildError('path_into was asked to route from non-manhattan port')
|
||||
if not numpy.isclose(port_dst.rotation % (pi / 2), 0):
|
||||
raise BuildError('path_into was asked to route to non-manhattan port')
|
||||
|
||||
src_is_horizontal = numpy.isclose(port_src.rotation % pi, 0)
|
||||
dst_is_horizontal = numpy.isclose(port_dst.rotation % pi, 0)
|
||||
xs, ys = port_src.offset
|
||||
xd, yd = port_dst.offset
|
||||
|
||||
angle = (port_dst.rotation - port_src.rotation) % (2 * pi)
|
||||
|
||||
src_ne = port_src.rotation % (2 * pi) > (3 * pi / 4) # path from src will go north or east
|
||||
|
||||
def get_jog(ccw: SupportsBool, length: float) -> float:
|
||||
tool = self.tools.get(portspec_src, self.tools[None])
|
||||
in_ptype = 'unk' # Could use port_src.ptype, but we're assuming this is after one bend already...
|
||||
tree2 = tool.path(ccw, length, in_ptype=in_ptype, port_names=('A', 'B'), out_ptype=out_ptype, **kwargs)
|
||||
top2 = tree2.top_pattern()
|
||||
jog = rotation_matrix_2d(top2['A'].rotation) @ (top2['B'].offset - top2['A'].offset)
|
||||
return jog[1]
|
||||
|
||||
dst_extra_args = {'out_ptype': out_ptype}
|
||||
if plug_destination:
|
||||
dst_extra_args['plug_into'] = portspec_dst
|
||||
|
||||
src_args = {**kwargs, 'tool_port_names': tool_port_names}
|
||||
dst_args = {**src_args, **dst_extra_args}
|
||||
if src_is_horizontal and not dst_is_horizontal:
|
||||
# single bend should suffice
|
||||
self.path_to(portspec_src, angle > pi, x=xd, **src_args)
|
||||
self.path_to(portspec_src, None, y=yd, **dst_args)
|
||||
elif dst_is_horizontal and not src_is_horizontal:
|
||||
# single bend should suffice
|
||||
self.path_to(portspec_src, angle > pi, y=yd, **src_args)
|
||||
self.path_to(portspec_src, None, x=xd, **dst_args)
|
||||
elif numpy.isclose(angle, pi):
|
||||
if src_is_horizontal and ys == yd:
|
||||
# straight connector
|
||||
self.path_to(portspec_src, None, x=xd, **dst_args)
|
||||
elif not src_is_horizontal and xs == xd:
|
||||
# straight connector
|
||||
self.path_to(portspec_src, None, y=yd, **dst_args)
|
||||
elif src_is_horizontal:
|
||||
# figure out how much x our y-segment (2nd) takes up, then path based on that
|
||||
y_len = numpy.abs(yd - ys)
|
||||
ccw2 = src_ne != (yd > ys)
|
||||
jog = get_jog(ccw2, y_len) * numpy.sign(xd - xs)
|
||||
self.path_to(portspec_src, not ccw2, x=xd - jog, **src_args)
|
||||
self.path_to(portspec_src, ccw2, y=yd, **dst_args)
|
||||
else:
|
||||
# figure out how much y our x-segment (2nd) takes up, then path based on that
|
||||
x_len = numpy.abs(xd - xs)
|
||||
ccw2 = src_ne != (xd < xs)
|
||||
jog = get_jog(ccw2, x_len) * numpy.sign(yd - ys)
|
||||
self.path_to(portspec_src, not ccw2, y=yd - jog, **src_args)
|
||||
self.path_to(portspec_src, ccw2, x=xd, **dst_args)
|
||||
elif numpy.isclose(angle, 0):
|
||||
raise BuildError('Don\'t know how to route a U-bend at this time!')
|
||||
else:
|
||||
raise BuildError(f'Don\'t know how to route ports with relative angle {angle}')
|
||||
|
||||
return self
|
||||
|
||||
def mpath(
|
||||
self,
|
||||
portspec: str | Sequence[str],
|
||||
ccw: SupportsBool | None,
|
||||
*,
|
||||
spacing: float | ArrayLike | None = None,
|
||||
set_rotation: float | None = None,
|
||||
tool_port_names: tuple[str, str] = ('A', 'B'),
|
||||
force_container: bool = False,
|
||||
base_name: str = SINGLE_USE_PREFIX + 'mpath',
|
||||
**kwargs,
|
||||
) -> Self:
|
||||
"""
|
||||
`mpath` is a superset of `path` and `path_to` which can act on bundles or buses
|
||||
of "wires or "waveguides".
|
||||
|
||||
The wires will travel so that the output ports will be placed at well-defined
|
||||
locations along the axis of their input ports, but may have arbitrary (tool-
|
||||
dependent) offsets in the perpendicular direction.
|
||||
|
||||
If `ccw` is not `None`, the wire bundle will turn 90 degres in either the
|
||||
clockwise (`ccw=False`) or counter-clockwise (`ccw=True`) direction. Within the
|
||||
bundle, the center-to-center wire spacings after the turn are set by `spacing`,
|
||||
which is required when `ccw` is not `None`. The final position of bundle as a
|
||||
whole can be set in a number of ways:
|
||||
|
||||
=A>---------------------------V turn direction: `ccw=False`
|
||||
=B>-------------V |
|
||||
=C>-----------------------V |
|
||||
=D=>----------------V |
|
||||
|
|
||||
|
||||
x---x---x---x `spacing` (can be scalar or array)
|
||||
|
||||
<--------------> `emin=`
|
||||
<------> `bound_type='min_past_furthest', bound=`
|
||||
<--------------------------------> `emax=`
|
||||
x `pmin=`
|
||||
x `pmax=`
|
||||
|
||||
- `emin=`, equivalent to `bound_type='min_extension', bound=`
|
||||
The total extension value for the furthest-out port (B in the diagram).
|
||||
- `emax=`, equivalent to `bound_type='max_extension', bound=`:
|
||||
The total extension value for the closest-in port (C in the diagram).
|
||||
- `pmin=`, equivalent to `xmin=`, `ymin=`, or `bound_type='min_position', bound=`:
|
||||
The coordinate of the innermost bend (D's bend).
|
||||
The x/y versions throw an error if they do not match the port axis (for debug)
|
||||
- `pmax=`, `xmax=`, `ymax=`, or `bound_type='max_position', bound=`:
|
||||
The coordinate of the outermost bend (A's bend).
|
||||
The x/y versions throw an error if they do not match the port axis (for debug)
|
||||
- `bound_type='min_past_furthest', bound=`:
|
||||
The distance between furthest out-port (B) and the innermost bend (D's bend).
|
||||
|
||||
If `ccw=None`, final output positions (along the input axis) of all wires will be
|
||||
identical (i.e. wires will all be cut off evenly). In this case, `spacing=None` is
|
||||
required. In this case, `emin=` and `emax=` are equivalent to each other, and
|
||||
`pmin=`, `pmax=`, `xmin=`, etc. are also equivalent to each other.
|
||||
|
||||
|
||||
Args:
|
||||
portspec: The names of the ports which are to be routed.
|
||||
ccw: If `None`, the outputs should be along the same axis as the inputs.
|
||||
Otherwise, cast to bool and turn 90 degrees counterclockwise if `True`
|
||||
and clockwise otherwise.
|
||||
spacing: Center-to-center distance between output ports along the input port's axis.
|
||||
Must be provided if (and only if) `ccw` is not `None`.
|
||||
set_rotation: If the provided ports have `rotation=None`, this can be used
|
||||
to set a rotation for them.
|
||||
tool_port_names: The names of the ports on the generated pattern. It is unlikely
|
||||
that you will need to change these. The first port is the input (to be
|
||||
connected to `portspec`).
|
||||
force_container: If `False` (default), and only a single port is provided, the
|
||||
generated wire for that port will be referenced directly, rather than being
|
||||
wrapped in an additonal `Pattern`.
|
||||
base_name: Name to use for the generated `Pattern`. This will be passed through
|
||||
`self.library.get_name()` to get a unique name for each new `Pattern`.
|
||||
|
||||
Returns:
|
||||
self
|
||||
|
||||
Raises:
|
||||
BuildError if the implied length for any wire is too close to fit the bend
|
||||
(if a bend is requested).
|
||||
BuildError if `xmin`/`xmax` or `ymin`/`ymax` is specified but does not
|
||||
match the axis of `portspec`.
|
||||
BuildError if an incorrect bound type or spacing is specified.
|
||||
"""
|
||||
if self._dead:
|
||||
logger.error('Skipping mpath() since device is dead')
|
||||
return self
|
||||
|
||||
bound_types = set()
|
||||
if 'bound_type' in kwargs:
|
||||
bound_types.add(kwargs['bound_type'])
|
||||
bound = kwargs['bound']
|
||||
del kwargs['bound_type']
|
||||
del kwargs['bound']
|
||||
for bt in ('emin', 'emax', 'pmin', 'pmax', 'xmin', 'xmax', 'ymin', 'ymax', 'min_past_furthest'):
|
||||
if bt in kwargs:
|
||||
bound_types.add(bt)
|
||||
bound = kwargs[bt]
|
||||
del kwargs[bt]
|
||||
|
||||
if not bound_types:
|
||||
raise BuildError('No bound type specified for mpath')
|
||||
if len(bound_types) > 1:
|
||||
raise BuildError(f'Too many bound types specified for mpath: {bound_types}')
|
||||
bound_type = tuple(bound_types)[0]
|
||||
|
||||
if isinstance(portspec, str):
|
||||
portspec = [portspec]
|
||||
ports = self.pattern[tuple(portspec)]
|
||||
|
||||
extensions = ell(ports, ccw, spacing=spacing, bound=bound, bound_type=bound_type, set_rotation=set_rotation)
|
||||
|
||||
if len(ports) == 1 and not force_container:
|
||||
# Not a bus, so having a container just adds noise to the layout
|
||||
port_name = tuple(portspec)[0]
|
||||
return self.path(port_name, ccw, extensions[port_name], tool_port_names=tool_port_names, **kwargs)
|
||||
|
||||
bld = Pather.interface(source=ports, library=self.library, tools=self.tools)
|
||||
for port_name, length in extensions.items():
|
||||
bld.path(port_name, ccw, length, tool_port_names=tool_port_names, **kwargs)
|
||||
name = self.library.get_name(base_name)
|
||||
self.library[name] = bld.pattern
|
||||
return self.plug(Abstract(name, bld.pattern.ports), {sp: 'in_' + sp for sp in ports}) # TODO safe to use 'in_'?
|
||||
|
||||
# TODO def bus_join()?
|
||||
|
||||
def flatten(self) -> Self:
|
||||
"""
|
||||
Flatten the contained pattern, using the contained library to resolve references.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.pattern.flatten(self.library)
|
||||
return self
|
||||
|
112
masque/builder/port_utils.py
Normal file
112
masque/builder/port_utils.py
Normal file
@ -0,0 +1,112 @@
|
||||
"""
|
||||
Functions for writing port data into a Pattern (`dev2pat`) and retrieving it (`pat2dev`).
|
||||
|
||||
These use the format 'name:ptype angle_deg' written into labels, which are placed at
|
||||
the port locations. This particular approach is just a sensible default; feel free to
|
||||
to write equivalent functions for your own format or alternate storage methods.
|
||||
"""
|
||||
from typing import Sequence
|
||||
import logging
|
||||
|
||||
import numpy
|
||||
|
||||
from ..pattern import Pattern
|
||||
from ..label import Label
|
||||
from ..utils import rotation_matrix_2d, layer_t
|
||||
from .devices import Device, Port
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def dev2pat(device: Device, layer: layer_t) -> Pattern:
|
||||
"""
|
||||
Place a text label at each port location, specifying the port data in the format
|
||||
'name:ptype angle_deg'
|
||||
|
||||
This can be used to debug port locations or to automatically generate ports
|
||||
when reading in a GDS file.
|
||||
|
||||
NOTE that `device` is modified by this function, and `device.pattern` is returned.
|
||||
|
||||
Args:
|
||||
device: The device which is to have its ports labeled. MODIFIED in-place.
|
||||
layer: The layer on which the labels will be placed.
|
||||
|
||||
Returns:
|
||||
`device.pattern`
|
||||
"""
|
||||
for name, port in device.ports.items():
|
||||
if port.rotation is None:
|
||||
angle_deg = numpy.inf
|
||||
else:
|
||||
angle_deg = numpy.rad2deg(port.rotation)
|
||||
device.pattern.labels += [
|
||||
Label(string=f'{name}:{port.ptype} {angle_deg:g}', layer=layer, offset=port.offset)
|
||||
]
|
||||
return device.pattern
|
||||
|
||||
|
||||
def pat2dev(
|
||||
pattern: Pattern,
|
||||
layers: Sequence[layer_t],
|
||||
max_depth: int = 999_999,
|
||||
skip_subcells: bool = True,
|
||||
) -> Device:
|
||||
"""
|
||||
Examine `pattern` for labels specifying port info, and use that info
|
||||
to build a `Device` object.
|
||||
|
||||
Labels are assumed to be placed at the port locations, and have the format
|
||||
'name:ptype angle_deg'
|
||||
|
||||
Args:
|
||||
pattern: Pattern object to scan for labels.
|
||||
layers: Search for labels on all the given layers.
|
||||
max_depth: Maximum hierarcy depth to search. Default 999_999.
|
||||
Reduce this to 0 to avoid ever searching subcells.
|
||||
skip_subcells: If port labels are found at a given hierarcy level,
|
||||
do not continue searching at deeper levels. This allows subcells
|
||||
to contain their own port info (and thus become their own Devices).
|
||||
Default True.
|
||||
|
||||
Returns:
|
||||
The constructed Device object. Port labels are not removed from the pattern.
|
||||
"""
|
||||
ports = {} # Note: could do a list here, if they're not unique
|
||||
annotated_cells = set()
|
||||
def find_ports_each(pat, hierarchy, transform, memo) -> Pattern:
|
||||
if len(hierarchy) > max_depth - 1:
|
||||
return pat
|
||||
|
||||
if skip_subcells and any(parent in annotated_cells for parent in hierarchy):
|
||||
return pat
|
||||
|
||||
labels = [ll for ll in pat.labels if ll.layer in layers]
|
||||
|
||||
if len(labels) == 0:
|
||||
return pat
|
||||
|
||||
if skip_subcells:
|
||||
annotated_cells.add(pat)
|
||||
|
||||
mirr_factor = numpy.array((1, -1)) ** transform[3]
|
||||
rot_matrix = rotation_matrix_2d(transform[2])
|
||||
for label in labels:
|
||||
name, property_string = label.string.split(':')
|
||||
properties = property_string.split(' ')
|
||||
ptype = properties[0]
|
||||
angle_deg = float(properties[1]) if len(ptype) else 0
|
||||
|
||||
xy_global = transform[:2] + rot_matrix @ (label.offset * mirr_factor)
|
||||
angle = numpy.deg2rad(angle_deg) * mirr_factor[0] * mirr_factor[1] + transform[2]
|
||||
|
||||
if name in ports:
|
||||
logger.info(f'Duplicate port {name} in pattern {pattern.name}')
|
||||
|
||||
ports[name] = Port(offset=xy_global, rotation=angle, ptype=ptype)
|
||||
|
||||
return pat
|
||||
|
||||
pattern.dfs(visit_before=find_ports_each, transform=True)
|
||||
return Device(pattern, ports)
|
@ -1,703 +0,0 @@
|
||||
"""
|
||||
Pather with batched (multi-step) rendering
|
||||
"""
|
||||
from typing import Self
|
||||
from collections.abc import Sequence, Mapping, MutableMapping
|
||||
import copy
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
from pprint import pformat
|
||||
|
||||
import numpy
|
||||
from numpy import pi
|
||||
from numpy.typing import ArrayLike
|
||||
|
||||
from ..pattern import Pattern
|
||||
from ..library import ILibrary
|
||||
from ..error import PortError, BuildError
|
||||
from ..ports import PortList, Port
|
||||
from ..abstract import Abstract
|
||||
from ..utils import SupportsBool
|
||||
from .tools import Tool, RenderStep
|
||||
from .utils import ell
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class RenderPather(PortList):
|
||||
"""
|
||||
`RenderPather` is an alternative to `Pather` which uses the `path`/`path_to`/`mpath`
|
||||
functions to plan out wire paths without incrementally generating the layout. Instead,
|
||||
it waits until `render` is called, at which point it draws all the planned segments
|
||||
simultaneously. This allows it to e.g. draw each wire using a single `Path` or
|
||||
`Polygon` shape instead of multiple rectangles.
|
||||
|
||||
`RenderPather` calls out to `Tool.planL` and `Tool.render` to provide tool-specific
|
||||
dimensions and build the final geometry for each wire. `Tool.planL` provides the
|
||||
output port data (relative to the input) for each segment. The tool, input and output
|
||||
ports are placed into a `RenderStep`, and a sequence of `RenderStep`s is stored for
|
||||
each port. When `render` is called, it bundles `RenderStep`s into batches which use
|
||||
the same `Tool`, and passes each batch to the relevant tool's `Tool.render` to build
|
||||
the geometry.
|
||||
|
||||
See `Pather` for routing examples. After routing is complete, `render` must be called
|
||||
to generate the final geometry.
|
||||
"""
|
||||
__slots__ = ('pattern', 'library', 'paths', 'tools', '_dead', )
|
||||
|
||||
pattern: Pattern
|
||||
""" Layout of this device """
|
||||
|
||||
library: ILibrary
|
||||
""" Library from which patterns should be referenced """
|
||||
|
||||
_dead: bool
|
||||
""" If True, plug()/place() are skipped (for debugging) """
|
||||
|
||||
paths: defaultdict[str, list[RenderStep]]
|
||||
""" Per-port list of operations, to be used by `render` """
|
||||
|
||||
tools: dict[str | None, Tool]
|
||||
"""
|
||||
Tool objects are used to dynamically generate new single-use Devices
|
||||
(e.g wires or waveguides) to be plugged into this device.
|
||||
"""
|
||||
|
||||
@property
|
||||
def ports(self) -> dict[str, Port]:
|
||||
return self.pattern.ports
|
||||
|
||||
@ports.setter
|
||||
def ports(self, value: dict[str, Port]) -> None:
|
||||
self.pattern.ports = value
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
library: ILibrary,
|
||||
*,
|
||||
pattern: Pattern | None = None,
|
||||
ports: str | Mapping[str, Port] | None = None,
|
||||
tools: Tool | MutableMapping[str | None, Tool] | None = None,
|
||||
name: str | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
library: The library from which referenced patterns will be taken,
|
||||
and where new patterns (e.g. generated by the `tools`) will be placed.
|
||||
pattern: The pattern which will be modified by subsequent operations.
|
||||
If `None` (default), a new pattern is created.
|
||||
ports: Allows specifying the initial set of ports, if `pattern` does
|
||||
not already have any ports (or is not provided). May be a string,
|
||||
in which case it is interpreted as a name in `library`.
|
||||
Default `None` (no ports).
|
||||
tools: A mapping of {port: tool} which specifies what `Tool` should be used
|
||||
to generate waveguide or wire segments when `path`/`path_to`/`mpath`
|
||||
are called. Relies on `Tool.planL` and `Tool.render` implementations.
|
||||
name: If specified, `library[name]` is set to `self.pattern`.
|
||||
"""
|
||||
self._dead = False
|
||||
self.paths = defaultdict(list)
|
||||
self.library = library
|
||||
if pattern is not None:
|
||||
self.pattern = pattern
|
||||
else:
|
||||
self.pattern = Pattern()
|
||||
|
||||
if ports is not None:
|
||||
if self.pattern.ports:
|
||||
raise BuildError('Ports supplied for pattern with pre-existing ports!')
|
||||
if isinstance(ports, str):
|
||||
if library is None:
|
||||
raise BuildError('Ports given as a string, but `library` was `None`!')
|
||||
ports = library.abstract(ports).ports
|
||||
|
||||
self.pattern.ports.update(copy.deepcopy(dict(ports)))
|
||||
|
||||
if name is not None:
|
||||
if library is None:
|
||||
raise BuildError('Name was supplied, but no library was given!')
|
||||
library[name] = self.pattern
|
||||
|
||||
if tools is None:
|
||||
self.tools = {}
|
||||
elif isinstance(tools, Tool):
|
||||
self.tools = {None: tools}
|
||||
else:
|
||||
self.tools = dict(tools)
|
||||
|
||||
@classmethod
|
||||
def interface(
|
||||
cls: type['RenderPather'],
|
||||
source: PortList | Mapping[str, Port] | str,
|
||||
*,
|
||||
library: ILibrary | None = None,
|
||||
tools: Tool | MutableMapping[str | None, Tool] | None = None,
|
||||
in_prefix: str = 'in_',
|
||||
out_prefix: str = '',
|
||||
port_map: dict[str, str] | Sequence[str] | None = None,
|
||||
name: str | None = None,
|
||||
) -> 'RenderPather':
|
||||
"""
|
||||
Wrapper for `Pattern.interface()`, which returns a RenderPather instead.
|
||||
|
||||
Args:
|
||||
source: A collection of ports (e.g. Pattern, Builder, or dict)
|
||||
from which to create the interface. May be a pattern name if
|
||||
`library` is provided.
|
||||
library: Library from which existing patterns should be referenced,
|
||||
and to which the new one should be added (if named). If not provided,
|
||||
`source.library` must exist and will be used.
|
||||
tools: `Tool`s which will be used by the pather for generating new wires
|
||||
or waveguides (via `path`/`path_to`/`mpath`).
|
||||
in_prefix: Prepended to port names for newly-created ports with
|
||||
reversed directions compared to the current device.
|
||||
out_prefix: Prepended to port names for ports which are directly
|
||||
copied from the current device.
|
||||
port_map: Specification for ports to copy into the new device:
|
||||
- If `None`, all ports are copied.
|
||||
- If a sequence, only the listed ports are copied
|
||||
- If a mapping, the listed ports (keys) are copied and
|
||||
renamed (to the values).
|
||||
|
||||
Returns:
|
||||
The new `RenderPather`, with an empty pattern and 2x as many ports as
|
||||
listed in port_map.
|
||||
|
||||
Raises:
|
||||
`PortError` if `port_map` contains port names not present in the
|
||||
current device.
|
||||
`PortError` if applying the prefixes results in duplicate port
|
||||
names.
|
||||
"""
|
||||
if library is None:
|
||||
if hasattr(source, 'library') and isinstance(source.library, ILibrary):
|
||||
library = source.library
|
||||
else:
|
||||
raise BuildError('No library provided (and not present in `source.library`')
|
||||
|
||||
if tools is None and hasattr(source, 'tools') and isinstance(source.tools, dict):
|
||||
tools = source.tools
|
||||
|
||||
if isinstance(source, str):
|
||||
source = library.abstract(source).ports
|
||||
|
||||
pat = Pattern.interface(source, in_prefix=in_prefix, out_prefix=out_prefix, port_map=port_map)
|
||||
new = RenderPather(library=library, pattern=pat, name=name, tools=tools)
|
||||
return new
|
||||
|
||||
def plug(
|
||||
self,
|
||||
other: Abstract | str,
|
||||
map_in: dict[str, str],
|
||||
map_out: dict[str, str | None] | None = None,
|
||||
*,
|
||||
mirrored: bool = False,
|
||||
inherit_name: bool = True,
|
||||
set_rotation: bool | None = None,
|
||||
append: bool = False,
|
||||
) -> Self:
|
||||
"""
|
||||
Wrapper for `Pattern.plug` which adds a `RenderStep` with opcode 'P'
|
||||
for any affected ports. This separates any future `RenderStep`s on the
|
||||
same port into a new batch, since the plugged device interferes with drawing.
|
||||
|
||||
Args:
|
||||
other: An `Abstract`, string, or `Pattern` describing the device to be instatiated.
|
||||
map_in: dict of `{'self_port': 'other_port'}` mappings, specifying
|
||||
port connections between the two devices.
|
||||
map_out: dict of `{'old_name': 'new_name'}` mappings, specifying
|
||||
new names for ports in `other`.
|
||||
mirrored: Enables mirroring `other` across the x axis prior to
|
||||
connecting any ports.
|
||||
inherit_name: If `True`, and `map_in` specifies only a single port,
|
||||
and `map_out` is `None`, and `other` has only two ports total,
|
||||
then automatically renames the output port of `other` to the
|
||||
name of the port from `self` that appears in `map_in`. This
|
||||
makes it easy to extend a device with simple 2-port devices
|
||||
(e.g. wires) without providing `map_out` each time `plug` is
|
||||
called. See "Examples" above for more info. Default `True`.
|
||||
set_rotation: If the necessary rotation cannot be determined from
|
||||
the ports being connected (i.e. all pairs have at least one
|
||||
port with `rotation=None`), `set_rotation` must be provided
|
||||
to indicate how much `other` should be rotated. Otherwise,
|
||||
`set_rotation` must remain `None`.
|
||||
append: If `True`, `other` is appended instead of being referenced.
|
||||
Note that this does not flatten `other`, so its refs will still
|
||||
be refs (now inside `self`).
|
||||
|
||||
Returns:
|
||||
self
|
||||
|
||||
Raises:
|
||||
`PortError` if any ports specified in `map_in` or `map_out` do not
|
||||
exist in `self.ports` or `other_names`.
|
||||
`PortError` if there are any duplicate names after `map_in` and `map_out`
|
||||
are applied.
|
||||
`PortError` if the specified port mapping is not achieveable (the ports
|
||||
do not line up)
|
||||
"""
|
||||
if self._dead:
|
||||
logger.error('Skipping plug() since device is dead')
|
||||
return self
|
||||
|
||||
other_tgt: Pattern | Abstract
|
||||
if isinstance(other, str):
|
||||
other_tgt = self.library.abstract(other)
|
||||
if append and isinstance(other, Abstract):
|
||||
other_tgt = self.library[other.name]
|
||||
|
||||
# get rid of plugged ports
|
||||
for kk in map_in:
|
||||
if kk in self.paths:
|
||||
self.paths[kk].append(RenderStep('P', None, self.ports[kk].copy(), self.ports[kk].copy(), None))
|
||||
|
||||
plugged = map_in.values()
|
||||
for name, port in other_tgt.ports.items():
|
||||
if name in plugged:
|
||||
continue
|
||||
new_name = map_out.get(name, name) if map_out is not None else name
|
||||
if new_name is not None and new_name in self.paths:
|
||||
self.paths[new_name].append(RenderStep('P', None, port.copy(), port.copy(), None))
|
||||
|
||||
self.pattern.plug(
|
||||
other=other_tgt,
|
||||
map_in=map_in,
|
||||
map_out=map_out,
|
||||
mirrored=mirrored,
|
||||
inherit_name=inherit_name,
|
||||
set_rotation=set_rotation,
|
||||
append=append,
|
||||
)
|
||||
|
||||
return self
|
||||
|
||||
def place(
|
||||
self,
|
||||
other: Abstract | str,
|
||||
*,
|
||||
offset: ArrayLike = (0, 0),
|
||||
rotation: float = 0,
|
||||
pivot: ArrayLike = (0, 0),
|
||||
mirrored: bool = False,
|
||||
port_map: dict[str, str | None] | None = None,
|
||||
skip_port_check: bool = False,
|
||||
append: bool = False,
|
||||
) -> Self:
|
||||
"""
|
||||
Wrapper for `Pattern.place` which adds a `RenderStep` with opcode 'P'
|
||||
for any affected ports. This separates any future `RenderStep`s on the
|
||||
same port into a new batch, since the placed device interferes with drawing.
|
||||
|
||||
Note that mirroring is applied before rotation; translation (`offset`) is applied last.
|
||||
|
||||
Args:
|
||||
other: An `Abstract` or `Pattern` describing the device to be instatiated.
|
||||
offset: Offset at which to place the instance. Default (0, 0).
|
||||
rotation: Rotation applied to the instance before placement. Default 0.
|
||||
pivot: Rotation is applied around this pivot point (default (0, 0)).
|
||||
Rotation is applied prior to translation (`offset`).
|
||||
mirrored: Whether theinstance should be mirrored across the x axis.
|
||||
Mirroring is applied before translation and rotation.
|
||||
port_map: dict of `{'old_name': 'new_name'}` mappings, specifying
|
||||
new names for ports in the instantiated pattern. New names can be
|
||||
`None`, which will delete those ports.
|
||||
skip_port_check: Can be used to skip the internal call to `check_ports`,
|
||||
in case it has already been performed elsewhere.
|
||||
append: If `True`, `other` is appended instead of being referenced.
|
||||
Note that this does not flatten `other`, so its refs will still
|
||||
be refs (now inside `self`).
|
||||
|
||||
Returns:
|
||||
self
|
||||
|
||||
Raises:
|
||||
`PortError` if any ports specified in `map_in` or `map_out` do not
|
||||
exist in `self.ports` or `other.ports`.
|
||||
`PortError` if there are any duplicate names after `map_in` and `map_out`
|
||||
are applied.
|
||||
"""
|
||||
if self._dead:
|
||||
logger.error('Skipping place() since device is dead')
|
||||
return self
|
||||
|
||||
other_tgt: Pattern | Abstract
|
||||
if isinstance(other, str):
|
||||
other_tgt = self.library.abstract(other)
|
||||
if append and isinstance(other, Abstract):
|
||||
other_tgt = self.library[other.name]
|
||||
|
||||
for name, port in other_tgt.ports.items():
|
||||
new_name = port_map.get(name, name) if port_map is not None else name
|
||||
if new_name is not None and new_name in self.paths:
|
||||
self.paths[new_name].append(RenderStep('P', None, port.copy(), port.copy(), None))
|
||||
|
||||
self.pattern.place(
|
||||
other=other_tgt,
|
||||
offset=offset,
|
||||
rotation=rotation,
|
||||
pivot=pivot,
|
||||
mirrored=mirrored,
|
||||
port_map=port_map,
|
||||
skip_port_check=skip_port_check,
|
||||
append=append,
|
||||
)
|
||||
|
||||
return self
|
||||
|
||||
def retool(
|
||||
self,
|
||||
tool: Tool,
|
||||
keys: str | Sequence[str | None] | None = None,
|
||||
) -> Self:
|
||||
"""
|
||||
Update the `Tool` which will be used when generating `Pattern`s for the ports
|
||||
given by `keys`.
|
||||
|
||||
Args:
|
||||
tool: The new `Tool` to use for the given ports.
|
||||
keys: Which ports the tool should apply to. `None` indicates the default tool,
|
||||
used when there is no matching entry in `self.tools` for the port in question.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
if keys is None or isinstance(keys, str):
|
||||
self.tools[keys] = tool
|
||||
else:
|
||||
for key in keys:
|
||||
self.tools[key] = tool
|
||||
return self
|
||||
|
||||
def path(
|
||||
self,
|
||||
portspec: str,
|
||||
ccw: SupportsBool | None,
|
||||
length: float,
|
||||
**kwargs,
|
||||
) -> Self:
|
||||
"""
|
||||
Plan a "wire"/"waveguide" extending from the port `portspec`, with the aim
|
||||
of traveling exactly `length` distance.
|
||||
|
||||
The wire will travel `length` distance along the port's axis, an an unspecified
|
||||
(tool-dependent) distance in the perpendicular direction. The output port will
|
||||
be rotated (or not) based on the `ccw` parameter.
|
||||
|
||||
`RenderPather.render` must be called after all paths have been fully planned.
|
||||
|
||||
Args:
|
||||
portspec: The name of the port into which the wire will be plugged.
|
||||
ccw: If `None`, the output should be along the same axis as the input.
|
||||
Otherwise, cast to bool and turn counterclockwise if True
|
||||
and clockwise otherwise.
|
||||
length: The total distance from input to output, along the input's axis only.
|
||||
(There may be a tool-dependent offset along the other axis.)
|
||||
|
||||
Returns:
|
||||
self
|
||||
|
||||
Raises:
|
||||
BuildError if `distance` is too small to fit the bend (if a bend is present).
|
||||
LibraryError if no valid name could be picked for the pattern.
|
||||
"""
|
||||
if self._dead:
|
||||
logger.error('Skipping path() since device is dead')
|
||||
return self
|
||||
|
||||
port = self.pattern[portspec]
|
||||
in_ptype = port.ptype
|
||||
port_rot = port.rotation
|
||||
assert port_rot is not None # TODO allow manually setting rotation for RenderPather.path()?
|
||||
|
||||
tool = self.tools.get(portspec, self.tools[None])
|
||||
# ask the tool for bend size (fill missing dx or dy), check feasibility, and get out_ptype
|
||||
out_port, data = tool.planL(ccw, length, in_ptype=in_ptype, **kwargs)
|
||||
|
||||
# Update port
|
||||
out_port.rotate_around((0, 0), pi + port_rot)
|
||||
out_port.translate(port.offset)
|
||||
|
||||
step = RenderStep('L', tool, port.copy(), out_port.copy(), data)
|
||||
self.paths[portspec].append(step)
|
||||
|
||||
self.pattern.ports[portspec] = out_port.copy()
|
||||
|
||||
return self
|
||||
|
||||
def path_to(
|
||||
self,
|
||||
portspec: str,
|
||||
ccw: SupportsBool | None,
|
||||
position: float | None = None,
|
||||
*,
|
||||
x: float | None = None,
|
||||
y: float | None = None,
|
||||
**kwargs,
|
||||
) -> Self:
|
||||
"""
|
||||
Plan a "wire"/"waveguide" extending from the port `portspec`, with the aim
|
||||
of ending exactly at a target position.
|
||||
|
||||
The wire will travel so that the output port will be placed at exactly the target
|
||||
position along the input port's axis. There can be an unspecified (tool-dependent)
|
||||
offset in the perpendicular direction. The output port will be rotated (or not)
|
||||
based on the `ccw` parameter.
|
||||
|
||||
`RenderPather.render` must be called after all paths have been fully planned.
|
||||
|
||||
Args:
|
||||
portspec: The name of the port into which the wire will be plugged.
|
||||
ccw: If `None`, the output should be along the same axis as the input.
|
||||
Otherwise, cast to bool and turn counterclockwise if True
|
||||
and clockwise otherwise.
|
||||
position: The final port position, along the input's axis only.
|
||||
(There may be a tool-dependent offset along the other axis.)
|
||||
Only one of `position`, `x`, and `y` may be specified.
|
||||
x: The final port position along the x axis.
|
||||
`portspec` must refer to a horizontal port if `x` is passed, otherwise a
|
||||
BuildError will be raised.
|
||||
y: The final port position along the y axis.
|
||||
`portspec` must refer to a vertical port if `y` is passed, otherwise a
|
||||
BuildError will be raised.
|
||||
|
||||
Returns:
|
||||
self
|
||||
|
||||
Raises:
|
||||
BuildError if `position`, `x`, or `y` is too close to fit the bend (if a bend
|
||||
is present).
|
||||
BuildError if `x` or `y` is specified but does not match the axis of `portspec`.
|
||||
BuildError if more than one of `x`, `y`, and `position` is specified.
|
||||
"""
|
||||
if self._dead:
|
||||
logger.error('Skipping path_to() since device is dead')
|
||||
return self
|
||||
|
||||
pos_count = sum(vv is not None for vv in (position, x, y))
|
||||
if pos_count > 1:
|
||||
raise BuildError('Only one of `position`, `x`, and `y` may be specified at once')
|
||||
if pos_count < 1:
|
||||
raise BuildError('One of `position`, `x`, and `y` must be specified')
|
||||
|
||||
port = self.pattern[portspec]
|
||||
if port.rotation is None:
|
||||
raise PortError(f'Port {portspec} has no rotation and cannot be used for path_to()')
|
||||
|
||||
if not numpy.isclose(port.rotation % (pi / 2), 0):
|
||||
raise BuildError('path_to was asked to route from non-manhattan port')
|
||||
|
||||
is_horizontal = numpy.isclose(port.rotation % pi, 0)
|
||||
if is_horizontal:
|
||||
if y is not None:
|
||||
raise BuildError('Asked to path to y-coordinate, but port is horizontal')
|
||||
if position is None:
|
||||
position = x
|
||||
else:
|
||||
if x is not None:
|
||||
raise BuildError('Asked to path to x-coordinate, but port is vertical')
|
||||
if position is None:
|
||||
position = y
|
||||
|
||||
x0, y0 = port.offset
|
||||
if is_horizontal:
|
||||
if numpy.sign(numpy.cos(port.rotation)) == numpy.sign(position - x0):
|
||||
raise BuildError(f'path_to routing to behind source port: x0={x0:g} to {position:g}')
|
||||
length = numpy.abs(position - x0)
|
||||
else:
|
||||
if numpy.sign(numpy.sin(port.rotation)) == numpy.sign(position - y0):
|
||||
raise BuildError(f'path_to routing to behind source port: y0={y0:g} to {position:g}')
|
||||
length = numpy.abs(position - y0)
|
||||
|
||||
return self.path(portspec, ccw, length, **kwargs)
|
||||
|
||||
def mpath(
|
||||
self,
|
||||
portspec: str | Sequence[str],
|
||||
ccw: SupportsBool | None,
|
||||
*,
|
||||
spacing: float | ArrayLike | None = None,
|
||||
set_rotation: float | None = None,
|
||||
**kwargs,
|
||||
) -> Self:
|
||||
"""
|
||||
`mpath` is a superset of `path` and `path_to` which can act on bundles or buses
|
||||
of "wires or "waveguides".
|
||||
|
||||
See `Pather.mpath` for details.
|
||||
|
||||
Args:
|
||||
portspec: The names of the ports which are to be routed.
|
||||
ccw: If `None`, the outputs should be along the same axis as the inputs.
|
||||
Otherwise, cast to bool and turn 90 degrees counterclockwise if `True`
|
||||
and clockwise otherwise.
|
||||
spacing: Center-to-center distance between output ports along the input port's axis.
|
||||
Must be provided if (and only if) `ccw` is not `None`.
|
||||
set_rotation: If the provided ports have `rotation=None`, this can be used
|
||||
to set a rotation for them.
|
||||
|
||||
Returns:
|
||||
self
|
||||
|
||||
Raises:
|
||||
BuildError if the implied length for any wire is too close to fit the bend
|
||||
(if a bend is requested).
|
||||
BuildError if `xmin`/`xmax` or `ymin`/`ymax` is specified but does not
|
||||
match the axis of `portspec`.
|
||||
BuildError if an incorrect bound type or spacing is specified.
|
||||
"""
|
||||
if self._dead:
|
||||
logger.error('Skipping mpath() since device is dead')
|
||||
return self
|
||||
|
||||
bound_types = set()
|
||||
if 'bound_type' in kwargs:
|
||||
bound_types.add(kwargs['bound_type'])
|
||||
bound = kwargs['bound']
|
||||
for bt in ('emin', 'emax', 'pmin', 'pmax', 'xmin', 'xmax', 'ymin', 'ymax', 'min_past_furthest'):
|
||||
if bt in kwargs:
|
||||
bound_types.add(bt)
|
||||
bound = kwargs[bt]
|
||||
|
||||
if not bound_types:
|
||||
raise BuildError('No bound type specified for mpath')
|
||||
if len(bound_types) > 1:
|
||||
raise BuildError(f'Too many bound types specified for mpath: {bound_types}')
|
||||
bound_type = tuple(bound_types)[0]
|
||||
|
||||
if isinstance(portspec, str):
|
||||
portspec = [portspec]
|
||||
ports = self.pattern[tuple(portspec)]
|
||||
|
||||
extensions = ell(ports, ccw, spacing=spacing, bound=bound, bound_type=bound_type, set_rotation=set_rotation)
|
||||
|
||||
if len(ports) == 1:
|
||||
# Not a bus, so having a container just adds noise to the layout
|
||||
port_name = tuple(portspec)[0]
|
||||
self.path(port_name, ccw, extensions[port_name])
|
||||
else:
|
||||
for port_name, length in extensions.items():
|
||||
self.path(port_name, ccw, length)
|
||||
return self
|
||||
|
||||
def render(
|
||||
self,
|
||||
append: bool = True,
|
||||
) -> Self:
|
||||
"""
|
||||
Generate the geometry which has been planned out with `path`/`path_to`/etc.
|
||||
|
||||
Args:
|
||||
append: If `True`, the rendered geometry will be directly appended to
|
||||
`self.pattern`. Note that it will not be flattened, so if only one
|
||||
layer of hierarchy is eliminated.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
lib = self.library
|
||||
tool_port_names = ('A', 'B')
|
||||
pat = Pattern()
|
||||
|
||||
def render_batch(portspec: str, batch: list[RenderStep], append: bool) -> None:
|
||||
assert batch[0].tool is not None
|
||||
name = lib << batch[0].tool.render(batch, port_names=tool_port_names)
|
||||
pat.ports[portspec] = batch[0].start_port.copy()
|
||||
if append:
|
||||
pat.plug(lib[name], {portspec: tool_port_names[0]}, append=append)
|
||||
del lib[name] # NOTE if the rendered pattern has refs, those are now in `pat` but not flattened
|
||||
else:
|
||||
pat.plug(lib.abstract(name), {portspec: tool_port_names[0]}, append=append)
|
||||
|
||||
for portspec, steps in self.paths.items():
|
||||
batch: list[RenderStep] = []
|
||||
for step in steps:
|
||||
appendable_op = step.opcode in ('L', 'S', 'U')
|
||||
same_tool = batch and step.tool == batch[0].tool
|
||||
|
||||
# If we can't continue a batch, render it
|
||||
if batch and (not appendable_op or not same_tool):
|
||||
render_batch(portspec, batch, append)
|
||||
batch = []
|
||||
|
||||
# batch is emptied already if we couldn't continue it
|
||||
if appendable_op:
|
||||
batch.append(step)
|
||||
|
||||
# Opcodes which break the batch go below this line
|
||||
if not appendable_op and portspec in pat.ports:
|
||||
del pat.ports[portspec]
|
||||
|
||||
#If the last batch didn't end yet
|
||||
if batch:
|
||||
render_batch(portspec, batch, append)
|
||||
|
||||
self.paths.clear()
|
||||
pat.ports.clear()
|
||||
self.pattern.append(pat)
|
||||
|
||||
return self
|
||||
|
||||
def translate(self, offset: ArrayLike) -> Self:
|
||||
"""
|
||||
Translate the pattern and all ports.
|
||||
|
||||
Args:
|
||||
offset: (x, y) distance to translate by
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.pattern.translate_elements(offset)
|
||||
return self
|
||||
|
||||
def rotate_around(self, pivot: ArrayLike, angle: float) -> Self:
|
||||
"""
|
||||
Rotate the pattern and all ports.
|
||||
|
||||
Args:
|
||||
angle: angle (radians, counterclockwise) to rotate by
|
||||
pivot: location to rotate around
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.pattern.rotate_around(pivot, angle)
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int) -> Self:
|
||||
"""
|
||||
Mirror the pattern and all ports across the specified axis.
|
||||
|
||||
Args:
|
||||
axis: Axis to mirror across (x=0, y=1)
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.pattern.mirror(axis)
|
||||
return self
|
||||
|
||||
def set_dead(self) -> Self:
|
||||
"""
|
||||
Disallows further changes through `plug()` or `place()`.
|
||||
This is meant for debugging:
|
||||
```
|
||||
dev.plug(a, ...)
|
||||
dev.set_dead() # added for debug purposes
|
||||
dev.plug(b, ...) # usually raises an error, but now skipped
|
||||
dev.plug(c, ...) # also skipped
|
||||
dev.pattern.visualize() # shows the device as of the set_dead() call
|
||||
```
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self._dead = True
|
||||
return self
|
||||
|
||||
def __repr__(self) -> str:
|
||||
s = f'<Pather {self.pattern} L({len(self.library)}) {pformat(self.tools)}>'
|
||||
return s
|
||||
|
||||
|
@ -1,553 +1,22 @@
|
||||
"""
|
||||
Tools are objects which dynamically generate simple single-use devices (e.g. wires or waveguides)
|
||||
|
||||
# TODO document all tools
|
||||
"""
|
||||
from typing import Literal, Any
|
||||
from collections.abc import Sequence, Callable
|
||||
from abc import ABCMeta # , abstractmethod # TODO any way to make Tool ok with implementing only one method?
|
||||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, Optional, Sequence
|
||||
|
||||
import numpy
|
||||
from numpy.typing import NDArray
|
||||
from numpy import pi
|
||||
|
||||
from ..utils import SupportsBool, rotation_matrix_2d, layer_t
|
||||
from ..ports import Port
|
||||
from ..pattern import Pattern
|
||||
from ..abstract import Abstract
|
||||
from ..library import ILibrary, Library, SINGLE_USE_PREFIX
|
||||
from ..error import BuildError
|
||||
|
||||
|
||||
@dataclass(frozen=True, slots=True)
|
||||
class RenderStep:
|
||||
"""
|
||||
Representation of a single saved operation, used by `RenderPather` and passed
|
||||
to `Tool.render()` when `RenderPather.render()` is called.
|
||||
"""
|
||||
opcode: Literal['L', 'S', 'U', 'P']
|
||||
""" What operation is being performed.
|
||||
L: planL (straight, optionally with a single bend)
|
||||
S: planS (s-bend)
|
||||
U: planU (u-bend)
|
||||
P: plug
|
||||
"""
|
||||
|
||||
tool: 'Tool | None'
|
||||
""" The current tool. May be `None` if `opcode='P'` """
|
||||
|
||||
start_port: Port
|
||||
end_port: Port
|
||||
|
||||
data: Any
|
||||
""" Arbitrary tool-specific data"""
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
if self.opcode != 'P' and self.tool is None:
|
||||
raise BuildError('Got tool=None but the opcode is not "P"')
|
||||
if TYPE_CHECKING:
|
||||
from .devices import Device
|
||||
|
||||
|
||||
class Tool:
|
||||
"""
|
||||
Interface for path (e.g. wire or waveguide) generation.
|
||||
|
||||
Note that subclasses may implement only a subset of the methods and leave others
|
||||
unimplemented (e.g. in cases where they don't make sense or the required components
|
||||
are impractical or unavailable).
|
||||
"""
|
||||
def path(
|
||||
self,
|
||||
ccw: SupportsBool | None,
|
||||
ccw: Optional[bool],
|
||||
length: float,
|
||||
*,
|
||||
in_ptype: str | None = None,
|
||||
out_ptype: str | None = None,
|
||||
port_names: tuple[str, str] = ('A', 'B'),
|
||||
in_ptype: Optional[str] = None,
|
||||
out_ptype: Optional[str] = None,
|
||||
port_names: Sequence[str] = ('A', 'B'),
|
||||
**kwargs,
|
||||
) -> Library:
|
||||
"""
|
||||
Create a wire or waveguide that travels exactly `length` distance along the axis
|
||||
of its input port.
|
||||
|
||||
Used by `Pather`.
|
||||
|
||||
The output port must be exactly `length` away along the input port's axis, but
|
||||
may be placed an additional (unspecified) distance away along the perpendicular
|
||||
direction. The output port should be rotated (or not) based on the value of
|
||||
`ccw`.
|
||||
|
||||
The input and output ports should be compatible with `in_ptype` and
|
||||
`out_ptype`, respectively. They should also be named `port_names[0]` and
|
||||
`port_names[1]`, respectively.
|
||||
|
||||
Args:
|
||||
ccw: If `None`, the output should be along the same axis as the input.
|
||||
Otherwise, cast to bool and turn counterclockwise if True
|
||||
and clockwise otherwise.
|
||||
length: The total distance from input to output, along the input's axis only.
|
||||
(There may be a tool-dependent offset along the other axis.)
|
||||
in_ptype: The `ptype` of the port into which this wire's input will be `plug`ged.
|
||||
out_ptype: The `ptype` of the port into which this wire's output will be `plug`ged.
|
||||
port_names: The output pattern will have its input port named `port_names[0]` and
|
||||
its output named `port_names[1]`.
|
||||
kwargs: Custom tool-specific parameters.
|
||||
|
||||
Returns:
|
||||
A pattern tree containing the requested L-shaped (or straight) wire or waveguide
|
||||
|
||||
Raises:
|
||||
BuildError if an impossible or unsupported geometry is requested.
|
||||
"""
|
||||
) -> 'Device':
|
||||
raise NotImplementedError(f'path() not implemented for {type(self)}')
|
||||
|
||||
def planL(
|
||||
self,
|
||||
ccw: SupportsBool | None,
|
||||
length: float,
|
||||
*,
|
||||
in_ptype: str | None = None,
|
||||
out_ptype: str | None = None,
|
||||
**kwargs,
|
||||
) -> tuple[Port, Any]:
|
||||
"""
|
||||
Plan a wire or waveguide that travels exactly `length` distance along the axis
|
||||
of its input port.
|
||||
|
||||
Used by `RenderPather`.
|
||||
|
||||
The output port must be exactly `length` away along the input port's axis, but
|
||||
may be placed an additional (unspecified) distance away along the perpendicular
|
||||
direction. The output port should be rotated (or not) based on the value of
|
||||
`ccw`.
|
||||
|
||||
The input and output ports should be compatible with `in_ptype` and
|
||||
`out_ptype`, respectively.
|
||||
|
||||
Args:
|
||||
ccw: If `None`, the output should be along the same axis as the input.
|
||||
Otherwise, cast to bool and turn counterclockwise if True
|
||||
and clockwise otherwise.
|
||||
length: The total distance from input to output, along the input's axis only.
|
||||
(There may be a tool-dependent offset along the other axis.)
|
||||
in_ptype: The `ptype` of the port into which this wire's input will be `plug`ged.
|
||||
out_ptype: The `ptype` of the port into which this wire's output will be `plug`ged.
|
||||
kwargs: Custom tool-specific parameters.
|
||||
|
||||
Returns:
|
||||
The calculated output `Port` for the wire.
|
||||
Any tool-specifc data, to be stored in `RenderStep.data`, for use during rendering.
|
||||
|
||||
Raises:
|
||||
BuildError if an impossible or unsupported geometry is requested.
|
||||
"""
|
||||
raise NotImplementedError(f'planL() not implemented for {type(self)}')
|
||||
|
||||
def planS(
|
||||
self,
|
||||
length: float,
|
||||
jog: float,
|
||||
*,
|
||||
in_ptype: str | None = None,
|
||||
out_ptype: str | None = None,
|
||||
**kwargs,
|
||||
) -> tuple[Port, Any]:
|
||||
"""
|
||||
Plan a wire or waveguide that travels exactly `length` distance along the axis
|
||||
of its input port and `jog` distance along the perpendicular axis (i.e. an S-bend).
|
||||
|
||||
Used by `RenderPather`.
|
||||
|
||||
The output port must have an orientation rotated by pi from the input port.
|
||||
|
||||
The input and output ports should be compatible with `in_ptype` and
|
||||
`out_ptype`, respectively.
|
||||
|
||||
Args:
|
||||
length: The total distance from input to output, along the input's axis only.
|
||||
jog: The total offset from the input to output, along the perpendicular axis.
|
||||
A positive number implies a rightwards shift (i.e. clockwise bend followed
|
||||
by a counterclockwise bend)
|
||||
in_ptype: The `ptype` of the port into which this wire's input will be `plug`ged.
|
||||
out_ptype: The `ptype` of the port into which this wire's output will be `plug`ged.
|
||||
kwargs: Custom tool-specific parameters.
|
||||
|
||||
Returns:
|
||||
The calculated output `Port` for the wire.
|
||||
Any tool-specifc data, to be stored in `RenderStep.data`, for use during rendering.
|
||||
|
||||
Raises:
|
||||
BuildError if an impossible or unsupported geometry is requested.
|
||||
"""
|
||||
raise NotImplementedError(f'planS() not implemented for {type(self)}')
|
||||
|
||||
def planU(
|
||||
self,
|
||||
jog: float,
|
||||
*,
|
||||
in_ptype: str | None = None,
|
||||
out_ptype: str | None = None,
|
||||
**kwargs,
|
||||
) -> tuple[Port, Any]:
|
||||
"""
|
||||
# NOTE: TODO: U-bend is WIP; this interface may change in the future.
|
||||
|
||||
Plan a wire or waveguide that travels exactly `jog` distance along the axis
|
||||
perpendicular to its input port (i.e. a U-bend).
|
||||
|
||||
Used by `RenderPather`.
|
||||
|
||||
The output port must have an orientation identical to the input port.
|
||||
|
||||
The input and output ports should be compatible with `in_ptype` and
|
||||
`out_ptype`, respectively.
|
||||
|
||||
Args:
|
||||
jog: The total offset from the input to output, along the perpendicular axis.
|
||||
A positive number implies a rightwards shift (i.e. clockwise bend followed
|
||||
by a counterclockwise bend)
|
||||
in_ptype: The `ptype` of the port into which this wire's input will be `plug`ged.
|
||||
out_ptype: The `ptype` of the port into which this wire's output will be `plug`ged.
|
||||
kwargs: Custom tool-specific parameters.
|
||||
|
||||
Returns:
|
||||
The calculated output `Port` for the wire.
|
||||
Any tool-specifc data, to be stored in `RenderStep.data`, for use during rendering.
|
||||
|
||||
Raises:
|
||||
BuildError if an impossible or unsupported geometry is requested.
|
||||
"""
|
||||
raise NotImplementedError(f'planU() not implemented for {type(self)}')
|
||||
|
||||
def render(
|
||||
self,
|
||||
batch: Sequence[RenderStep],
|
||||
*,
|
||||
port_names: Sequence[str] = ('A', 'B'), # noqa: ARG002 (unused)
|
||||
**kwargs, # noqa: ARG002 (unused)
|
||||
) -> ILibrary:
|
||||
"""
|
||||
Render the provided `batch` of `RenderStep`s into geometry, returning a tree
|
||||
(a Library with a single topcell).
|
||||
|
||||
Args:
|
||||
batch: A sequence of `RenderStep` objects containing the ports and data
|
||||
provided by this tool's `planL`/`planS`/`planU` functions.
|
||||
port_names: The topcell's input and output ports should be named
|
||||
`port_names[0]` and `port_names[1]` respectively.
|
||||
kwargs: Custom tool-specific parameters.
|
||||
"""
|
||||
assert not batch or batch[0].tool == self
|
||||
raise NotImplementedError(f'render() not implemented for {type(self)}')
|
||||
|
||||
|
||||
abstract_tuple_t = tuple[Abstract, str, str]
|
||||
|
||||
|
||||
@dataclass
|
||||
class BasicTool(Tool, metaclass=ABCMeta):
|
||||
"""
|
||||
A simple tool which relies on a single pre-rendered `bend` pattern, a function
|
||||
for generating straight paths, and a table of pre-rendered `transitions` for converting
|
||||
from non-native ptypes.
|
||||
"""
|
||||
straight: tuple[Callable[[float], Pattern], str, str]
|
||||
""" `create_straight(length: float), in_port_name, out_port_name` """
|
||||
|
||||
bend: abstract_tuple_t # Assumed to be clockwise
|
||||
""" `clockwise_bend_abstract, in_port_name, out_port_name` """
|
||||
|
||||
transitions: dict[str, abstract_tuple_t]
|
||||
""" `{ptype: (transition_abstract`, ptype_port_name, other_port_name), ...}` """
|
||||
|
||||
default_out_ptype: str
|
||||
""" Default value for out_ptype """
|
||||
|
||||
@dataclass(frozen=True, slots=True)
|
||||
class LData:
|
||||
""" Data for planL """
|
||||
straight_length: float
|
||||
ccw: SupportsBool | None
|
||||
in_transition: abstract_tuple_t | None
|
||||
out_transition: abstract_tuple_t | None
|
||||
|
||||
def path(
|
||||
self,
|
||||
ccw: SupportsBool | None,
|
||||
length: float,
|
||||
*,
|
||||
in_ptype: str | None = None,
|
||||
out_ptype: str | None = None,
|
||||
port_names: tuple[str, str] = ('A', 'B'),
|
||||
**kwargs,
|
||||
) -> Library:
|
||||
_out_port, data = self.planL(
|
||||
ccw,
|
||||
length,
|
||||
in_ptype=in_ptype,
|
||||
out_ptype=out_ptype,
|
||||
)
|
||||
|
||||
gen_straight, sport_in, sport_out = self.straight
|
||||
tree, pat = Library.mktree(SINGLE_USE_PREFIX + 'path')
|
||||
pat.add_port_pair(names=port_names)
|
||||
if data.in_transition:
|
||||
ipat, iport_theirs, _iport_ours = data.in_transition
|
||||
pat.plug(ipat, {port_names[1]: iport_theirs})
|
||||
if not numpy.isclose(data.straight_length, 0):
|
||||
straight = tree <= {SINGLE_USE_PREFIX + 'straight': gen_straight(data.straight_length, **kwargs)}
|
||||
pat.plug(straight, {port_names[1]: sport_in})
|
||||
if data.ccw is not None:
|
||||
bend, bport_in, bport_out = self.bend
|
||||
pat.plug(bend, {port_names[1]: bport_in}, mirrored=bool(ccw))
|
||||
if data.out_transition:
|
||||
opat, oport_theirs, oport_ours = data.out_transition
|
||||
pat.plug(opat, {port_names[1]: oport_ours})
|
||||
|
||||
return tree
|
||||
|
||||
def planL(
|
||||
self,
|
||||
ccw: SupportsBool | None,
|
||||
length: float,
|
||||
*,
|
||||
in_ptype: str | None = None,
|
||||
out_ptype: str | None = None,
|
||||
**kwargs, # noqa: ARG002 (unused)
|
||||
) -> tuple[Port, LData]:
|
||||
# TODO check all the math for L-shaped bends
|
||||
if ccw is not None:
|
||||
bend, bport_in, bport_out = self.bend
|
||||
|
||||
angle_in = bend.ports[bport_in].rotation
|
||||
angle_out = bend.ports[bport_out].rotation
|
||||
assert angle_in is not None
|
||||
assert angle_out is not None
|
||||
|
||||
bend_dxy = rotation_matrix_2d(-angle_in) @ (
|
||||
bend.ports[bport_out].offset
|
||||
- bend.ports[bport_in].offset
|
||||
)
|
||||
|
||||
bend_angle = angle_out - angle_in
|
||||
|
||||
if bool(ccw):
|
||||
bend_dxy[1] *= -1
|
||||
bend_angle *= -1
|
||||
else:
|
||||
bend_dxy = numpy.zeros(2)
|
||||
bend_angle = 0
|
||||
|
||||
in_transition = self.transitions.get('unk' if in_ptype is None else in_ptype, None)
|
||||
if in_transition is not None:
|
||||
ipat, iport_theirs, iport_ours = in_transition
|
||||
irot = ipat.ports[iport_theirs].rotation
|
||||
assert irot is not None
|
||||
itrans_dxy = rotation_matrix_2d(-irot) @ (
|
||||
ipat.ports[iport_ours].offset
|
||||
- ipat.ports[iport_theirs].offset
|
||||
)
|
||||
else:
|
||||
itrans_dxy = numpy.zeros(2)
|
||||
|
||||
out_transition = self.transitions.get('unk' if out_ptype is None else out_ptype, None)
|
||||
if out_transition is not None:
|
||||
opat, oport_theirs, oport_ours = out_transition
|
||||
orot = opat.ports[oport_ours].rotation
|
||||
assert orot is not None
|
||||
|
||||
otrans_dxy = rotation_matrix_2d(-orot + bend_angle) @ (
|
||||
opat.ports[oport_theirs].offset
|
||||
- opat.ports[oport_ours].offset
|
||||
)
|
||||
else:
|
||||
otrans_dxy = numpy.zeros(2)
|
||||
|
||||
if out_transition is not None:
|
||||
out_ptype_actual = opat.ports[oport_theirs].ptype
|
||||
elif ccw is not None:
|
||||
out_ptype_actual = bend.ports[bport_out].ptype
|
||||
else:
|
||||
out_ptype_actual = self.default_out_ptype
|
||||
|
||||
straight_length = length - bend_dxy[0] - itrans_dxy[0] - otrans_dxy[0]
|
||||
bend_run = bend_dxy[1] + itrans_dxy[1] + otrans_dxy[1]
|
||||
|
||||
if straight_length < 0:
|
||||
raise BuildError(
|
||||
f'Asked to draw path with total length {length:,g}, shorter than required bends and transitions:\n'
|
||||
f'bend: {bend_dxy[0]:,g} in_trans: {itrans_dxy[0]:,g} out_trans: {otrans_dxy[0]:,g}'
|
||||
)
|
||||
|
||||
data = self.LData(straight_length, ccw, in_transition, out_transition)
|
||||
out_port = Port((length, bend_run), rotation=bend_angle, ptype=out_ptype_actual)
|
||||
return out_port, data
|
||||
|
||||
def render(
|
||||
self,
|
||||
batch: Sequence[RenderStep],
|
||||
*,
|
||||
port_names: Sequence[str] = ('A', 'B'),
|
||||
append: bool = True,
|
||||
**kwargs,
|
||||
) -> ILibrary:
|
||||
|
||||
tree, pat = Library.mktree(SINGLE_USE_PREFIX + 'path')
|
||||
pat.add_port_pair(names=(port_names[0], port_names[1]))
|
||||
|
||||
gen_straight, sport_in, _sport_out = self.straight
|
||||
for step in batch:
|
||||
straight_length, ccw, in_transition, out_transition = step.data
|
||||
assert step.tool == self
|
||||
|
||||
if step.opcode == 'L':
|
||||
if in_transition:
|
||||
ipat, iport_theirs, _iport_ours = in_transition
|
||||
pat.plug(ipat, {port_names[1]: iport_theirs})
|
||||
if not numpy.isclose(straight_length, 0):
|
||||
straight_pat = gen_straight(straight_length, **kwargs)
|
||||
if append:
|
||||
pat.plug(straight_pat, {port_names[1]: sport_in}, append=True)
|
||||
else:
|
||||
straight = tree <= {SINGLE_USE_PREFIX + 'straight': straight_pat}
|
||||
pat.plug(straight, {port_names[1]: sport_in}, append=True)
|
||||
if ccw is not None:
|
||||
bend, bport_in, bport_out = self.bend
|
||||
pat.plug(bend, {port_names[1]: bport_in}, mirrored=bool(ccw))
|
||||
if out_transition:
|
||||
opat, oport_theirs, oport_ours = out_transition
|
||||
pat.plug(opat, {port_names[1]: oport_ours})
|
||||
return tree
|
||||
|
||||
|
||||
@dataclass
|
||||
class PathTool(Tool, metaclass=ABCMeta):
|
||||
"""
|
||||
A tool which draws `Path` geometry elements.
|
||||
|
||||
If `planL` / `render` are used, the `Path` elements can cover >2 vertices;
|
||||
with `path` only individual rectangles will be drawn.
|
||||
"""
|
||||
layer: layer_t
|
||||
""" Layer to draw on """
|
||||
|
||||
width: float
|
||||
""" `Path` width """
|
||||
|
||||
ptype: str = 'unk'
|
||||
""" ptype for any ports in patterns generated by this tool """
|
||||
|
||||
#@dataclass(frozen=True, slots=True)
|
||||
#class LData:
|
||||
# dxy: NDArray[numpy.float64]
|
||||
|
||||
#def __init__(self, layer: layer_t, width: float, ptype: str = 'unk') -> None:
|
||||
# Tool.__init__(self)
|
||||
# self.layer = layer
|
||||
# self.width = width
|
||||
# self.ptype: str
|
||||
|
||||
def path(
|
||||
self,
|
||||
ccw: SupportsBool | None,
|
||||
length: float,
|
||||
*,
|
||||
in_ptype: str | None = None,
|
||||
out_ptype: str | None = None,
|
||||
port_names: tuple[str, str] = ('A', 'B'),
|
||||
**kwargs, # noqa: ARG002 (unused)
|
||||
) -> Library:
|
||||
out_port, dxy = self.planL(
|
||||
ccw,
|
||||
length,
|
||||
in_ptype=in_ptype,
|
||||
out_ptype=out_ptype,
|
||||
)
|
||||
|
||||
tree, pat = Library.mktree(SINGLE_USE_PREFIX + 'path')
|
||||
pat.path(layer=self.layer, width=self.width, vertices=[(0, 0), (length, 0)])
|
||||
|
||||
if ccw is None:
|
||||
out_rot = pi
|
||||
elif bool(ccw):
|
||||
out_rot = -pi / 2
|
||||
else:
|
||||
out_rot = pi / 2
|
||||
|
||||
pat.ports = {
|
||||
port_names[0]: Port((0, 0), rotation=0, ptype=self.ptype),
|
||||
port_names[1]: Port(dxy, rotation=out_rot, ptype=self.ptype),
|
||||
}
|
||||
|
||||
return tree
|
||||
|
||||
def planL(
|
||||
self,
|
||||
ccw: SupportsBool | None,
|
||||
length: float,
|
||||
*,
|
||||
in_ptype: str | None = None, # noqa: ARG002 (unused)
|
||||
out_ptype: str | None = None,
|
||||
**kwargs, # noqa: ARG002 (unused)
|
||||
) -> tuple[Port, NDArray[numpy.float64]]:
|
||||
# TODO check all the math for L-shaped bends
|
||||
|
||||
if out_ptype and out_ptype != self.ptype:
|
||||
raise BuildError(f'Requested {out_ptype=} does not match path ptype {self.ptype}')
|
||||
|
||||
if ccw is not None:
|
||||
bend_dxy = numpy.array([1, -1]) * self.width / 2
|
||||
bend_angle = pi / 2
|
||||
|
||||
if bool(ccw):
|
||||
bend_dxy[1] *= -1
|
||||
bend_angle *= -1
|
||||
else:
|
||||
bend_dxy = numpy.zeros(2)
|
||||
bend_angle = pi
|
||||
|
||||
straight_length = length - bend_dxy[0]
|
||||
bend_run = bend_dxy[1]
|
||||
|
||||
if straight_length < 0:
|
||||
raise BuildError(
|
||||
f'Asked to draw path with total length {length:,g}, shorter than required bend: {bend_dxy[0]:,g}'
|
||||
)
|
||||
data = numpy.array((length, bend_run))
|
||||
out_port = Port(data, rotation=bend_angle, ptype=self.ptype)
|
||||
return out_port, data
|
||||
|
||||
def render(
|
||||
self,
|
||||
batch: Sequence[RenderStep],
|
||||
*,
|
||||
port_names: Sequence[str] = ('A', 'B'),
|
||||
**kwargs, # noqa: ARG002 (unused)
|
||||
) -> ILibrary:
|
||||
|
||||
path_vertices = [batch[0].start_port.offset]
|
||||
for step in batch:
|
||||
assert step.tool == self
|
||||
|
||||
port_rot = step.start_port.rotation
|
||||
assert port_rot is not None
|
||||
|
||||
if step.opcode == 'L':
|
||||
length, bend_run = step.data
|
||||
dxy = rotation_matrix_2d(port_rot + pi) @ (length, 0)
|
||||
#path_vertices.append(step.start_port.offset)
|
||||
path_vertices.append(step.start_port.offset + dxy)
|
||||
else:
|
||||
raise BuildError(f'Unrecognized opcode "{step.opcode}"')
|
||||
|
||||
if (path_vertices[-1] != batch[-1].end_port.offset).any():
|
||||
# If the path ends in a bend, we need to add the final vertex
|
||||
path_vertices.append(batch[-1].end_port.offset)
|
||||
|
||||
tree, pat = Library.mktree(SINGLE_USE_PREFIX + 'path')
|
||||
pat.path(layer=self.layer, width=self.width, vertices=path_vertices)
|
||||
pat.ports = {
|
||||
port_names[0]: batch[0].start_port.copy().rotate(pi),
|
||||
port_names[1]: batch[-1].end_port.copy().rotate(pi),
|
||||
}
|
||||
return tree
|
||||
|
@ -1,27 +1,26 @@
|
||||
from typing import SupportsFloat, cast, TYPE_CHECKING
|
||||
from collections.abc import Mapping, Sequence
|
||||
from typing import Dict, Tuple, List, Optional, Union, Any, cast, Sequence, TYPE_CHECKING
|
||||
from pprint import pformat
|
||||
|
||||
import numpy
|
||||
from numpy import pi
|
||||
from numpy.typing import ArrayLike, NDArray
|
||||
from numpy.typing import ArrayLike
|
||||
|
||||
from ..utils import rotation_matrix_2d, SupportsBool
|
||||
from ..utils import rotation_matrix_2d
|
||||
from ..error import BuildError
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..ports import Port
|
||||
from .devices import Port
|
||||
|
||||
|
||||
def ell(
|
||||
ports: Mapping[str, 'Port'],
|
||||
ccw: SupportsBool | None,
|
||||
ports: Dict[str, 'Port'],
|
||||
ccw: Optional[bool],
|
||||
bound_type: str,
|
||||
bound: float | ArrayLike,
|
||||
bound: Union[float, ArrayLike],
|
||||
*,
|
||||
spacing: float | ArrayLike | None = None,
|
||||
set_rotation: float | None = None,
|
||||
) -> dict[str, float]:
|
||||
spacing: Optional[Union[float, ArrayLike]] = None,
|
||||
set_rotation: Optional[float] = None,
|
||||
) -> Dict[str, float]:
|
||||
"""
|
||||
Calculate extension for each port in order to build a 90-degree bend with the provided
|
||||
channel spacing:
|
||||
@ -54,9 +53,9 @@ def ell(
|
||||
The distance between furthest out-port (B) and the innermost bend (D's bend).
|
||||
- 'max_extension' or 'emax':
|
||||
The total extension value for the closest-in port (C in the diagram).
|
||||
- 'min_position', 'pmin', 'xmin', 'ymin':
|
||||
- 'min_position' or 'pmin':
|
||||
The coordinate of the innermost bend (D's bend).
|
||||
- 'max_position', 'pmax', 'xmax', 'ymax':
|
||||
- 'max_position' or 'pmax':
|
||||
The coordinate of the outermost bend (A's bend).
|
||||
|
||||
`bound` can also be a vector. If specifying an extension (e.g. 'min_extension',
|
||||
@ -110,12 +109,6 @@ def ell(
|
||||
raise BuildError('set_rotation must be specified if no ports have rotations!')
|
||||
rotations = numpy.full_like(has_rotation, set_rotation, dtype=float)
|
||||
|
||||
is_horizontal = numpy.isclose(rotations[0] % pi, 0)
|
||||
if bound_type in ('ymin', 'ymax') and is_horizontal:
|
||||
raise BuildError(f'Asked for {bound_type} position but ports are pointing along the x-axis!')
|
||||
if bound_type in ('xmin', 'xmax') and not is_horizontal:
|
||||
raise BuildError(f'Asked for {bound_type} position but ports are pointing along the y-axis!')
|
||||
|
||||
direction = rotations[0] + pi # direction we want to travel in (+pi relative to port)
|
||||
rot_matrix = rotation_matrix_2d(-direction)
|
||||
|
||||
@ -123,8 +116,6 @@ def ell(
|
||||
orig_offsets = numpy.array([p.offset for p in ports.values()])
|
||||
rot_offsets = (rot_matrix @ orig_offsets.T).T
|
||||
|
||||
# ordering_base = rot_offsets.T * [[1], [-1 if ccw else 1]] # could work, but this is actually a more complex routing problem
|
||||
# y_order = numpy.lexsort(ordering_base) # (need to make sure we don't collide with the next input port @ same y)
|
||||
y_order = ((-1 if ccw else 1) * rot_offsets[:, 1]).argsort(kind='stable')
|
||||
y_ind = numpy.empty_like(y_order, dtype=int)
|
||||
y_ind[y_order] = numpy.arange(y_ind.shape[0])
|
||||
@ -144,7 +135,6 @@ def ell(
|
||||
# D-----------| `d_to_align[3]`
|
||||
#
|
||||
d_to_align = x_start.max() - x_start # distance to travel to align all
|
||||
offsets: NDArray[numpy.float64]
|
||||
if bound_type == 'min_past_furthest':
|
||||
# A------------------V `d_to_exit[0]`
|
||||
# B-----V `d_to_exit[1]`
|
||||
@ -164,7 +154,6 @@ def ell(
|
||||
travel = d_to_align - (ch_offsets.max() - ch_offsets)
|
||||
offsets = travel - travel.min().clip(max=0)
|
||||
|
||||
rot_bound: SupportsFloat
|
||||
if bound_type in ('emin', 'min_extension',
|
||||
'emax', 'max_extension',
|
||||
'min_past_furthest',):
|
||||
@ -181,7 +170,7 @@ def ell(
|
||||
|
||||
if bound_type in ('emin', 'min_extension', 'min_past_furthest'):
|
||||
offsets += rot_bound.max()
|
||||
elif bound_type in ('emax', 'max_extension'):
|
||||
elif bound_type in('emax', 'max_extension'):
|
||||
offsets += rot_bound.min() - offsets.max()
|
||||
else:
|
||||
if numpy.size(bound) == 2:
|
||||
@ -193,16 +182,15 @@ def ell(
|
||||
rot_bound = -bound if neg else bound
|
||||
|
||||
min_possible = x_start + offsets
|
||||
if bound_type in ('pmax', 'max_position', 'xmax', 'ymax'):
|
||||
if bound_type in ('pmax', 'max_position'):
|
||||
extension = rot_bound - min_possible.max()
|
||||
elif bound_type in ('pmin', 'min_position', 'xmin', 'ymin'):
|
||||
elif bound_type in ('pmin', 'min_position'):
|
||||
extension = rot_bound - min_possible.min()
|
||||
|
||||
offsets += extension
|
||||
if extension < 0:
|
||||
ext_floor = -numpy.floor(extension)
|
||||
raise BuildError(f'Position is too close by at least {ext_floor}. Total extensions would be\n\t'
|
||||
+ '\n\t'.join(f'{key}: {off}' for key, off in zip(ports.keys(), offsets, strict=True)))
|
||||
raise BuildError(f'Position is too close by at least {-numpy.floor(extension)}. Total extensions would be'
|
||||
+ '\n\t'.join(f'{key}: {off}' for key, off in zip(ports.keys(), offsets)))
|
||||
|
||||
result = dict(zip(ports.keys(), offsets, strict=True))
|
||||
result = dict(zip(ports.keys(), offsets))
|
||||
return result
|
||||
|
@ -11,6 +11,13 @@ class PatternError(MasqueError):
|
||||
"""
|
||||
pass
|
||||
|
||||
class PatternLockedError(PatternError):
|
||||
"""
|
||||
Exception raised when trying to modify a locked pattern
|
||||
"""
|
||||
def __init__(self):
|
||||
PatternError.__init__(self, 'Tried to modify a locked Pattern, subpattern, or shape')
|
||||
|
||||
|
||||
class LibraryError(MasqueError):
|
||||
"""
|
||||
@ -19,21 +26,22 @@ class LibraryError(MasqueError):
|
||||
pass
|
||||
|
||||
|
||||
class DeviceLibraryError(MasqueError):
|
||||
"""
|
||||
Exception raised by DeviceLibrary classes
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class DeviceError(MasqueError):
|
||||
"""
|
||||
Exception raised by Device and Port objects
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class BuildError(MasqueError):
|
||||
"""
|
||||
Exception raised by builder-related functions
|
||||
"""
|
||||
pass
|
||||
|
||||
class PortError(MasqueError):
|
||||
"""
|
||||
Exception raised by builder-related functions
|
||||
"""
|
||||
pass
|
||||
|
||||
class OneShotError(MasqueError):
|
||||
"""
|
||||
Exception raised when a function decorated with `@oneshot` is called more than once
|
||||
"""
|
||||
def __init__(self, func_name: str) -> None:
|
||||
Exception.__init__(self, f'Function "{func_name}" with @oneshot was called more than once')
|
||||
|
@ -1,51 +1,45 @@
|
||||
"""
|
||||
DXF file format readers and writers
|
||||
|
||||
Notes:
|
||||
* Gzip modification time is set to 0 (start of current epoch, usually 1970-01-01)
|
||||
* ezdxf sets creation time, write time, $VERSIONGUID, and $FINGERPRINTGUID
|
||||
to unique values, so byte-for-byte reproducibility is not achievable for now
|
||||
"""
|
||||
from typing import Any, cast, TextIO, IO
|
||||
from collections.abc import Mapping, Callable
|
||||
from typing import List, Any, Dict, Tuple, Callable, Union, Sequence, Iterable
|
||||
import re
|
||||
import io
|
||||
import base64
|
||||
import struct
|
||||
import logging
|
||||
import pathlib
|
||||
import gzip
|
||||
|
||||
import numpy
|
||||
import ezdxf
|
||||
from ezdxf.enums import TextEntityAlignment
|
||||
from ezdxf.entities import LWPolyline, Polyline, Text, Insert
|
||||
import numpy # type: ignore
|
||||
import ezdxf # type: ignore
|
||||
|
||||
from .utils import is_gzipped, tmpfile
|
||||
from .. import Pattern, Ref, PatternError, Label
|
||||
from ..library import ILibraryView, LibraryView, Library
|
||||
from ..shapes import Shape, Polygon, Path
|
||||
from .. import Pattern, SubPattern, PatternError, Label, Shape
|
||||
from ..shapes import Polygon, Path
|
||||
from ..repetition import Grid
|
||||
from ..utils import rotation_matrix_2d, layer_t, normalize_mirror
|
||||
from ..utils import rotation_matrix_2d, layer_t
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
logger.warning('DXF support is experimental!')
|
||||
logger.warning('DXF support is experimental and only slightly tested!')
|
||||
|
||||
|
||||
DEFAULT_LAYER = 'DEFAULT'
|
||||
|
||||
|
||||
def write(
|
||||
library: Mapping[str, Pattern], # TODO could allow library=None for flat DXF
|
||||
top_name: str,
|
||||
stream: TextIO,
|
||||
pattern: Pattern,
|
||||
stream: io.TextIOBase,
|
||||
*,
|
||||
dxf_version: str = 'AC1024',
|
||||
modify_originals: bool = False,
|
||||
dxf_version='AC1024',
|
||||
disambiguate_func: Callable[[Iterable[Pattern]], None] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Write a `Pattern` to a DXF file, by first calling `.polygonize()` to change the shapes
|
||||
into polygons, and then writing patterns as DXF `Block`s, polygons as `LWPolyline`s,
|
||||
and refs as `Insert`s.
|
||||
and subpatterns as `Insert`s.
|
||||
|
||||
The top level pattern's name is not written to the DXF file. Nested patterns keep their
|
||||
names.
|
||||
@ -55,61 +49,60 @@ def write(
|
||||
tuple: (1, 2) -> '1.2'
|
||||
str: '1.2' -> '1.2' (no change)
|
||||
|
||||
DXF does not support shape repetition (only block repeptition). Please call
|
||||
library.wrap_repeated_shapes() before writing to file.
|
||||
It is often a good idea to run `pattern.subpatternize()` prior to calling this function,
|
||||
especially if calling `.polygonize()` will result in very many vertices.
|
||||
|
||||
Other functions you may want to call:
|
||||
- `masque.file.oasis.check_valid_names(library.keys())` to check for invalid names
|
||||
- `library.dangling_refs()` to check for references to missing patterns
|
||||
- `pattern.polygonize()` for any patterns with shapes other
|
||||
than `masque.shapes.Polygon` or `masque.shapes.Path`
|
||||
If you want pattern polygonized with non-default arguments, just call `pattern.polygonize()`
|
||||
prior to calling this function.
|
||||
|
||||
Only `Grid` repetition objects with manhattan basis vectors are preserved as arrays. Since DXF
|
||||
rotations apply to basis vectors while `masque`'s rotations do not, the basis vectors of an
|
||||
array with rotated instances must be manhattan _after_ having a compensating rotation applied.
|
||||
|
||||
Args:
|
||||
library: A {name: Pattern} mapping of patterns. Only `top_name` and patterns referenced
|
||||
by it are written.
|
||||
top_name: Name of the top-level pattern to write.
|
||||
patterns: A Pattern or list of patterns to write to the stream.
|
||||
stream: Stream object to write to.
|
||||
modify_original: If `True`, the original pattern is modified as part of the writing
|
||||
process. Otherwise, a copy is made and `deepunlock()`-ed.
|
||||
Default `False`.
|
||||
disambiguate_func: Function which takes a list of patterns and alters them
|
||||
to make their names valid and unique. Default is `disambiguate_pattern_names`.
|
||||
WARNING: No additional error checking is performed on the results.
|
||||
"""
|
||||
#TODO consider supporting DXF arcs?
|
||||
if not isinstance(library, ILibraryView):
|
||||
if isinstance(library, dict):
|
||||
library = LibraryView(library)
|
||||
else:
|
||||
library = LibraryView(dict(library))
|
||||
if disambiguate_func is None:
|
||||
disambiguate_func = lambda pats: disambiguate_pattern_names(pats)
|
||||
assert(disambiguate_func is not None)
|
||||
|
||||
pattern = library[top_name]
|
||||
subtree = library.subtree(top_name)
|
||||
if not modify_originals:
|
||||
pattern = pattern.deepcopy().deepunlock()
|
||||
|
||||
# Get a dict of id(pattern) -> pattern
|
||||
patterns_by_id = pattern.referenced_patterns_by_id()
|
||||
disambiguate_func(patterns_by_id.values())
|
||||
|
||||
# Create library
|
||||
lib = ezdxf.new(dxf_version, setup=True)
|
||||
msp = lib.modelspace()
|
||||
_shapes_to_elements(msp, pattern.shapes)
|
||||
_labels_to_texts(msp, pattern.labels)
|
||||
_mrefs_to_drefs(msp, pattern.refs)
|
||||
_subpatterns_to_refs(msp, pattern.subpatterns)
|
||||
|
||||
# Now create a block for each referenced pattern, and add in any shapes
|
||||
for name, pat in subtree.items():
|
||||
assert pat is not None
|
||||
if name == top_name:
|
||||
continue
|
||||
|
||||
block = lib.blocks.new(name=name)
|
||||
for pat in patterns_by_id.values():
|
||||
assert(pat is not None)
|
||||
block = lib.blocks.new(name=pat.name)
|
||||
|
||||
_shapes_to_elements(block, pat.shapes)
|
||||
_labels_to_texts(block, pat.labels)
|
||||
_mrefs_to_drefs(block, pat.refs)
|
||||
_subpatterns_to_refs(block, pat.subpatterns)
|
||||
|
||||
lib.write(stream)
|
||||
|
||||
|
||||
def writefile(
|
||||
library: Mapping[str, Pattern],
|
||||
top_name: str,
|
||||
filename: str | pathlib.Path,
|
||||
pattern: Pattern,
|
||||
filename: Union[str, pathlib.Path],
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
@ -119,42 +112,30 @@ def writefile(
|
||||
Will automatically compress the file if it has a .gz suffix.
|
||||
|
||||
Args:
|
||||
library: A {name: Pattern} mapping of patterns. Only `top_name` and patterns referenced
|
||||
by it are written.
|
||||
top_name: Name of the top-level pattern to write.
|
||||
pattern: `Pattern` to save
|
||||
filename: Filename to save to.
|
||||
*args: passed to `dxf.write`
|
||||
**kwargs: passed to `dxf.write`
|
||||
"""
|
||||
path = pathlib.Path(filename)
|
||||
if path.suffix == '.gz':
|
||||
open_func: Callable = gzip.open
|
||||
else:
|
||||
open_func = open
|
||||
|
||||
gz_stream: IO[bytes]
|
||||
with tmpfile(path) as base_stream:
|
||||
streams: tuple[Any, ...] = (base_stream,)
|
||||
if path.suffix == '.gz':
|
||||
gz_stream = cast(IO[bytes], gzip.GzipFile(filename='', mtime=0, fileobj=base_stream, mode='wb'))
|
||||
streams = (gz_stream,) + streams
|
||||
else:
|
||||
gz_stream = base_stream
|
||||
stream = io.TextIOWrapper(gz_stream) # type: ignore
|
||||
streams = (stream,) + streams
|
||||
|
||||
try:
|
||||
write(library, top_name, stream, *args, **kwargs)
|
||||
finally:
|
||||
for ss in streams:
|
||||
ss.close()
|
||||
with open_func(path, mode='wt') as stream:
|
||||
write(pattern, stream, *args, **kwargs)
|
||||
|
||||
|
||||
def readfile(
|
||||
filename: str | pathlib.Path,
|
||||
filename: Union[str, pathlib.Path],
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> tuple[Library, dict[str, Any]]:
|
||||
) -> Tuple[Pattern, Dict[str, Any]]:
|
||||
"""
|
||||
Wrapper for `dxf.read()` that takes a filename or path instead of a stream.
|
||||
|
||||
Will automatically decompress gzipped files.
|
||||
Will automatically decompress files with a .gz suffix.
|
||||
|
||||
Args:
|
||||
filename: Filename to save to.
|
||||
@ -162,7 +143,7 @@ def readfile(
|
||||
**kwargs: passed to `dxf.read`
|
||||
"""
|
||||
path = pathlib.Path(filename)
|
||||
if is_gzipped(path):
|
||||
if path.suffix == '.gz':
|
||||
open_func: Callable = gzip.open
|
||||
else:
|
||||
open_func = open
|
||||
@ -173,17 +154,21 @@ def readfile(
|
||||
|
||||
|
||||
def read(
|
||||
stream: TextIO,
|
||||
) -> tuple[Library, dict[str, Any]]:
|
||||
stream: io.TextIOBase,
|
||||
clean_vertices: bool = True,
|
||||
) -> Tuple[Pattern, Dict[str, Any]]:
|
||||
"""
|
||||
Read a dxf file and translate it into a dict of `Pattern` objects. DXF `Block`s are
|
||||
translated into `Pattern` objects; `LWPolyline`s are translated into polygons, and `Insert`s
|
||||
are translated into `Ref` objects.
|
||||
are translated into `SubPattern` objects.
|
||||
|
||||
If an object has no layer it is set to this module's `DEFAULT_LAYER` ("DEFAULT").
|
||||
|
||||
Args:
|
||||
stream: Stream to read from.
|
||||
clean_vertices: If `True`, remove any redundant vertices when loading polygons.
|
||||
The cleaning process removes any polygons with zero area or <3 vertices.
|
||||
Default `True`.
|
||||
|
||||
Returns:
|
||||
- Top level pattern
|
||||
@ -191,183 +176,177 @@ def read(
|
||||
lib = ezdxf.read(stream)
|
||||
msp = lib.modelspace()
|
||||
|
||||
top_name, top_pat = _read_block(msp)
|
||||
mlib = Library({top_name: top_pat})
|
||||
for bb in lib.blocks:
|
||||
if bb.name == '*Model_Space':
|
||||
continue
|
||||
name, pat = _read_block(bb)
|
||||
mlib[name] = pat
|
||||
pat = _read_block(msp, clean_vertices)
|
||||
patterns = [pat] + [_read_block(bb, clean_vertices) for bb in lib.blocks if bb.name != '*Model_Space']
|
||||
|
||||
library_info = dict(
|
||||
layers=[ll.dxfattribs() for ll in lib.layers],
|
||||
)
|
||||
# Create a dict of {pattern.name: pattern, ...}, then fix up all subpattern.pattern entries
|
||||
# according to the subpattern.identifier (which is deleted after use).
|
||||
patterns_dict = dict(((p.name, p) for p in patterns))
|
||||
for p in patterns_dict.values():
|
||||
for sp in p.subpatterns:
|
||||
sp.pattern = patterns_dict[sp.identifier[0]]
|
||||
del sp.identifier
|
||||
|
||||
return mlib, library_info
|
||||
library_info = {
|
||||
'layers': [ll.dxfattribs() for ll in lib.layers]
|
||||
}
|
||||
|
||||
return pat, library_info
|
||||
|
||||
|
||||
def _read_block(block: ezdxf.layouts.BlockLayout | ezdxf.layouts.Modelspace) -> tuple[str, Pattern]:
|
||||
name = block.name
|
||||
pat = Pattern()
|
||||
def _read_block(block, clean_vertices: bool) -> Pattern:
|
||||
pat = Pattern(block.name)
|
||||
for element in block:
|
||||
if isinstance(element, LWPolyline | Polyline):
|
||||
if isinstance(element, LWPolyline):
|
||||
points = numpy.asarray(element.get_points())
|
||||
elif isinstance(element, Polyline):
|
||||
points = numpy.asarray(element.points())[:, :2]
|
||||
eltype = element.dxftype()
|
||||
if eltype in ('POLYLINE', 'LWPOLYLINE'):
|
||||
if eltype == 'LWPOLYLINE':
|
||||
points = numpy.array(tuple(element.lwpoints))
|
||||
else:
|
||||
points = numpy.array(tuple(element.points()))
|
||||
attr = element.dxfattribs()
|
||||
layer = attr.get('layer', DEFAULT_LAYER)
|
||||
|
||||
if points.shape[1] == 2:
|
||||
raise PatternError('Invalid or unimplemented polygon?')
|
||||
|
||||
if points.shape[1] > 2:
|
||||
#shape = Polygon(layer=layer)
|
||||
elif points.shape[1] > 2:
|
||||
if (points[0, 2] != points[:, 2]).any():
|
||||
raise PatternError('PolyLine has non-constant width (not yet representable in masque!)')
|
||||
if points.shape[1] == 4 and (points[:, 3] != 0).any():
|
||||
elif points.shape[1] == 4 and (points[:, 3] != 0).any():
|
||||
raise PatternError('LWPolyLine has bulge (not yet representable in masque!)')
|
||||
|
||||
width = points[0, 2]
|
||||
if width == 0:
|
||||
width = attr.get('const_width', 0)
|
||||
|
||||
shape: Path | Polygon
|
||||
shape: Union[Path, Polygon]
|
||||
if width == 0 and len(points) > 2 and numpy.array_equal(points[0], points[-1]):
|
||||
shape = Polygon(vertices=points[:-1, :2])
|
||||
shape = Polygon(layer=layer, vertices=points[:-1, :2])
|
||||
else:
|
||||
shape = Path(width=width, vertices=points[:, :2])
|
||||
shape = Path(layer=layer, width=width, vertices=points[:, :2])
|
||||
|
||||
pat.shapes[layer].append(shape)
|
||||
if clean_vertices:
|
||||
try:
|
||||
shape.clean_vertices()
|
||||
except PatternError:
|
||||
continue
|
||||
|
||||
elif isinstance(element, Text):
|
||||
args = dict(
|
||||
offset=numpy.asarray(element.get_placement()[1])[:2],
|
||||
layer=element.dxfattribs().get('layer', DEFAULT_LAYER),
|
||||
)
|
||||
pat.shapes.append(shape)
|
||||
|
||||
elif eltype in ('TEXT',):
|
||||
args = {'offset': numpy.array(element.get_pos()[1])[:2],
|
||||
'layer': element.dxfattribs().get('layer', DEFAULT_LAYER),
|
||||
}
|
||||
string = element.dxfattribs().get('text', '')
|
||||
# height = element.dxfattribs().get('height', 0)
|
||||
# if height != 0:
|
||||
# logger.warning('Interpreting DXF TEXT as a label despite nonzero height. '
|
||||
# 'This could be changed in the future by setting a font path in the masque DXF code.')
|
||||
pat.label(string=string, **args)
|
||||
pat.labels.append(Label(string=string, **args))
|
||||
# else:
|
||||
# pat.shapes[args['layer']].append(Text(string=string, height=height, font_path=????))
|
||||
elif isinstance(element, Insert):
|
||||
# pat.shapes.append(Text(string=string, height=height, font_path=????))
|
||||
elif eltype in ('INSERT',):
|
||||
attr = element.dxfattribs()
|
||||
xscale = attr.get('xscale', 1)
|
||||
yscale = attr.get('yscale', 1)
|
||||
if abs(xscale) != abs(yscale):
|
||||
logger.warning('Masque does not support per-axis scaling; using x-scaling only!')
|
||||
scale = abs(xscale)
|
||||
mirrored, extra_angle = normalize_mirror((yscale < 0, xscale < 0))
|
||||
rotation = numpy.deg2rad(attr.get('rotation', 0)) + extra_angle
|
||||
mirrored = (yscale < 0, xscale < 0)
|
||||
rotation = numpy.deg2rad(attr.get('rotation', 0))
|
||||
|
||||
offset = numpy.asarray(attr.get('insert', (0, 0, 0)))[:2]
|
||||
offset = numpy.array(attr.get('insert', (0, 0, 0)))[:2]
|
||||
|
||||
args = dict(
|
||||
target=attr.get('name', None),
|
||||
offset=offset,
|
||||
scale=scale,
|
||||
mirrored=mirrored,
|
||||
rotation=rotation,
|
||||
)
|
||||
args = {
|
||||
'offset': offset,
|
||||
'scale': scale,
|
||||
'mirrored': mirrored,
|
||||
'rotation': rotation,
|
||||
'pattern': None,
|
||||
'identifier': (attr.get('name', None),),
|
||||
}
|
||||
|
||||
if 'column_count' in attr:
|
||||
args['repetition'] = Grid(
|
||||
a_vector=(attr['column_spacing'], 0),
|
||||
b_vector=(0, attr['row_spacing']),
|
||||
a_count=attr['column_count'],
|
||||
b_count=attr['row_count'],
|
||||
)
|
||||
pat.ref(**args)
|
||||
args['repetition'] = Grid(a_vector=(attr['column_spacing'], 0),
|
||||
b_vector=(0, attr['row_spacing']),
|
||||
a_count=attr['column_count'],
|
||||
b_count=attr['row_count'])
|
||||
pat.subpatterns.append(SubPattern(**args))
|
||||
else:
|
||||
logger.warning(f'Ignoring DXF element {element.dxftype()} (not implemented).')
|
||||
return name, pat
|
||||
return pat
|
||||
|
||||
|
||||
def _mrefs_to_drefs(
|
||||
block: ezdxf.layouts.BlockLayout | ezdxf.layouts.Modelspace,
|
||||
refs: dict[str | None, list[Ref]],
|
||||
def _subpatterns_to_refs(
|
||||
block: Union[ezdxf.layouts.BlockLayout, ezdxf.layouts.Modelspace],
|
||||
subpatterns: List[SubPattern],
|
||||
) -> None:
|
||||
def mk_blockref(encoded_name: str, ref: Ref) -> None:
|
||||
rotation = numpy.rad2deg(ref.rotation) % 360
|
||||
attribs = dict(
|
||||
xscale=ref.scale,
|
||||
yscale=ref.scale * (-1 if ref.mirrored else 1),
|
||||
rotation=rotation,
|
||||
)
|
||||
for subpat in subpatterns:
|
||||
if subpat.pattern is None:
|
||||
continue
|
||||
encoded_name = subpat.pattern.name
|
||||
|
||||
rep = ref.repetition
|
||||
rotation = (subpat.rotation * 180 / numpy.pi) % 360
|
||||
attribs = {
|
||||
'xscale': subpat.scale * (-1 if subpat.mirrored[1] else 1),
|
||||
'yscale': subpat.scale * (-1 if subpat.mirrored[0] else 1),
|
||||
'rotation': rotation,
|
||||
}
|
||||
|
||||
rep = subpat.repetition
|
||||
if rep is None:
|
||||
block.add_blockref(encoded_name, ref.offset, dxfattribs=attribs)
|
||||
block.add_blockref(encoded_name, subpat.offset, dxfattribs=attribs)
|
||||
elif isinstance(rep, Grid):
|
||||
a = rep.a_vector
|
||||
b = rep.b_vector if rep.b_vector is not None else numpy.zeros(2)
|
||||
rotated_a = rotation_matrix_2d(-ref.rotation) @ a
|
||||
rotated_b = rotation_matrix_2d(-ref.rotation) @ b
|
||||
rotated_a = rotation_matrix_2d(-subpat.rotation) @ a
|
||||
rotated_b = rotation_matrix_2d(-subpat.rotation) @ b
|
||||
if rotated_a[1] == 0 and rotated_b[0] == 0:
|
||||
attribs['column_count'] = rep.a_count
|
||||
attribs['row_count'] = rep.b_count
|
||||
attribs['column_spacing'] = rotated_a[0]
|
||||
attribs['row_spacing'] = rotated_b[1]
|
||||
block.add_blockref(encoded_name, ref.offset, dxfattribs=attribs)
|
||||
block.add_blockref(encoded_name, subpat.offset, dxfattribs=attribs)
|
||||
elif rotated_a[0] == 0 and rotated_b[1] == 0:
|
||||
attribs['column_count'] = rep.b_count
|
||||
attribs['row_count'] = rep.a_count
|
||||
attribs['column_spacing'] = rotated_b[0]
|
||||
attribs['row_spacing'] = rotated_a[1]
|
||||
block.add_blockref(encoded_name, ref.offset, dxfattribs=attribs)
|
||||
block.add_blockref(encoded_name, subpat.offset, dxfattribs=attribs)
|
||||
else:
|
||||
#NOTE: We could still do non-manhattan (but still orthogonal) grids by getting
|
||||
# creative with counter-rotated nested patterns, but probably not worth it.
|
||||
# Instead, just break appart the grid into individual elements:
|
||||
for dd in rep.displacements:
|
||||
block.add_blockref(encoded_name, ref.offset + dd, dxfattribs=attribs)
|
||||
block.add_blockref(encoded_name, subpat.offset + dd, dxfattribs=attribs)
|
||||
else:
|
||||
for dd in rep.displacements:
|
||||
block.add_blockref(encoded_name, ref.offset + dd, dxfattribs=attribs)
|
||||
|
||||
for target, rseq in refs.items():
|
||||
if target is None:
|
||||
continue
|
||||
for ref in rseq:
|
||||
mk_blockref(target, ref)
|
||||
block.add_blockref(encoded_name, subpat.offset + dd, dxfattribs=attribs)
|
||||
|
||||
|
||||
def _shapes_to_elements(
|
||||
block: ezdxf.layouts.BlockLayout | ezdxf.layouts.Modelspace,
|
||||
shapes: dict[layer_t, list[Shape]],
|
||||
block: Union[ezdxf.layouts.BlockLayout, ezdxf.layouts.Modelspace],
|
||||
shapes: List[Shape],
|
||||
polygonize_paths: bool = False,
|
||||
) -> None:
|
||||
# Add `LWPolyline`s for each shape.
|
||||
# Could set do paths with width setting, but need to consider endcaps.
|
||||
# TODO: can DXF do paths?
|
||||
for layer, sseq in shapes.items():
|
||||
attribs = dict(layer=_mlayer2dxf(layer))
|
||||
for shape in sseq:
|
||||
if shape.repetition is not None:
|
||||
raise PatternError(
|
||||
'Shape repetitions are not supported by DXF.'
|
||||
' Please call library.wrap_repeated_shapes() before writing to file.'
|
||||
)
|
||||
|
||||
for polygon in shape.to_polygons():
|
||||
xy_open = polygon.vertices + polygon.offset
|
||||
xy_closed = numpy.vstack((xy_open, xy_open[0, :]))
|
||||
block.add_lwpolyline(xy_closed, dxfattribs=attribs)
|
||||
for shape in shapes:
|
||||
attribs = {'layer': _mlayer2dxf(shape.layer)}
|
||||
for polygon in shape.to_polygons():
|
||||
xy_open = polygon.vertices + polygon.offset
|
||||
xy_closed = numpy.vstack((xy_open, xy_open[0, :]))
|
||||
block.add_lwpolyline(xy_closed, dxfattribs=attribs)
|
||||
|
||||
|
||||
def _labels_to_texts(
|
||||
block: ezdxf.layouts.BlockLayout | ezdxf.layouts.Modelspace,
|
||||
labels: dict[layer_t, list[Label]],
|
||||
block: Union[ezdxf.layouts.BlockLayout, ezdxf.layouts.Modelspace],
|
||||
labels: List[Label],
|
||||
) -> None:
|
||||
for layer, lseq in labels.items():
|
||||
attribs = dict(layer=_mlayer2dxf(layer))
|
||||
for label in lseq:
|
||||
xy = label.offset
|
||||
block.add_text(
|
||||
label.string,
|
||||
dxfattribs=attribs
|
||||
).set_placement(xy, align=TextEntityAlignment.BOTTOM_LEFT)
|
||||
for label in labels:
|
||||
attribs = {'layer': _mlayer2dxf(label.layer)}
|
||||
xy = label.offset
|
||||
block.add_text(label.string, dxfattribs=attribs).set_pos(xy, align='BOTTOM_LEFT')
|
||||
|
||||
|
||||
def _mlayer2dxf(layer: layer_t) -> str:
|
||||
@ -378,3 +357,40 @@ def _mlayer2dxf(layer: layer_t) -> str:
|
||||
if isinstance(layer, tuple):
|
||||
return f'{layer[0]}.{layer[1]}'
|
||||
raise PatternError(f'Unknown layer type: {layer} ({type(layer)})')
|
||||
|
||||
|
||||
def disambiguate_pattern_names(
|
||||
patterns: Iterable[Pattern],
|
||||
max_name_length: int = 32,
|
||||
suffix_length: int = 6,
|
||||
dup_warn_filter: Callable[[str], bool] = None, # If returns False, don't warn about this name
|
||||
) -> None:
|
||||
used_names = []
|
||||
for pat in patterns:
|
||||
sanitized_name = re.compile(r'[^A-Za-z0-9_\?\$]').sub('_', pat.name)
|
||||
|
||||
i = 0
|
||||
suffixed_name = sanitized_name
|
||||
while suffixed_name in used_names or suffixed_name == '':
|
||||
suffix = base64.b64encode(struct.pack('>Q', i), b'$?').decode('ASCII')
|
||||
|
||||
suffixed_name = sanitized_name + '$' + suffix[:-1].lstrip('A')
|
||||
i += 1
|
||||
|
||||
if sanitized_name == '':
|
||||
logger.warning(f'Empty pattern name saved as "{suffixed_name}"')
|
||||
elif suffixed_name != sanitized_name:
|
||||
if dup_warn_filter is None or dup_warn_filter(pat.name):
|
||||
logger.warning(f'Pattern name "{pat.name}" ({sanitized_name}) appears multiple times;\n'
|
||||
+ f' renaming to "{suffixed_name}"')
|
||||
|
||||
if len(suffixed_name) == 0:
|
||||
# Should never happen since zero-length names are replaced
|
||||
raise PatternError(f'Zero-length name after sanitize,\n originally "{pat.name}"')
|
||||
if len(suffixed_name) > max_name_length:
|
||||
raise PatternError(f'Pattern name "{suffixed_name!r}" length > {max_name_length} after encode,\n'
|
||||
+ f' originally "{pat.name}"')
|
||||
|
||||
pat.name = suffixed_name
|
||||
used_names.append(suffixed_name)
|
||||
|
||||
|
@ -16,31 +16,31 @@ Notes:
|
||||
* PLEX is not supported
|
||||
* ELFLAGS are not supported
|
||||
* GDS does not support library- or structure-level annotations
|
||||
* GDS creation/modification/access times are set to 1900-01-01 for reproducibility.
|
||||
* Gzip modification time is set to 0 (start of current epoch, usually 1970-01-01)
|
||||
* Creation/modification/access times are set to 1900-01-01 for reproducibility.
|
||||
"""
|
||||
from typing import IO, cast, Any
|
||||
from collections.abc import Iterable, Mapping, Callable
|
||||
from typing import List, Any, Dict, Tuple, Callable, Union, Iterable, Optional
|
||||
from typing import Sequence, BinaryIO
|
||||
import re
|
||||
import io
|
||||
import mmap
|
||||
import copy
|
||||
import base64
|
||||
import struct
|
||||
import logging
|
||||
import pathlib
|
||||
import gzip
|
||||
import string
|
||||
from pprint import pformat
|
||||
|
||||
import numpy
|
||||
from numpy.typing import ArrayLike, NDArray
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
import klamath
|
||||
from klamath import records
|
||||
|
||||
from .utils import is_gzipped, tmpfile
|
||||
from .. import Pattern, Ref, PatternError, LibraryError, Label, Shape
|
||||
from .utils import is_gzipped
|
||||
from .. import Pattern, SubPattern, PatternError, Label, Shape
|
||||
from ..shapes import Polygon, Path
|
||||
from ..repetition import Grid
|
||||
from ..utils import layer_t, annotations_t
|
||||
from ..library import LazyLibrary, Library, ILibrary, ILibraryView
|
||||
|
||||
from ..utils import layer_t, normalize_mirror, annotations_t
|
||||
from ..library import Library
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -53,21 +53,20 @@ path_cap_map = {
|
||||
}
|
||||
|
||||
|
||||
def rint_cast(val: ArrayLike) -> NDArray[numpy.int32]:
|
||||
return numpy.rint(val).astype(numpy.int32)
|
||||
|
||||
|
||||
def write(
|
||||
library: Mapping[str, Pattern],
|
||||
stream: IO[bytes],
|
||||
patterns: Union[Pattern, Sequence[Pattern]],
|
||||
stream: BinaryIO,
|
||||
meters_per_unit: float,
|
||||
logical_units_per_unit: float = 1,
|
||||
library_name: str = 'masque-klamath',
|
||||
*,
|
||||
modify_originals: bool = False,
|
||||
disambiguate_func: Callable[[Iterable[Pattern]], None] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Convert a library to a GDSII stream, mapping data as follows:
|
||||
Convert a `Pattern` or list of patterns to a GDSII stream, and then mapping data as follows:
|
||||
Pattern -> GDSII structure
|
||||
Ref -> GDSII SREF or AREF
|
||||
SubPattern -> GDSII SREF or AREF
|
||||
Path -> GSDII path
|
||||
Shape (other than path) -> GDSII boundary/ies
|
||||
Label -> GDSII text
|
||||
@ -79,17 +78,14 @@ def write(
|
||||
datatype is chosen to be `shape.layer[1]` if available,
|
||||
otherwise `0`
|
||||
|
||||
GDS does not support shape repetition (only cell repeptition). Please call
|
||||
`library.wrap_repeated_shapes()` before writing to file.
|
||||
It is often a good idea to run `pattern.subpatternize()` prior to calling this function,
|
||||
especially if calling `.polygonize()` will result in very many vertices.
|
||||
|
||||
Other functions you may want to call:
|
||||
- `masque.file.gdsii.check_valid_names(library.keys())` to check for invalid names
|
||||
- `library.dangling_refs()` to check for references to missing patterns
|
||||
- `pattern.polygonize()` for any patterns with shapes other
|
||||
than `masque.shapes.Polygon` or `masque.shapes.Path`
|
||||
If you want pattern polygonized with non-default arguments, just call `pattern.polygonize()`
|
||||
prior to calling this function.
|
||||
|
||||
Args:
|
||||
library: A {name: Pattern} mapping of patterns to write.
|
||||
patterns: A Pattern or list of patterns to convert.
|
||||
meters_per_unit: Written into the GDSII file, meters per (database) length unit.
|
||||
All distances are assumed to be an integer multiple of this unit, and are stored as such.
|
||||
logical_units_per_unit: Written into the GDSII file. Allows the GDSII to specify a
|
||||
@ -97,35 +93,54 @@ def write(
|
||||
Default `1`.
|
||||
library_name: Library name written into the GDSII file.
|
||||
Default 'masque-klamath'.
|
||||
modify_originals: If `True`, the original pattern is modified as part of the writing
|
||||
process. Otherwise, a copy is made and `deepunlock()`-ed.
|
||||
Default `False`.
|
||||
disambiguate_func: Function which takes a list of patterns and alters them
|
||||
to make their names valid and unique. Default is `disambiguate_pattern_names`, which
|
||||
attempts to adhere to the GDSII standard as well as possible.
|
||||
WARNING: No additional error checking is performed on the results.
|
||||
"""
|
||||
if not isinstance(library, ILibrary):
|
||||
if isinstance(library, dict):
|
||||
library = Library(library)
|
||||
else:
|
||||
library = Library(dict(library))
|
||||
if isinstance(patterns, Pattern):
|
||||
patterns = [patterns]
|
||||
|
||||
if disambiguate_func is None:
|
||||
disambiguate_func = disambiguate_pattern_names # type: ignore
|
||||
assert(disambiguate_func is not None) # placate mypy
|
||||
|
||||
if not modify_originals:
|
||||
patterns = [p.deepunlock() for p in copy.deepcopy(patterns)]
|
||||
|
||||
patterns = [p.wrap_repeated_shapes() for p in patterns]
|
||||
|
||||
# Create library
|
||||
header = klamath.library.FileHeader(
|
||||
name=library_name.encode('ASCII'),
|
||||
user_units_per_db_unit=logical_units_per_unit,
|
||||
meters_per_db_unit=meters_per_unit,
|
||||
)
|
||||
header = klamath.library.FileHeader(name=library_name.encode('ASCII'),
|
||||
user_units_per_db_unit=logical_units_per_unit,
|
||||
meters_per_db_unit=meters_per_unit)
|
||||
header.write(stream)
|
||||
|
||||
# Get a dict of id(pattern) -> pattern
|
||||
patterns_by_id = {id(pattern): pattern for pattern in patterns}
|
||||
for pattern in patterns:
|
||||
for i, p in pattern.referenced_patterns_by_id().items():
|
||||
patterns_by_id[i] = p
|
||||
|
||||
disambiguate_func(patterns_by_id.values())
|
||||
|
||||
# Now create a structure for each pattern, and add in any Boundary and SREF elements
|
||||
for name, pat in library.items():
|
||||
elements: list[klamath.elements.Element] = []
|
||||
for pat in patterns_by_id.values():
|
||||
elements: List[klamath.elements.Element] = []
|
||||
elements += _shapes_to_elements(pat.shapes)
|
||||
elements += _labels_to_texts(pat.labels)
|
||||
elements += _mrefs_to_grefs(pat.refs)
|
||||
elements += _subpatterns_to_refs(pat.subpatterns)
|
||||
|
||||
klamath.library.write_struct(stream, name=name.encode('ASCII'), elements=elements)
|
||||
klamath.library.write_struct(stream, name=pat.name.encode('ASCII'), elements=elements)
|
||||
records.ENDLIB.write(stream, None)
|
||||
|
||||
|
||||
def writefile(
|
||||
library: Mapping[str, Pattern],
|
||||
filename: str | pathlib.Path,
|
||||
patterns: Union[Sequence[Pattern], Pattern],
|
||||
filename: Union[str, pathlib.Path],
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
@ -135,33 +150,26 @@ def writefile(
|
||||
Will automatically compress the file if it has a .gz suffix.
|
||||
|
||||
Args:
|
||||
library: {name: Pattern} pairs to save.
|
||||
patterns: `Pattern` or list of patterns to save
|
||||
filename: Filename to save to.
|
||||
*args: passed to `write()`
|
||||
**kwargs: passed to `write()`
|
||||
"""
|
||||
path = pathlib.Path(filename)
|
||||
if path.suffix == '.gz':
|
||||
open_func: Callable = gzip.open
|
||||
else:
|
||||
open_func = open
|
||||
|
||||
with tmpfile(path) as base_stream:
|
||||
streams: tuple[Any, ...] = (base_stream,)
|
||||
if path.suffix == '.gz':
|
||||
stream = cast(IO[bytes], gzip.GzipFile(filename='', mtime=0, fileobj=base_stream, mode='wb', compresslevel=6))
|
||||
streams = (stream,) + streams
|
||||
else:
|
||||
stream = base_stream
|
||||
|
||||
try:
|
||||
write(library, stream, *args, **kwargs)
|
||||
finally:
|
||||
for ss in streams:
|
||||
ss.close()
|
||||
with io.BufferedWriter(open_func(path, mode='wb')) as stream:
|
||||
write(patterns, stream, *args, **kwargs)
|
||||
|
||||
|
||||
def readfile(
|
||||
filename: str | pathlib.Path,
|
||||
filename: Union[str, pathlib.Path],
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> tuple[Library, dict[str, Any]]:
|
||||
) -> Tuple[Dict[str, Pattern], Dict[str, Any]]:
|
||||
"""
|
||||
Wrapper for `read()` that takes a filename or path instead of a stream.
|
||||
|
||||
@ -178,20 +186,19 @@ def readfile(
|
||||
else:
|
||||
open_func = open
|
||||
|
||||
with open_func(path, mode='rb') as stream:
|
||||
with io.BufferedReader(open_func(path, mode='rb')) as stream:
|
||||
results = read(stream, *args, **kwargs)
|
||||
return results
|
||||
|
||||
|
||||
def read(
|
||||
stream: IO[bytes],
|
||||
stream: BinaryIO,
|
||||
raw_mode: bool = True,
|
||||
) -> tuple[Library, dict[str, Any]]:
|
||||
) -> Tuple[Dict[str, Pattern], Dict[str, Any]]:
|
||||
"""
|
||||
# TODO check GDSII file for cycles!
|
||||
Read a gdsii file and translate it into a dict of Pattern objects. GDSII structures are
|
||||
translated into Pattern objects; boundaries are translated into polygons, and srefs and arefs
|
||||
are translated into Ref objects.
|
||||
are translated into SubPattern objects.
|
||||
|
||||
Additional library info is returned in a dict, containing:
|
||||
'name': name of the library
|
||||
@ -204,23 +211,31 @@ def read(
|
||||
raw_mode: If True, constructs shapes in raw mode, bypassing most data validation, Default True.
|
||||
|
||||
Returns:
|
||||
- dict of pattern_name:Patterns generated from GDSII structures
|
||||
- dict of GDSII library info
|
||||
- Dict of pattern_name:Patterns generated from GDSII structures
|
||||
- Dict of GDSII library info
|
||||
"""
|
||||
library_info = _read_header(stream)
|
||||
|
||||
mlib = Library()
|
||||
patterns = []
|
||||
found_struct = records.BGNSTR.skip_past(stream)
|
||||
while found_struct:
|
||||
name = records.STRNAME.skip_and_read(stream)
|
||||
pat = read_elements(stream, raw_mode=raw_mode)
|
||||
mlib[name.decode('ASCII')] = pat
|
||||
pat = read_elements(stream, name=name.decode('ASCII'), raw_mode=raw_mode)
|
||||
patterns.append(pat)
|
||||
found_struct = records.BGNSTR.skip_past(stream)
|
||||
|
||||
return mlib, library_info
|
||||
# Create a dict of {pattern.name: pattern, ...}, then fix up all subpattern.pattern entries
|
||||
# according to the subpattern.identifier (which is deleted after use).
|
||||
patterns_dict = dict(((p.name, p) for p in patterns))
|
||||
for p in patterns_dict.values():
|
||||
for sp in p.subpatterns:
|
||||
sp.pattern = patterns_dict[sp.identifier[0]]
|
||||
del sp.identifier
|
||||
|
||||
return patterns_dict, library_info
|
||||
|
||||
|
||||
def _read_header(stream: IO[bytes]) -> dict[str, Any]:
|
||||
def _read_header(stream: BinaryIO) -> Dict[str, Any]:
|
||||
"""
|
||||
Read the file header and create the library_info dict.
|
||||
"""
|
||||
@ -234,7 +249,8 @@ def _read_header(stream: IO[bytes]) -> dict[str, Any]:
|
||||
|
||||
|
||||
def read_elements(
|
||||
stream: IO[bytes],
|
||||
stream: BinaryIO,
|
||||
name: str,
|
||||
raw_mode: bool = True,
|
||||
) -> Pattern:
|
||||
"""
|
||||
@ -249,30 +265,28 @@ def read_elements(
|
||||
Returns:
|
||||
A pattern containing the elements that were read.
|
||||
"""
|
||||
pat = Pattern()
|
||||
pat = Pattern(name)
|
||||
|
||||
elements = klamath.library.read_elements(stream)
|
||||
for element in elements:
|
||||
if isinstance(element, klamath.elements.Boundary):
|
||||
layer, poly = _boundary_to_polygon(element, raw_mode)
|
||||
pat.shapes[layer].append(poly)
|
||||
poly = _boundary_to_polygon(element, raw_mode)
|
||||
pat.shapes.append(poly)
|
||||
elif isinstance(element, klamath.elements.Path):
|
||||
layer, path = _gpath_to_mpath(element, raw_mode)
|
||||
pat.shapes[layer].append(path)
|
||||
path = _gpath_to_mpath(element, raw_mode)
|
||||
pat.shapes.append(path)
|
||||
elif isinstance(element, klamath.elements.Text):
|
||||
pat.label(
|
||||
layer=element.layer,
|
||||
offset=element.xy.astype(float),
|
||||
string=element.string.decode('ASCII'),
|
||||
annotations=_properties_to_annotations(element.properties),
|
||||
)
|
||||
label = Label(offset=element.xy.astype(float),
|
||||
layer=element.layer,
|
||||
string=element.string.decode('ASCII'),
|
||||
annotations=_properties_to_annotations(element.properties))
|
||||
pat.labels.append(label)
|
||||
elif isinstance(element, klamath.elements.Reference):
|
||||
target, ref = _gref_to_mref(element)
|
||||
pat.refs[target].append(ref)
|
||||
pat.subpatterns.append(_ref_to_subpat(element))
|
||||
return pat
|
||||
|
||||
|
||||
def _mlayer2gds(mlayer: layer_t) -> tuple[int, int]:
|
||||
def _mlayer2gds(mlayer: layer_t) -> Tuple[int, int]:
|
||||
""" Helper to turn a layer tuple-or-int into a layer and datatype"""
|
||||
if isinstance(mlayer, int):
|
||||
layer = mlayer
|
||||
@ -288,9 +302,10 @@ def _mlayer2gds(mlayer: layer_t) -> tuple[int, int]:
|
||||
return layer, data_type
|
||||
|
||||
|
||||
def _gref_to_mref(ref: klamath.library.Reference) -> tuple[str, Ref]:
|
||||
def _ref_to_subpat(ref: klamath.library.Reference) -> SubPattern:
|
||||
"""
|
||||
Helper function to create a Ref from an SREF or AREF. Sets ref.target to struct_name.
|
||||
Helper function to create a SubPattern from an SREF or AREF. Sets subpat.pattern to None
|
||||
and sets the instance .identifier to (struct_name,).
|
||||
"""
|
||||
xy = ref.xy.astype(float)
|
||||
offset = xy[0]
|
||||
@ -302,115 +317,108 @@ def _gref_to_mref(ref: klamath.library.Reference) -> tuple[str, Ref]:
|
||||
repetition = Grid(a_vector=a_vector, b_vector=b_vector,
|
||||
a_count=a_count, b_count=b_count)
|
||||
|
||||
target = ref.struct_name.decode('ASCII')
|
||||
mref = Ref(
|
||||
offset=offset,
|
||||
rotation=numpy.deg2rad(ref.angle_deg),
|
||||
scale=ref.mag,
|
||||
mirrored=ref.invert_y,
|
||||
annotations=_properties_to_annotations(ref.properties),
|
||||
repetition=repetition,
|
||||
)
|
||||
return target, mref
|
||||
subpat = SubPattern(pattern=None,
|
||||
offset=offset,
|
||||
rotation=numpy.deg2rad(ref.angle_deg),
|
||||
scale=ref.mag,
|
||||
mirrored=(ref.invert_y, False),
|
||||
annotations=_properties_to_annotations(ref.properties),
|
||||
repetition=repetition)
|
||||
subpat.identifier = (ref.struct_name.decode('ASCII'),)
|
||||
return subpat
|
||||
|
||||
|
||||
def _gpath_to_mpath(gpath: klamath.library.Path, raw_mode: bool) -> tuple[layer_t, Path]:
|
||||
def _gpath_to_mpath(gpath: klamath.library.Path, raw_mode: bool) -> Path:
|
||||
if gpath.path_type in path_cap_map:
|
||||
cap = path_cap_map[gpath.path_type]
|
||||
else:
|
||||
raise PatternError(f'Unrecognized path type: {gpath.path_type}')
|
||||
|
||||
mpath = Path(
|
||||
vertices=gpath.xy.astype(float),
|
||||
width=gpath.width,
|
||||
cap=cap,
|
||||
offset=numpy.zeros(2),
|
||||
annotations=_properties_to_annotations(gpath.properties),
|
||||
raw=raw_mode,
|
||||
)
|
||||
mpath = Path(vertices=gpath.xy.astype(float),
|
||||
layer=gpath.layer,
|
||||
width=gpath.width,
|
||||
cap=cap,
|
||||
offset=numpy.zeros(2),
|
||||
annotations=_properties_to_annotations(gpath.properties),
|
||||
raw=raw_mode,
|
||||
)
|
||||
if cap == Path.Cap.SquareCustom:
|
||||
mpath.cap_extensions = gpath.extension
|
||||
return gpath.layer, mpath
|
||||
return mpath
|
||||
|
||||
|
||||
def _boundary_to_polygon(boundary: klamath.library.Boundary, raw_mode: bool) -> tuple[layer_t, Polygon]:
|
||||
return boundary.layer, Polygon(
|
||||
vertices=boundary.xy[:-1].astype(float),
|
||||
offset=numpy.zeros(2),
|
||||
annotations=_properties_to_annotations(boundary.properties),
|
||||
raw=raw_mode,
|
||||
)
|
||||
def _boundary_to_polygon(boundary: klamath.library.Boundary, raw_mode: bool) -> Polygon:
|
||||
return Polygon(vertices=boundary.xy[:-1].astype(float),
|
||||
layer=boundary.layer,
|
||||
offset=numpy.zeros(2),
|
||||
annotations=_properties_to_annotations(boundary.properties),
|
||||
raw=raw_mode,
|
||||
)
|
||||
|
||||
|
||||
def _mrefs_to_grefs(refs: dict[str | None, list[Ref]]) -> list[klamath.library.Reference]:
|
||||
grefs = []
|
||||
for target, rseq in refs.items():
|
||||
if target is None:
|
||||
def _subpatterns_to_refs(subpatterns: List[SubPattern]) -> List[klamath.library.Reference]:
|
||||
refs = []
|
||||
for subpat in subpatterns:
|
||||
if subpat.pattern is None:
|
||||
continue
|
||||
encoded_name = target.encode('ASCII')
|
||||
for ref in rseq:
|
||||
# Note: GDS also mirrors first and rotates second
|
||||
rep = ref.repetition
|
||||
angle_deg = numpy.rad2deg(ref.rotation) % 360
|
||||
properties = _annotations_to_properties(ref.annotations, 512)
|
||||
encoded_name = subpat.pattern.name.encode('ASCII')
|
||||
|
||||
if isinstance(rep, Grid):
|
||||
b_vector = rep.b_vector if rep.b_vector is not None else numpy.zeros(2)
|
||||
b_count = rep.b_count if rep.b_count is not None else 1
|
||||
xy = numpy.asarray(ref.offset) + numpy.array([
|
||||
[0.0, 0.0],
|
||||
rep.a_vector * rep.a_count,
|
||||
b_vector * b_count,
|
||||
])
|
||||
aref = klamath.library.Reference(
|
||||
struct_name=encoded_name,
|
||||
xy=rint_cast(xy),
|
||||
colrow=(numpy.rint(rep.a_count), numpy.rint(rep.b_count)),
|
||||
angle_deg=angle_deg,
|
||||
invert_y=ref.mirrored,
|
||||
mag=ref.scale,
|
||||
properties=properties,
|
||||
)
|
||||
grefs.append(aref)
|
||||
elif rep is None:
|
||||
sref = klamath.library.Reference(
|
||||
struct_name=encoded_name,
|
||||
xy=rint_cast([ref.offset]),
|
||||
colrow=None,
|
||||
angle_deg=angle_deg,
|
||||
invert_y=ref.mirrored,
|
||||
mag=ref.scale,
|
||||
properties=properties,
|
||||
)
|
||||
grefs.append(sref)
|
||||
else:
|
||||
new_srefs = [
|
||||
klamath.library.Reference(
|
||||
struct_name=encoded_name,
|
||||
xy=rint_cast([ref.offset + dd]),
|
||||
colrow=None,
|
||||
angle_deg=angle_deg,
|
||||
invert_y=ref.mirrored,
|
||||
mag=ref.scale,
|
||||
properties=properties,
|
||||
)
|
||||
for dd in rep.displacements]
|
||||
grefs += new_srefs
|
||||
return grefs
|
||||
# Note: GDS mirrors first and rotates second
|
||||
mirror_across_x, extra_angle = normalize_mirror(subpat.mirrored)
|
||||
rep = subpat.repetition
|
||||
angle_deg = numpy.rad2deg(subpat.rotation + extra_angle) % 360
|
||||
properties = _annotations_to_properties(subpat.annotations, 512)
|
||||
|
||||
if isinstance(rep, Grid):
|
||||
b_vector = rep.b_vector if rep.b_vector is not None else numpy.zeros(2)
|
||||
b_count = rep.b_count if rep.b_count is not None else 1
|
||||
xy: NDArray[numpy.float64] = numpy.array(subpat.offset) + [
|
||||
[0, 0],
|
||||
rep.a_vector * rep.a_count,
|
||||
b_vector * b_count,
|
||||
]
|
||||
aref = klamath.library.Reference(struct_name=encoded_name,
|
||||
xy=numpy.round(xy).astype(int),
|
||||
colrow=(numpy.round(rep.a_count), numpy.round(rep.b_count)),
|
||||
angle_deg=angle_deg,
|
||||
invert_y=mirror_across_x,
|
||||
mag=subpat.scale,
|
||||
properties=properties)
|
||||
refs.append(aref)
|
||||
elif rep is None:
|
||||
ref = klamath.library.Reference(struct_name=encoded_name,
|
||||
xy=numpy.round([subpat.offset]).astype(int),
|
||||
colrow=None,
|
||||
angle_deg=angle_deg,
|
||||
invert_y=mirror_across_x,
|
||||
mag=subpat.scale,
|
||||
properties=properties)
|
||||
refs.append(ref)
|
||||
else:
|
||||
new_srefs = [klamath.library.Reference(struct_name=encoded_name,
|
||||
xy=numpy.round([subpat.offset + dd]).astype(int),
|
||||
colrow=None,
|
||||
angle_deg=angle_deg,
|
||||
invert_y=mirror_across_x,
|
||||
mag=subpat.scale,
|
||||
properties=properties)
|
||||
for dd in rep.displacements]
|
||||
refs += new_srefs
|
||||
return refs
|
||||
|
||||
|
||||
def _properties_to_annotations(properties: dict[int, bytes]) -> annotations_t:
|
||||
def _properties_to_annotations(properties: Dict[int, bytes]) -> annotations_t:
|
||||
return {str(k): [v.decode()] for k, v in properties.items()}
|
||||
|
||||
|
||||
def _annotations_to_properties(annotations: annotations_t, max_len: int = 126) -> dict[int, bytes]:
|
||||
def _annotations_to_properties(annotations: annotations_t, max_len: int = 126) -> Dict[int, bytes]:
|
||||
cum_len = 0
|
||||
props = {}
|
||||
for key, vals in annotations.items():
|
||||
try:
|
||||
i = int(key)
|
||||
except ValueError as err:
|
||||
raise PatternError(f'Annotation key {key} is not convertable to an integer') from err
|
||||
except ValueError:
|
||||
raise PatternError(f'Annotation key {key} is not convertable to an integer')
|
||||
if not (0 < i < 126):
|
||||
raise PatternError(f'Annotation key {key} converts to {i} (must be in the range [1,125])')
|
||||
|
||||
@ -426,93 +434,138 @@ def _annotations_to_properties(annotations: annotations_t, max_len: int = 126) -
|
||||
|
||||
|
||||
def _shapes_to_elements(
|
||||
shapes: dict[layer_t, list[Shape]],
|
||||
shapes: List[Shape],
|
||||
polygonize_paths: bool = False,
|
||||
) -> list[klamath.elements.Element]:
|
||||
elements: list[klamath.elements.Element] = []
|
||||
) -> List[klamath.elements.Element]:
|
||||
elements: List[klamath.elements.Element] = []
|
||||
# Add a Boundary element for each shape, and Path elements if necessary
|
||||
for mlayer, sseq in shapes.items():
|
||||
layer, data_type = _mlayer2gds(mlayer)
|
||||
for shape in sseq:
|
||||
if shape.repetition is not None:
|
||||
raise PatternError('Shape repetitions are not supported by GDS.'
|
||||
' Please call library.wrap_repeated_shapes() before writing to file.')
|
||||
for shape in shapes:
|
||||
layer, data_type = _mlayer2gds(shape.layer)
|
||||
properties = _annotations_to_properties(shape.annotations, 128)
|
||||
if isinstance(shape, Path) and not polygonize_paths:
|
||||
xy = numpy.round(shape.vertices + shape.offset).astype(int)
|
||||
width = numpy.round(shape.width).astype(int)
|
||||
path_type = next(k for k, v in path_cap_map.items() if v == shape.cap) # reverse lookup
|
||||
|
||||
properties = _annotations_to_properties(shape.annotations, 128)
|
||||
if isinstance(shape, Path) and not polygonize_paths:
|
||||
xy = rint_cast(shape.vertices + shape.offset)
|
||||
width = rint_cast(shape.width)
|
||||
path_type = next(k for k, v in path_cap_map.items() if v == shape.cap) # reverse lookup
|
||||
extension: Tuple[int, int]
|
||||
if shape.cap == Path.Cap.SquareCustom and shape.cap_extensions is not None:
|
||||
extension = tuple(shape.cap_extensions) # type: ignore
|
||||
else:
|
||||
extension = (0, 0)
|
||||
|
||||
extension: tuple[int, int]
|
||||
if shape.cap == Path.Cap.SquareCustom and shape.cap_extensions is not None:
|
||||
extension = tuple(shape.cap_extensions) # type: ignore
|
||||
else:
|
||||
extension = (0, 0)
|
||||
|
||||
path = klamath.elements.Path(
|
||||
layer=(layer, data_type),
|
||||
xy=xy,
|
||||
path_type=path_type,
|
||||
width=int(width),
|
||||
extension=extension,
|
||||
properties=properties,
|
||||
)
|
||||
elements.append(path)
|
||||
elif isinstance(shape, Polygon):
|
||||
polygon = shape
|
||||
path = klamath.elements.Path(layer=(layer, data_type),
|
||||
xy=xy,
|
||||
path_type=path_type,
|
||||
width=width,
|
||||
extension=extension,
|
||||
properties=properties)
|
||||
elements.append(path)
|
||||
elif isinstance(shape, Polygon):
|
||||
polygon = shape
|
||||
xy_closed = numpy.empty((polygon.vertices.shape[0] + 1, 2), dtype=numpy.int32)
|
||||
numpy.rint(polygon.vertices + polygon.offset, out=xy_closed[:-1], casting='unsafe')
|
||||
xy_closed[-1] = xy_closed[0]
|
||||
boundary = klamath.elements.Boundary(layer=(layer, data_type),
|
||||
xy=xy_closed,
|
||||
properties=properties)
|
||||
elements.append(boundary)
|
||||
else:
|
||||
for polygon in shape.to_polygons():
|
||||
xy_closed = numpy.empty((polygon.vertices.shape[0] + 1, 2), dtype=numpy.int32)
|
||||
numpy.rint(polygon.vertices + polygon.offset, out=xy_closed[:-1], casting='unsafe')
|
||||
xy_closed[-1] = xy_closed[0]
|
||||
boundary = klamath.elements.Boundary(
|
||||
layer=(layer, data_type),
|
||||
xy=xy_closed,
|
||||
properties=properties,
|
||||
)
|
||||
boundary = klamath.elements.Boundary(layer=(layer, data_type),
|
||||
xy=xy_closed,
|
||||
properties=properties)
|
||||
elements.append(boundary)
|
||||
else:
|
||||
for polygon in shape.to_polygons():
|
||||
xy_closed = numpy.empty((polygon.vertices.shape[0] + 1, 2), dtype=numpy.int32)
|
||||
numpy.rint(polygon.vertices + polygon.offset, out=xy_closed[:-1], casting='unsafe')
|
||||
xy_closed[-1] = xy_closed[0]
|
||||
boundary = klamath.elements.Boundary(
|
||||
layer=(layer, data_type),
|
||||
xy=xy_closed,
|
||||
properties=properties,
|
||||
)
|
||||
elements.append(boundary)
|
||||
return elements
|
||||
|
||||
|
||||
def _labels_to_texts(labels: dict[layer_t, list[Label]]) -> list[klamath.elements.Text]:
|
||||
def _labels_to_texts(labels: List[Label]) -> List[klamath.elements.Text]:
|
||||
texts = []
|
||||
for mlayer, lseq in labels.items():
|
||||
layer, text_type = _mlayer2gds(mlayer)
|
||||
for label in lseq:
|
||||
properties = _annotations_to_properties(label.annotations, 128)
|
||||
xy = rint_cast([label.offset])
|
||||
text = klamath.elements.Text(
|
||||
layer=(layer, text_type),
|
||||
xy=xy,
|
||||
string=label.string.encode('ASCII'),
|
||||
properties=properties,
|
||||
presentation=0, # font number & alignment -- unused by us
|
||||
angle_deg=0, # rotation -- unused by us
|
||||
invert_y=False, # inversion -- unused by us
|
||||
width=0, # stroke width -- unused by us
|
||||
path_type=0, # text path endcaps, unused
|
||||
mag=1, # size -- unused by us
|
||||
)
|
||||
texts.append(text)
|
||||
for label in labels:
|
||||
properties = _annotations_to_properties(label.annotations, 128)
|
||||
layer, text_type = _mlayer2gds(label.layer)
|
||||
xy = numpy.round([label.offset]).astype(int)
|
||||
text = klamath.elements.Text(layer=(layer, text_type),
|
||||
xy=xy,
|
||||
string=label.string.encode('ASCII'),
|
||||
properties=properties,
|
||||
presentation=0, # TODO maybe set some of these?
|
||||
angle_deg=0,
|
||||
invert_y=False,
|
||||
width=0,
|
||||
path_type=0,
|
||||
mag=1)
|
||||
texts.append(text)
|
||||
return texts
|
||||
|
||||
|
||||
def disambiguate_pattern_names(
|
||||
patterns: Sequence[Pattern],
|
||||
max_name_length: int = 32,
|
||||
suffix_length: int = 6,
|
||||
dup_warn_filter: Optional[Callable[[str], bool]] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
patterns: List of patterns to disambiguate
|
||||
max_name_length: Names longer than this will be truncated
|
||||
suffix_length: Names which get truncated are truncated by this many extra characters. This is to
|
||||
leave room for a suffix if one is necessary.
|
||||
dup_warn_filter: (optional) Function for suppressing warnings about cell names changing. Receives
|
||||
the cell name and returns `False` if the warning should be suppressed and `True` if it should
|
||||
be displayed. Default displays all warnings.
|
||||
"""
|
||||
used_names = []
|
||||
for pat in set(patterns):
|
||||
# Shorten names which already exceed max-length
|
||||
if len(pat.name) > max_name_length:
|
||||
shortened_name = pat.name[:max_name_length - suffix_length]
|
||||
logger.warning(f'Pattern name "{pat.name}" is too long ({len(pat.name)}/{max_name_length} chars),\n'
|
||||
+ f' shortening to "{shortened_name}" before generating suffix')
|
||||
else:
|
||||
shortened_name = pat.name
|
||||
|
||||
# Remove invalid characters
|
||||
sanitized_name = re.compile(r'[^A-Za-z0-9_\?\$]').sub('_', shortened_name)
|
||||
|
||||
# Add a suffix that makes the name unique
|
||||
i = 0
|
||||
suffixed_name = sanitized_name
|
||||
while suffixed_name in used_names or suffixed_name == '':
|
||||
suffix = base64.b64encode(struct.pack('>Q', i), b'$?').decode('ASCII')
|
||||
|
||||
suffixed_name = sanitized_name + '$' + suffix[:-1].lstrip('A')
|
||||
i += 1
|
||||
|
||||
if sanitized_name == '':
|
||||
logger.warning(f'Empty pattern name saved as "{suffixed_name}"')
|
||||
elif suffixed_name != sanitized_name:
|
||||
if dup_warn_filter is None or dup_warn_filter(pat.name):
|
||||
logger.warning(f'Pattern name "{pat.name}" ({sanitized_name}) appears multiple times;\n'
|
||||
+ f' renaming to "{suffixed_name}"')
|
||||
|
||||
# Encode into a byte-string and perform some final checks
|
||||
encoded_name = suffixed_name.encode('ASCII')
|
||||
if len(encoded_name) == 0:
|
||||
# Should never happen since zero-length names are replaced
|
||||
raise PatternError(f'Zero-length name after sanitize+encode,\n originally "{pat.name}"')
|
||||
if len(encoded_name) > max_name_length:
|
||||
raise PatternError(f'Pattern name "{encoded_name!r}" length > {max_name_length} after encode,\n'
|
||||
+ f' originally "{pat.name}"')
|
||||
|
||||
pat.name = suffixed_name
|
||||
used_names.append(suffixed_name)
|
||||
|
||||
|
||||
def load_library(
|
||||
stream: IO[bytes],
|
||||
stream: BinaryIO,
|
||||
tag: str,
|
||||
is_secondary: Optional[Callable[[str], bool]] = None,
|
||||
*,
|
||||
full_load: bool = False,
|
||||
postprocess: Callable[[ILibraryView, str, Pattern], Pattern] | None = None
|
||||
) -> tuple[LazyLibrary, dict[str, Any]]:
|
||||
) -> Tuple[Library, Dict[str, Any]]:
|
||||
"""
|
||||
Scan a GDSII stream to determine what structures are present, and create
|
||||
a library from them. This enables deferred reading of structures
|
||||
@ -521,30 +574,36 @@ def load_library(
|
||||
|
||||
Args:
|
||||
stream: Seekable stream. Position 0 should be the start of the file.
|
||||
The caller should leave the stream open while the library
|
||||
is still in use, since the library will need to access it
|
||||
in order to read the structure contents.
|
||||
The caller should leave the stream open while the library
|
||||
is still in use, since the library will need to access it
|
||||
in order to read the structure contents.
|
||||
tag: Unique identifier that will be used to identify this data source
|
||||
is_secondary: Function which takes a structure name and returns
|
||||
True if the structure should only be used as a subcell
|
||||
and not appear in the main Library interface.
|
||||
Default always returns False.
|
||||
full_load: If True, force all structures to be read immediately rather
|
||||
than as-needed. Since data is read sequentially from the file, this
|
||||
will be faster than using the resulting library's `precache` method.
|
||||
postprocess: If given, this function is used to post-process each
|
||||
pattern *upon first load only*.
|
||||
than as-needed. Since data is read sequentially from the file,
|
||||
this will be faster than using the resulting library's
|
||||
`precache` method.
|
||||
|
||||
Returns:
|
||||
LazyLibrary object, allowing for deferred load of structures.
|
||||
Library object, allowing for deferred load of structures.
|
||||
Additional library info (dict, same format as from `read`).
|
||||
"""
|
||||
if is_secondary is None:
|
||||
def is_secondary(k: str) -> bool:
|
||||
return False
|
||||
assert(is_secondary is not None)
|
||||
|
||||
stream.seek(0)
|
||||
lib = LazyLibrary()
|
||||
lib = Library()
|
||||
|
||||
if full_load:
|
||||
# Full load approach (immediately load everything)
|
||||
patterns, library_info = read(stream)
|
||||
for name, pattern in patterns.items():
|
||||
if postprocess is not None:
|
||||
lib[name] = postprocess(lib, name, pattern)
|
||||
else:
|
||||
lib[name] = pattern
|
||||
lib.set_const(name, tag, pattern, secondary=is_secondary(name))
|
||||
return lib, library_info
|
||||
|
||||
# Normal approach (scan and defer load)
|
||||
@ -556,23 +615,21 @@ def load_library(
|
||||
|
||||
def mkstruct(pos: int = pos, name: str = name) -> Pattern:
|
||||
stream.seek(pos)
|
||||
pat = read_elements(stream, raw_mode=True)
|
||||
if postprocess is not None:
|
||||
pat = postprocess(lib, name, pat)
|
||||
return pat
|
||||
return read_elements(stream, name, raw_mode=True)
|
||||
|
||||
lib[name] = mkstruct
|
||||
lib.set_value(name, tag, mkstruct, secondary=is_secondary(name))
|
||||
|
||||
return lib, library_info
|
||||
|
||||
|
||||
def load_libraryfile(
|
||||
filename: str | pathlib.Path,
|
||||
filename: Union[str, pathlib.Path],
|
||||
tag: str,
|
||||
is_secondary: Optional[Callable[[str], bool]] = None,
|
||||
*,
|
||||
use_mmap: bool = True,
|
||||
full_load: bool = False,
|
||||
postprocess: Callable[[ILibraryView, str, Pattern], Pattern] | None = None
|
||||
) -> tuple[LazyLibrary, dict[str, Any]]:
|
||||
) -> Tuple[Library, Dict[str, Any]]:
|
||||
"""
|
||||
Wrapper for `load_library()` that takes a filename or path instead of a stream.
|
||||
|
||||
@ -583,65 +640,31 @@ def load_libraryfile(
|
||||
|
||||
Args:
|
||||
path: filename or path to read from
|
||||
tag: Unique identifier for library, see `load_library`
|
||||
is_secondary: Function specifying subcess, see `load_library`
|
||||
use_mmap: If `True`, will attempt to memory-map the file instead
|
||||
of buffering. In the case of gzipped files, the file
|
||||
is decompressed into a python `bytes` object in memory
|
||||
and reopened as an `io.BytesIO` stream.
|
||||
full_load: If `True`, immediately loads all data. See `load_library`.
|
||||
postprocess: Passed to `load_library`
|
||||
|
||||
Returns:
|
||||
LazyLibrary object, allowing for deferred load of structures.
|
||||
Library object, allowing for deferred load of structures.
|
||||
Additional library info (dict, same format as from `read`).
|
||||
"""
|
||||
path = pathlib.Path(filename)
|
||||
stream: IO[bytes]
|
||||
if is_gzipped(path):
|
||||
if use_mmap:
|
||||
if mmap:
|
||||
logger.info('Asked to mmap a gzipped file, reading into memory instead...')
|
||||
gz_stream = gzip.open(path, mode='rb') # noqa: SIM115
|
||||
stream = io.BytesIO(gz_stream.read()) # type: ignore
|
||||
base_stream = gzip.open(path, mode='rb')
|
||||
stream = io.BytesIO(base_stream.read())
|
||||
else:
|
||||
gz_stream = gzip.open(path, mode='rb') # noqa: SIM115
|
||||
stream = io.BufferedReader(gz_stream) # type: ignore
|
||||
else: # noqa: PLR5501
|
||||
if use_mmap:
|
||||
base_stream = path.open(mode='rb', buffering=0) # noqa: SIM115
|
||||
stream = mmap.mmap(base_stream.fileno(), 0, access=mmap.ACCESS_READ) # type: ignore
|
||||
base_stream = gzip.open(path, mode='rb')
|
||||
stream = io.BufferedReader(base_stream)
|
||||
else:
|
||||
base_stream = open(path, mode='rb')
|
||||
if mmap:
|
||||
stream = mmap.mmap(base_stream.fileno(), 0, access=mmap.ACCESS_READ)
|
||||
else:
|
||||
stream = path.open(mode='rb') # noqa: SIM115
|
||||
return load_library(stream, full_load=full_load, postprocess=postprocess)
|
||||
|
||||
|
||||
def check_valid_names(
|
||||
names: Iterable[str],
|
||||
max_length: int = 32,
|
||||
) -> None:
|
||||
"""
|
||||
Check all provided names to see if they're valid GDSII cell names.
|
||||
|
||||
Args:
|
||||
names: Collection of names to check
|
||||
max_length: Max allowed length
|
||||
|
||||
"""
|
||||
allowed_chars = set(string.ascii_letters + string.digits + '_?$')
|
||||
|
||||
bad_chars = [
|
||||
name for name in names
|
||||
if not set(name).issubset(allowed_chars)
|
||||
]
|
||||
|
||||
bad_lengths = [
|
||||
name for name in names
|
||||
if len(name) > max_length
|
||||
]
|
||||
|
||||
if bad_chars:
|
||||
logger.error('Names contain invalid characters:\n' + pformat(bad_chars))
|
||||
|
||||
if bad_lengths:
|
||||
logger.error(f'Names too long (>{max_length}:\n' + pformat(bad_chars))
|
||||
|
||||
if bad_chars or bad_lengths:
|
||||
raise LibraryError('Library contains invalid names, see log above')
|
||||
stream = io.BufferedReader(base_stream)
|
||||
return load_library(stream, tag, is_secondary)
|
||||
|
2
masque/file/klamath.py
Normal file
2
masque/file/klamath.py
Normal file
@ -0,0 +1,2 @@
|
||||
# FOr backwards compatibility
|
||||
from .gdsii import *
|
@ -10,36 +10,33 @@ Note that OASIS references follow the same convention as `masque`,
|
||||
|
||||
Scaling, rotation, and mirroring apply to individual instances, not grid
|
||||
vectors or offsets.
|
||||
|
||||
Notes:
|
||||
* Gzip modification time is set to 0 (start of current epoch, usually 1970-01-01)
|
||||
"""
|
||||
from typing import Any, IO, cast
|
||||
from collections.abc import Sequence, Iterable, Mapping, Callable
|
||||
from typing import List, Any, Dict, Tuple, Callable, Union, Sequence, Iterable, Optional
|
||||
import re
|
||||
import io
|
||||
import copy
|
||||
import base64
|
||||
import struct
|
||||
import logging
|
||||
import pathlib
|
||||
import gzip
|
||||
import string
|
||||
from pprint import pformat
|
||||
|
||||
import numpy
|
||||
from numpy.typing import ArrayLike, NDArray
|
||||
import fatamorgana
|
||||
import fatamorgana.records as fatrec
|
||||
from fatamorgana.basic import PathExtensionScheme, AString, NString, PropStringReference
|
||||
|
||||
from .utils import is_gzipped, tmpfile
|
||||
from .. import Pattern, Ref, PatternError, LibraryError, Label, Shape
|
||||
from ..library import Library, ILibrary
|
||||
from ..shapes import Path, Circle
|
||||
from .utils import clean_pattern_vertices, is_gzipped
|
||||
from .. import Pattern, SubPattern, PatternError, Label, Shape
|
||||
from ..shapes import Polygon, Path, Circle
|
||||
from ..repetition import Grid, Arbitrary, Repetition
|
||||
from ..utils import layer_t, annotations_t
|
||||
from ..utils import layer_t, normalize_mirror, annotations_t
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
logger.warning('OASIS support is experimental!')
|
||||
logger.warning('OASIS support is experimental and mostly untested!')
|
||||
|
||||
|
||||
path_cap_map = {
|
||||
@ -48,23 +45,21 @@ path_cap_map = {
|
||||
PathExtensionScheme.Arbitrary: Path.Cap.SquareCustom,
|
||||
}
|
||||
|
||||
#TODO implement more shape types in OASIS?
|
||||
|
||||
def rint_cast(val: ArrayLike) -> NDArray[numpy.int64]:
|
||||
return numpy.rint(val).astype(numpy.int64)
|
||||
|
||||
#TODO implement more shape types?
|
||||
|
||||
def build(
|
||||
library: Mapping[str, Pattern], # NOTE: Pattern here should be treated as immutable!
|
||||
patterns: Union[Pattern, Sequence[Pattern]],
|
||||
units_per_micron: int,
|
||||
layer_map: dict[str, int | tuple[int, int]] | None = None,
|
||||
layer_map: Optional[Dict[str, Union[int, Tuple[int, int]]]] = None,
|
||||
*,
|
||||
annotations: annotations_t | None = None,
|
||||
modify_originals: bool = False,
|
||||
disambiguate_func: Optional[Callable[[Iterable[Pattern]], None]] = None,
|
||||
annotations: Optional[annotations_t] = None,
|
||||
) -> fatamorgana.OasisLayout:
|
||||
"""
|
||||
Convert a collection of {name: Pattern} pairs to an OASIS stream, writing patterns
|
||||
as OASIS cells, refs as Placement records, and mapping other shapes and labels
|
||||
to equivalent record types (Polygon, Path, Circle, Text).
|
||||
Convert a `Pattern` or list of patterns to an OASIS stream, writing patterns
|
||||
as OASIS cells, subpatterns as Placement records, and other shapes and labels
|
||||
mapped to equivalent record types (Polygon, Path, Circle, Text).
|
||||
Other shape types may be converted to polygons if no equivalent
|
||||
record type exists (or is not implemented here yet).
|
||||
|
||||
@ -76,17 +71,14 @@ def build(
|
||||
If a layer map is provided, layer strings will be converted
|
||||
automatically, and layer names will be written to the file.
|
||||
|
||||
Other functions you may want to call:
|
||||
- `masque.file.oasis.check_valid_names(library.keys())` to check for invalid names
|
||||
- `library.dangling_refs()` to check for references to missing patterns
|
||||
- `pattern.polygonize()` for any patterns with shapes other
|
||||
than `masque.shapes.Polygon`, `masque.shapes.Path`, or `masque.shapes.Circle`
|
||||
If you want pattern polygonized with non-default arguments, just call `pattern.polygonize()`
|
||||
prior to calling this function.
|
||||
|
||||
Args:
|
||||
library: A {name: Pattern} mapping of patterns to write.
|
||||
patterns: A Pattern or list of patterns to convert.
|
||||
units_per_micron: Written into the OASIS file, number of grid steps per micrometer.
|
||||
All distances are assumed to be an integer multiple of the grid step, and are stored as such.
|
||||
layer_map: dictionary which translates layer names into layer numbers. If this argument is
|
||||
layer_map: Dictionary which translates layer names into layer numbers. If this argument is
|
||||
provided, input shapes and labels are allowed to have layer names instead of numbers.
|
||||
It is assumed that geometry and text share the same layer names, and each name is
|
||||
assigned only to a single layer (not a range).
|
||||
@ -94,23 +86,31 @@ def build(
|
||||
into numbers, omit this argument, and manually generate the required
|
||||
`fatamorgana.records.LayerName` entries.
|
||||
Default is an empty dict (no names provided).
|
||||
modify_originals: If `True`, the original pattern is modified as part of the writing
|
||||
process. Otherwise, a copy is made and `deepunlock()`-ed.
|
||||
Default `False`.
|
||||
disambiguate_func: Function which takes a list of patterns and alters them
|
||||
to make their names valid and unique. Default is `disambiguate_pattern_names`.
|
||||
annotations: dictionary of key-value pairs which are saved as library-level properties
|
||||
|
||||
Returns:
|
||||
`fatamorgana.OasisLayout`
|
||||
"""
|
||||
if not isinstance(library, ILibrary):
|
||||
if isinstance(library, dict):
|
||||
library = Library(library)
|
||||
else:
|
||||
library = Library(dict(library))
|
||||
if isinstance(patterns, Pattern):
|
||||
patterns = [patterns]
|
||||
|
||||
if layer_map is None:
|
||||
layer_map = {}
|
||||
|
||||
if disambiguate_func is None:
|
||||
disambiguate_func = disambiguate_pattern_names
|
||||
|
||||
if annotations is None:
|
||||
annotations = {}
|
||||
|
||||
if not modify_originals:
|
||||
patterns = [p.deepunlock() for p in copy.deepcopy(patterns)]
|
||||
|
||||
# Create library
|
||||
lib = fatamorgana.OasisLayout(unit=units_per_micron, validation=None)
|
||||
lib.properties = annotations_to_properties(annotations)
|
||||
@ -119,38 +119,44 @@ def build(
|
||||
for name, layer_num in layer_map.items():
|
||||
layer, data_type = _mlayer2oas(layer_num)
|
||||
lib.layers += [
|
||||
fatrec.LayerName(
|
||||
nstring=name,
|
||||
layer_interval=(layer, layer),
|
||||
type_interval=(data_type, data_type),
|
||||
is_textlayer=tt,
|
||||
)
|
||||
fatrec.LayerName(nstring=name,
|
||||
layer_interval=(layer, layer),
|
||||
type_interval=(data_type, data_type),
|
||||
is_textlayer=tt)
|
||||
for tt in (True, False)]
|
||||
|
||||
def layer2oas(mlayer: layer_t) -> tuple[int, int]:
|
||||
assert layer_map is not None
|
||||
def layer2oas(mlayer: layer_t) -> Tuple[int, int]:
|
||||
assert(layer_map is not None)
|
||||
layer_num = layer_map[mlayer] if isinstance(mlayer, str) else mlayer
|
||||
return _mlayer2oas(layer_num)
|
||||
else:
|
||||
layer2oas = _mlayer2oas
|
||||
|
||||
# Get a dict of id(pattern) -> pattern
|
||||
patterns_by_id = {id(pattern): pattern for pattern in patterns}
|
||||
for pattern in patterns:
|
||||
for i, p in pattern.referenced_patterns_by_id().items():
|
||||
patterns_by_id[i] = p
|
||||
|
||||
disambiguate_func(patterns_by_id.values())
|
||||
|
||||
# Now create a structure for each pattern
|
||||
for name, pat in library.items():
|
||||
structure = fatamorgana.Cell(name=name)
|
||||
for pat in patterns_by_id.values():
|
||||
structure = fatamorgana.Cell(name=pat.name)
|
||||
lib.cells.append(structure)
|
||||
|
||||
structure.properties += annotations_to_properties(pat.annotations)
|
||||
|
||||
structure.geometry += _shapes_to_elements(pat.shapes, layer2oas)
|
||||
structure.geometry += _labels_to_texts(pat.labels, layer2oas)
|
||||
structure.placements += _refs_to_placements(pat.refs)
|
||||
structure.placements += _subpatterns_to_placements(pat.subpatterns)
|
||||
|
||||
return lib
|
||||
|
||||
|
||||
def write(
|
||||
library: Mapping[str, Pattern], # NOTE: Pattern here should be treated as immutable!
|
||||
stream: IO[bytes],
|
||||
patterns: Union[Sequence[Pattern], Pattern],
|
||||
stream: io.BufferedIOBase,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
@ -159,18 +165,18 @@ def write(
|
||||
for details.
|
||||
|
||||
Args:
|
||||
library: A {name: Pattern} mapping of patterns to write.
|
||||
patterns: A Pattern or list of patterns to write to file.
|
||||
stream: Stream to write to.
|
||||
*args: passed to `oasis.build()`
|
||||
**kwargs: passed to `oasis.build()`
|
||||
"""
|
||||
lib = build(library, *args, **kwargs)
|
||||
lib = build(patterns, *args, **kwargs)
|
||||
lib.write(stream)
|
||||
|
||||
|
||||
def writefile(
|
||||
library: Mapping[str, Pattern], # NOTE: Pattern here should be treated as immutable!
|
||||
filename: str | pathlib.Path,
|
||||
patterns: Union[Sequence[Pattern], Pattern],
|
||||
filename: Union[str, pathlib.Path],
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
@ -180,33 +186,26 @@ def writefile(
|
||||
Will automatically compress the file if it has a .gz suffix.
|
||||
|
||||
Args:
|
||||
library: A {name: Pattern} mapping of patterns to write.
|
||||
patterns: `Pattern` or list of patterns to save
|
||||
filename: Filename to save to.
|
||||
*args: passed to `oasis.write`
|
||||
**kwargs: passed to `oasis.write`
|
||||
"""
|
||||
path = pathlib.Path(filename)
|
||||
if path.suffix == '.gz':
|
||||
open_func: Callable = gzip.open
|
||||
else:
|
||||
open_func = open
|
||||
|
||||
with tmpfile(path) as base_stream:
|
||||
streams: tuple[Any, ...] = (base_stream,)
|
||||
if path.suffix == '.gz':
|
||||
stream = cast(IO[bytes], gzip.GzipFile(filename='', mtime=0, fileobj=base_stream, mode='wb'))
|
||||
streams += (stream,)
|
||||
else:
|
||||
stream = base_stream
|
||||
|
||||
try:
|
||||
write(library, stream, *args, **kwargs)
|
||||
finally:
|
||||
for ss in streams:
|
||||
ss.close()
|
||||
with io.BufferedWriter(open_func(path, mode='wb')) as stream:
|
||||
write(patterns, stream, *args, **kwargs)
|
||||
|
||||
|
||||
def readfile(
|
||||
filename: str | pathlib.Path,
|
||||
filename: Union[str, pathlib.Path],
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> tuple[Library, dict[str, Any]]:
|
||||
) -> Tuple[Dict[str, Pattern], Dict[str, Any]]:
|
||||
"""
|
||||
Wrapper for `oasis.read()` that takes a filename or path instead of a stream.
|
||||
|
||||
@ -223,18 +222,19 @@ def readfile(
|
||||
else:
|
||||
open_func = open
|
||||
|
||||
with open_func(path, mode='rb') as stream:
|
||||
with io.BufferedReader(open_func(path, mode='rb')) as stream:
|
||||
results = read(stream, *args, **kwargs)
|
||||
return results
|
||||
|
||||
|
||||
def read(
|
||||
stream: IO[bytes],
|
||||
) -> tuple[Library, dict[str, Any]]:
|
||||
stream: io.BufferedIOBase,
|
||||
clean_vertices: bool = True,
|
||||
) -> Tuple[Dict[str, Pattern], Dict[str, Any]]:
|
||||
"""
|
||||
Read a OASIS file and translate it into a dict of Pattern objects. OASIS cells are
|
||||
translated into Pattern objects; Polygons are translated into polygons, and Placements
|
||||
are translated into Ref objects.
|
||||
are translated into SubPattern objects.
|
||||
|
||||
Additional library info is returned in a dict, containing:
|
||||
'units_per_micrometer': number of database units per micrometer (all values are in database units)
|
||||
@ -243,15 +243,18 @@ def read(
|
||||
|
||||
Args:
|
||||
stream: Stream to read from.
|
||||
clean_vertices: If `True`, remove any redundant vertices when loading polygons.
|
||||
The cleaning process removes any polygons with zero area or <3 vertices.
|
||||
Default `True`.
|
||||
|
||||
Returns:
|
||||
- dict of `pattern_name`:`Pattern`s generated from OASIS cells
|
||||
- dict of OASIS library info
|
||||
- Dict of `pattern_name`:`Pattern`s generated from OASIS cells
|
||||
- Dict of OASIS library info
|
||||
"""
|
||||
|
||||
lib = fatamorgana.OasisLayout.read(stream)
|
||||
|
||||
library_info: dict[str, Any] = {
|
||||
library_info: Dict[str, Any] = {
|
||||
'units_per_micrometer': lib.unit,
|
||||
'annotations': properties_to_annotations(lib.properties, lib.propnames, lib.propstrings),
|
||||
}
|
||||
@ -261,76 +264,72 @@ def read(
|
||||
layer_map[str(layer_name.nstring)] = layer_name
|
||||
library_info['layer_map'] = layer_map
|
||||
|
||||
mlib = Library()
|
||||
patterns = []
|
||||
for cell in lib.cells:
|
||||
if isinstance(cell.name, int):
|
||||
cell_name = lib.cellnames[cell.name].nstring.string
|
||||
else:
|
||||
cell_name = cell.name.string
|
||||
|
||||
pat = Pattern()
|
||||
pat = Pattern(name=cell_name)
|
||||
for element in cell.geometry:
|
||||
if isinstance(element, fatrec.XElement):
|
||||
logger.warning('Skipping XElement record')
|
||||
# note XELEMENT has no repetition
|
||||
continue
|
||||
|
||||
assert not isinstance(element.repetition, fatamorgana.ReuseRepetition)
|
||||
assert(not isinstance(element.repetition, fatamorgana.ReuseRepetition))
|
||||
repetition = repetition_fata2masq(element.repetition)
|
||||
|
||||
# Switch based on element type:
|
||||
if isinstance(element, fatrec.Polygon):
|
||||
# Drop last point (`fatamorgana` returns explicity closed list; we use implicit close)
|
||||
# also need `cumsum` to convert from deltas to locations
|
||||
vertices = numpy.cumsum(numpy.vstack(((0, 0), element.get_point_list()[:-1])), axis=0)
|
||||
|
||||
vertices = numpy.cumsum(numpy.vstack(((0, 0), element.get_point_list())), axis=0)
|
||||
annotations = properties_to_annotations(element.properties, lib.propnames, lib.propstrings)
|
||||
pat.polygon(
|
||||
vertices=vertices,
|
||||
layer=element.get_layer_tuple(),
|
||||
offset=element.get_xy(),
|
||||
annotations=annotations,
|
||||
repetition=repetition,
|
||||
)
|
||||
poly = Polygon(vertices=vertices,
|
||||
layer=element.get_layer_tuple(),
|
||||
offset=element.get_xy(),
|
||||
annotations=annotations,
|
||||
repetition=repetition)
|
||||
|
||||
pat.shapes.append(poly)
|
||||
|
||||
elif isinstance(element, fatrec.Path):
|
||||
vertices = numpy.cumsum(numpy.vstack(((0, 0), element.get_point_list())), axis=0)
|
||||
|
||||
cap_start = path_cap_map[element.get_extension_start()[0]]
|
||||
cap_end = path_cap_map[element.get_extension_end()[0]]
|
||||
if cap_start != cap_end:
|
||||
raise PatternError('masque does not support multiple cap types on a single path.') # TODO handle multiple cap types
|
||||
raise Exception('masque does not support multiple cap types on a single path.') # TODO handle multiple cap types
|
||||
cap = cap_start
|
||||
|
||||
path_args: dict[str, Any] = {}
|
||||
path_args: Dict[str, Any] = {}
|
||||
if cap == Path.Cap.SquareCustom:
|
||||
path_args['cap_extensions'] = numpy.array((
|
||||
element.get_extension_start()[1],
|
||||
element.get_extension_end()[1],
|
||||
))
|
||||
path_args['cap_extensions'] = numpy.array((element.get_extension_start()[1],
|
||||
element.get_extension_end()[1]))
|
||||
|
||||
annotations = properties_to_annotations(element.properties, lib.propnames, lib.propstrings)
|
||||
pat.path(
|
||||
vertices=vertices,
|
||||
layer=element.get_layer_tuple(),
|
||||
offset=element.get_xy(),
|
||||
repetition=repetition,
|
||||
annotations=annotations,
|
||||
width=element.get_half_width() * 2,
|
||||
cap=cap,
|
||||
**path_args,
|
||||
)
|
||||
path = Path(vertices=vertices,
|
||||
layer=element.get_layer_tuple(),
|
||||
offset=element.get_xy(),
|
||||
repetition=repetition,
|
||||
annotations=annotations,
|
||||
width=element.get_half_width() * 2,
|
||||
cap=cap,
|
||||
**path_args)
|
||||
|
||||
pat.shapes.append(path)
|
||||
|
||||
elif isinstance(element, fatrec.Rectangle):
|
||||
width = element.get_width()
|
||||
height = element.get_height()
|
||||
annotations = properties_to_annotations(element.properties, lib.propnames, lib.propstrings)
|
||||
pat.polygon(
|
||||
layer=element.get_layer_tuple(),
|
||||
offset=element.get_xy(),
|
||||
repetition=repetition,
|
||||
vertices=numpy.array(((0, 0), (1, 0), (1, 1), (0, 1))) * (width, height),
|
||||
annotations=annotations,
|
||||
)
|
||||
rect = Polygon(layer=element.get_layer_tuple(),
|
||||
offset=element.get_xy(),
|
||||
repetition=repetition,
|
||||
vertices=numpy.array(((0, 0), (1, 0), (1, 1), (0, 1))) * (width, height),
|
||||
annotations=annotations,
|
||||
)
|
||||
pat.shapes.append(rect)
|
||||
|
||||
elif isinstance(element, fatrec.Trapezoid):
|
||||
vertices = numpy.array(((0, 0), (1, 0), (1, 1), (0, 1))) * (element.get_width(), element.get_height())
|
||||
@ -358,13 +357,13 @@ def read(
|
||||
vertices[2, 0] -= b
|
||||
|
||||
annotations = properties_to_annotations(element.properties, lib.propnames, lib.propstrings)
|
||||
pat.polygon(
|
||||
layer=element.get_layer_tuple(),
|
||||
offset=element.get_xy(),
|
||||
repetition=repetition,
|
||||
vertices=vertices,
|
||||
annotations=annotations,
|
||||
)
|
||||
trapz = Polygon(layer=element.get_layer_tuple(),
|
||||
offset=element.get_xy(),
|
||||
repetition=repetition,
|
||||
vertices=vertices,
|
||||
annotations=annotations,
|
||||
)
|
||||
pat.shapes.append(trapz)
|
||||
|
||||
elif isinstance(element, fatrec.CTrapezoid):
|
||||
cttype = element.get_ctrapezoid_type()
|
||||
@ -413,24 +412,22 @@ def read(
|
||||
vertices[0, 1] += width
|
||||
|
||||
annotations = properties_to_annotations(element.properties, lib.propnames, lib.propstrings)
|
||||
pat.polygon(
|
||||
layer=element.get_layer_tuple(),
|
||||
offset=element.get_xy(),
|
||||
repetition=repetition,
|
||||
vertices=vertices,
|
||||
annotations=annotations,
|
||||
)
|
||||
ctrapz = Polygon(layer=element.get_layer_tuple(),
|
||||
offset=element.get_xy(),
|
||||
repetition=repetition,
|
||||
vertices=vertices,
|
||||
annotations=annotations,
|
||||
)
|
||||
pat.shapes.append(ctrapz)
|
||||
|
||||
elif isinstance(element, fatrec.Circle):
|
||||
annotations = properties_to_annotations(element.properties, lib.propnames, lib.propstrings)
|
||||
layer = element.get_layer_tuple()
|
||||
circle = Circle(
|
||||
offset=element.get_xy(),
|
||||
repetition=repetition,
|
||||
annotations=annotations,
|
||||
radius=float(element.get_radius()),
|
||||
)
|
||||
pat.shapes[layer].append(circle)
|
||||
circle = Circle(layer=element.get_layer_tuple(),
|
||||
offset=element.get_xy(),
|
||||
repetition=repetition,
|
||||
annotations=annotations,
|
||||
radius=float(element.get_radius()))
|
||||
pat.shapes.append(circle)
|
||||
|
||||
elif isinstance(element, fatrec.Text):
|
||||
annotations = properties_to_annotations(element.properties, lib.propnames, lib.propstrings)
|
||||
@ -439,30 +436,38 @@ def read(
|
||||
string = lib.textstrings[str_or_ref].string
|
||||
else:
|
||||
string = str_or_ref.string
|
||||
pat.label(
|
||||
layer=element.get_layer_tuple(),
|
||||
offset=element.get_xy(),
|
||||
repetition=repetition,
|
||||
annotations=annotations,
|
||||
string=string,
|
||||
)
|
||||
label = Label(layer=element.get_layer_tuple(),
|
||||
offset=element.get_xy(),
|
||||
repetition=repetition,
|
||||
annotations=annotations,
|
||||
string=string)
|
||||
pat.labels.append(label)
|
||||
|
||||
else:
|
||||
logger.warning(f'Skipping record {element} (unimplemented)')
|
||||
continue
|
||||
|
||||
for placement in cell.placements:
|
||||
target, ref = _placement_to_ref(placement, lib)
|
||||
if isinstance(target, int):
|
||||
target = lib.cellnames[target].nstring.string
|
||||
pat.refs[target].append(ref)
|
||||
pat.subpatterns.append(_placement_to_subpat(placement, lib))
|
||||
|
||||
mlib[cell_name] = pat
|
||||
if clean_vertices:
|
||||
clean_pattern_vertices(pat)
|
||||
patterns.append(pat)
|
||||
|
||||
return mlib, library_info
|
||||
# Create a dict of {pattern.name: pattern, ...}, then fix up all subpattern.pattern entries
|
||||
# according to the subpattern.identifier (which is deleted after use).
|
||||
patterns_dict = dict(((p.name, p) for p in patterns))
|
||||
for p in patterns_dict.values():
|
||||
for sp in p.subpatterns:
|
||||
ident = sp.identifier[0]
|
||||
name = ident if isinstance(ident, str) else lib.cellnames[ident].nstring.string
|
||||
sp.pattern = patterns_dict[name]
|
||||
del sp.identifier
|
||||
|
||||
return patterns_dict, library_info
|
||||
|
||||
|
||||
def _mlayer2oas(mlayer: layer_t) -> tuple[int, int]:
|
||||
def _mlayer2oas(mlayer: layer_t) -> Tuple[int, int]:
|
||||
""" Helper to turn a layer tuple-or-int into a layer and datatype"""
|
||||
if isinstance(mlayer, int):
|
||||
layer = mlayer
|
||||
@ -474,163 +479,182 @@ def _mlayer2oas(mlayer: layer_t) -> tuple[int, int]:
|
||||
else:
|
||||
data_type = 0
|
||||
else:
|
||||
raise PatternError(f'Invalid layer for OASIS: {mlayer}. Note that OASIS layers cannot be '
|
||||
raise PatternError(f'Invalid layer for OASIS: {layer}. Note that OASIS layers cannot be '
|
||||
f'strings unless a layer map is provided.')
|
||||
return layer, data_type
|
||||
|
||||
|
||||
def _placement_to_ref(placement: fatrec.Placement, lib: fatamorgana.OasisLayout) -> tuple[int | str, Ref]:
|
||||
def _placement_to_subpat(placement: fatrec.Placement, lib: fatamorgana.OasisLayout) -> SubPattern:
|
||||
"""
|
||||
Helper function to create a Ref from a placment. Also returns the placement name (or id).
|
||||
Helper function to create a SubPattern from a placment. Sets subpat.pattern to None
|
||||
and sets the instance .identifier to (struct_name,).
|
||||
"""
|
||||
assert not isinstance(placement.repetition, fatamorgana.ReuseRepetition)
|
||||
assert(not isinstance(placement.repetition, fatamorgana.ReuseRepetition))
|
||||
xy = numpy.array((placement.x, placement.y))
|
||||
mag = placement.magnification if placement.magnification is not None else 1
|
||||
|
||||
pname = placement.get_name()
|
||||
name: int | str = pname if isinstance(pname, int) else pname.string # TODO deal with referenced names
|
||||
|
||||
name = pname if isinstance(pname, int) else pname.string
|
||||
annotations = properties_to_annotations(placement.properties, lib.propnames, lib.propstrings)
|
||||
if placement.angle is None:
|
||||
rotation = 0
|
||||
else:
|
||||
rotation = numpy.deg2rad(float(placement.angle))
|
||||
ref = Ref(
|
||||
offset=xy,
|
||||
mirrored=placement.flip,
|
||||
rotation=rotation,
|
||||
scale=float(mag),
|
||||
repetition=repetition_fata2masq(placement.repetition),
|
||||
annotations=annotations,
|
||||
)
|
||||
return name, ref
|
||||
subpat = SubPattern(offset=xy,
|
||||
pattern=None,
|
||||
mirrored=(placement.flip, False),
|
||||
rotation=rotation,
|
||||
scale=float(mag),
|
||||
identifier=(name,),
|
||||
repetition=repetition_fata2masq(placement.repetition),
|
||||
annotations=annotations)
|
||||
return subpat
|
||||
|
||||
|
||||
def _refs_to_placements(
|
||||
refs: dict[str | None, list[Ref]],
|
||||
) -> list[fatrec.Placement]:
|
||||
placements = []
|
||||
for target, rseq in refs.items():
|
||||
if target is None:
|
||||
def _subpatterns_to_placements(
|
||||
subpatterns: List[SubPattern],
|
||||
) -> List[fatrec.Placement]:
|
||||
refs = []
|
||||
for subpat in subpatterns:
|
||||
if subpat.pattern is None:
|
||||
continue
|
||||
for ref in rseq:
|
||||
# Note: OASIS also mirrors first and rotates second
|
||||
frep, rep_offset = repetition_masq2fata(ref.repetition)
|
||||
|
||||
offset = rint_cast(ref.offset + rep_offset)
|
||||
angle = numpy.rad2deg(ref.rotation) % 360
|
||||
placement = fatrec.Placement(
|
||||
name=target,
|
||||
flip=ref.mirrored,
|
||||
angle=angle,
|
||||
magnification=ref.scale,
|
||||
properties=annotations_to_properties(ref.annotations),
|
||||
x=offset[0],
|
||||
y=offset[1],
|
||||
repetition=frep,
|
||||
)
|
||||
# Note: OASIS mirrors first and rotates second
|
||||
mirror_across_x, extra_angle = normalize_mirror(subpat.mirrored)
|
||||
frep, rep_offset = repetition_masq2fata(subpat.repetition)
|
||||
|
||||
placements.append(placement)
|
||||
return placements
|
||||
offset = numpy.round(subpat.offset + rep_offset).astype(int)
|
||||
angle = numpy.rad2deg(subpat.rotation + extra_angle) % 360
|
||||
ref = fatrec.Placement(
|
||||
name=subpat.pattern.name,
|
||||
flip=mirror_across_x,
|
||||
angle=angle,
|
||||
magnification=subpat.scale,
|
||||
properties=annotations_to_properties(subpat.annotations),
|
||||
x=offset[0],
|
||||
y=offset[1],
|
||||
repetition=frep)
|
||||
|
||||
refs.append(ref)
|
||||
return refs
|
||||
|
||||
|
||||
def _shapes_to_elements(
|
||||
shapes: dict[layer_t, list[Shape]],
|
||||
layer2oas: Callable[[layer_t], tuple[int, int]],
|
||||
) -> list[fatrec.Polygon | fatrec.Path | fatrec.Circle]:
|
||||
shapes: List[Shape],
|
||||
layer2oas: Callable[[layer_t], Tuple[int, int]],
|
||||
) -> List[Union[fatrec.Polygon, fatrec.Path, fatrec.Circle]]:
|
||||
# Add a Polygon record for each shape, and Path elements if necessary
|
||||
elements: list[fatrec.Polygon | fatrec.Path | fatrec.Circle] = []
|
||||
for mlayer, sseq in shapes.items():
|
||||
layer, datatype = layer2oas(mlayer)
|
||||
for shape in sseq:
|
||||
repetition, rep_offset = repetition_masq2fata(shape.repetition)
|
||||
properties = annotations_to_properties(shape.annotations)
|
||||
if isinstance(shape, Circle):
|
||||
offset = rint_cast(shape.offset + rep_offset)
|
||||
radius = rint_cast(shape.radius)
|
||||
circle = fatrec.Circle(
|
||||
layer=layer,
|
||||
datatype=datatype,
|
||||
radius=cast(int, radius),
|
||||
x=offset[0],
|
||||
y=offset[1],
|
||||
properties=properties,
|
||||
repetition=repetition,
|
||||
)
|
||||
elements.append(circle)
|
||||
elif isinstance(shape, Path):
|
||||
xy = rint_cast(shape.offset + shape.vertices[0] + rep_offset)
|
||||
deltas = rint_cast(numpy.diff(shape.vertices, axis=0))
|
||||
half_width = rint_cast(shape.width / 2)
|
||||
path_type = next(k for k, v in path_cap_map.items() if v == shape.cap) # reverse lookup
|
||||
extension_start = (path_type, shape.cap_extensions[0] if shape.cap_extensions is not None else None)
|
||||
extension_end = (path_type, shape.cap_extensions[1] if shape.cap_extensions is not None else None)
|
||||
path = fatrec.Path(
|
||||
layer=layer,
|
||||
datatype=datatype,
|
||||
point_list=cast(Sequence[Sequence[int]], deltas),
|
||||
half_width=cast(int, half_width),
|
||||
x=xy[0],
|
||||
y=xy[1],
|
||||
extension_start=extension_start, # TODO implement multiple cap types?
|
||||
extension_end=extension_end,
|
||||
properties=properties,
|
||||
repetition=repetition,
|
||||
)
|
||||
elements.append(path)
|
||||
else:
|
||||
for polygon in shape.to_polygons():
|
||||
xy = rint_cast(polygon.offset + polygon.vertices[0] + rep_offset)
|
||||
points = rint_cast(numpy.diff(polygon.vertices, axis=0))
|
||||
elements.append(fatrec.Polygon(
|
||||
layer=layer,
|
||||
datatype=datatype,
|
||||
x=xy[0],
|
||||
y=xy[1],
|
||||
point_list=cast(list[list[int]], points),
|
||||
properties=properties,
|
||||
repetition=repetition,
|
||||
))
|
||||
elements: List[Union[fatrec.Polygon, fatrec.Path, fatrec.Circle]] = []
|
||||
for shape in shapes:
|
||||
layer, datatype = layer2oas(shape.layer)
|
||||
repetition, rep_offset = repetition_masq2fata(shape.repetition)
|
||||
properties = annotations_to_properties(shape.annotations)
|
||||
if isinstance(shape, Circle):
|
||||
offset = numpy.round(shape.offset + rep_offset).astype(int)
|
||||
radius = numpy.round(shape.radius).astype(int)
|
||||
circle = fatrec.Circle(layer=layer,
|
||||
datatype=datatype,
|
||||
radius=radius,
|
||||
x=offset[0],
|
||||
y=offset[1],
|
||||
properties=properties,
|
||||
repetition=repetition)
|
||||
elements.append(circle)
|
||||
elif isinstance(shape, Path):
|
||||
xy = numpy.round(shape.offset + shape.vertices[0] + rep_offset).astype(int)
|
||||
deltas = numpy.round(numpy.diff(shape.vertices, axis=0)).astype(int)
|
||||
half_width = numpy.round(shape.width / 2).astype(int)
|
||||
path_type = next(k for k, v in path_cap_map.items() if v == shape.cap) # reverse lookup
|
||||
extension_start = (path_type, shape.cap_extensions[0] if shape.cap_extensions is not None else None)
|
||||
extension_end = (path_type, shape.cap_extensions[1] if shape.cap_extensions is not None else None)
|
||||
path = fatrec.Path(layer=layer,
|
||||
datatype=datatype,
|
||||
point_list=deltas,
|
||||
half_width=half_width,
|
||||
x=xy[0],
|
||||
y=xy[1],
|
||||
extension_start=extension_start, # TODO implement multiple cap types?
|
||||
extension_end=extension_end,
|
||||
properties=properties,
|
||||
repetition=repetition,
|
||||
)
|
||||
elements.append(path)
|
||||
else:
|
||||
for polygon in shape.to_polygons():
|
||||
xy = numpy.round(polygon.offset + polygon.vertices[0] + rep_offset).astype(int)
|
||||
points = numpy.round(numpy.diff(polygon.vertices, axis=0)).astype(int)
|
||||
elements.append(fatrec.Polygon(layer=layer,
|
||||
datatype=datatype,
|
||||
x=xy[0],
|
||||
y=xy[1],
|
||||
point_list=points,
|
||||
properties=properties,
|
||||
repetition=repetition))
|
||||
return elements
|
||||
|
||||
|
||||
def _labels_to_texts(
|
||||
labels: dict[layer_t, list[Label]],
|
||||
layer2oas: Callable[[layer_t], tuple[int, int]],
|
||||
) -> list[fatrec.Text]:
|
||||
labels: List[Label],
|
||||
layer2oas: Callable[[layer_t], Tuple[int, int]],
|
||||
) -> List[fatrec.Text]:
|
||||
texts = []
|
||||
for mlayer, lseq in labels.items():
|
||||
layer, datatype = layer2oas(mlayer)
|
||||
for label in lseq:
|
||||
repetition, rep_offset = repetition_masq2fata(label.repetition)
|
||||
xy = rint_cast(label.offset + rep_offset)
|
||||
properties = annotations_to_properties(label.annotations)
|
||||
texts.append(fatrec.Text(
|
||||
layer=layer,
|
||||
datatype=datatype,
|
||||
x=xy[0],
|
||||
y=xy[1],
|
||||
string=label.string,
|
||||
properties=properties,
|
||||
repetition=repetition,
|
||||
))
|
||||
for label in labels:
|
||||
layer, datatype = layer2oas(label.layer)
|
||||
repetition, rep_offset = repetition_masq2fata(label.repetition)
|
||||
xy = numpy.round(label.offset + rep_offset).astype(int)
|
||||
properties = annotations_to_properties(label.annotations)
|
||||
texts.append(fatrec.Text(layer=layer,
|
||||
datatype=datatype,
|
||||
x=xy[0],
|
||||
y=xy[1],
|
||||
string=label.string,
|
||||
properties=properties,
|
||||
repetition=repetition))
|
||||
return texts
|
||||
|
||||
|
||||
def disambiguate_pattern_names(
|
||||
patterns,
|
||||
dup_warn_filter: Callable[[str], bool] = None, # If returns False, don't warn about this name
|
||||
) -> None:
|
||||
used_names = []
|
||||
for pat in patterns:
|
||||
sanitized_name = re.compile(r'[^A-Za-z0-9_\?\$]').sub('_', pat.name)
|
||||
|
||||
i = 0
|
||||
suffixed_name = sanitized_name
|
||||
while suffixed_name in used_names or suffixed_name == '':
|
||||
suffix = base64.b64encode(struct.pack('>Q', i), b'$?').decode('ASCII')
|
||||
|
||||
suffixed_name = sanitized_name + '$' + suffix[:-1].lstrip('A')
|
||||
i += 1
|
||||
|
||||
if sanitized_name == '':
|
||||
logger.warning(f'Empty pattern name saved as "{suffixed_name}"')
|
||||
elif suffixed_name != sanitized_name:
|
||||
if dup_warn_filter is None or dup_warn_filter(pat.name):
|
||||
logger.warning(f'Pattern name "{pat.name}" ({sanitized_name}) appears multiple times;\n'
|
||||
+ f' renaming to "{suffixed_name}"')
|
||||
|
||||
if len(suffixed_name) == 0:
|
||||
# Should never happen since zero-length names are replaced
|
||||
raise PatternError(f'Zero-length name after sanitize+encode,\n originally "{pat.name}"')
|
||||
|
||||
pat.name = suffixed_name
|
||||
used_names.append(suffixed_name)
|
||||
|
||||
|
||||
def repetition_fata2masq(
|
||||
rep: fatamorgana.GridRepetition | fatamorgana.ArbitraryRepetition | None,
|
||||
) -> Repetition | None:
|
||||
mrep: Repetition | None
|
||||
rep: Union[fatamorgana.GridRepetition, fatamorgana.ArbitraryRepetition, None],
|
||||
) -> Optional[Repetition]:
|
||||
mrep: Optional[Repetition]
|
||||
if isinstance(rep, fatamorgana.GridRepetition):
|
||||
mrep = Grid(a_vector=rep.a_vector,
|
||||
b_vector=rep.b_vector,
|
||||
a_count=rep.a_count,
|
||||
b_count=rep.b_count)
|
||||
elif isinstance(rep, fatamorgana.ArbitraryRepetition):
|
||||
displacements = numpy.cumsum(numpy.column_stack((
|
||||
rep.x_displacements,
|
||||
rep.y_displacements,
|
||||
)), axis=0)
|
||||
displacements = numpy.cumsum(numpy.column_stack((rep.x_displacements,
|
||||
rep.y_displacements)), axis=0)
|
||||
displacements = numpy.vstack(([0, 0], displacements))
|
||||
mrep = Arbitrary(displacements)
|
||||
elif rep is None:
|
||||
@ -639,37 +663,37 @@ def repetition_fata2masq(
|
||||
|
||||
|
||||
def repetition_masq2fata(
|
||||
rep: Repetition | None,
|
||||
) -> tuple[
|
||||
fatamorgana.GridRepetition | fatamorgana.ArbitraryRepetition | None,
|
||||
tuple[int, int]
|
||||
]:
|
||||
frep: fatamorgana.GridRepetition | fatamorgana.ArbitraryRepetition | None
|
||||
rep: Optional[Repetition],
|
||||
) -> Tuple[Union[fatamorgana.GridRepetition,
|
||||
fatamorgana.ArbitraryRepetition,
|
||||
None],
|
||||
Tuple[int, int]]:
|
||||
frep: Union[fatamorgana.GridRepetition, fatamorgana.ArbitraryRepetition, None]
|
||||
if isinstance(rep, Grid):
|
||||
a_vector = rint_cast(rep.a_vector)
|
||||
b_vector = rint_cast(rep.b_vector) if rep.b_vector is not None else None
|
||||
a_count = rint_cast(rep.a_count)
|
||||
b_count = rint_cast(rep.b_count) if rep.b_count is not None else None
|
||||
frep = fatamorgana.GridRepetition(
|
||||
a_vector=cast(list[int], a_vector),
|
||||
b_vector=cast(list[int] | None, b_vector),
|
||||
a_count=cast(int, a_count),
|
||||
b_count=cast(int | None, b_count),
|
||||
a_vector=a_vector,
|
||||
b_vector=b_vector,
|
||||
a_count=a_count,
|
||||
b_count=b_count,
|
||||
)
|
||||
offset = (0, 0)
|
||||
elif isinstance(rep, Arbitrary):
|
||||
diffs = numpy.diff(rep.displacements, axis=0)
|
||||
diff_ints = rint_cast(diffs)
|
||||
frep = fatamorgana.ArbitraryRepetition(diff_ints[:, 0], diff_ints[:, 1]) # type: ignore
|
||||
frep = fatamorgana.ArbitraryRepetition(diff_ints[:, 0], diff_ints[:, 1])
|
||||
offset = rep.displacements[0, :]
|
||||
else:
|
||||
assert rep is None
|
||||
assert(rep is None)
|
||||
frep = None
|
||||
offset = (0, 0)
|
||||
return frep, offset
|
||||
|
||||
|
||||
def annotations_to_properties(annotations: annotations_t) -> list[fatrec.Property]:
|
||||
def annotations_to_properties(annotations: annotations_t) -> List[fatrec.Property]:
|
||||
#TODO determine is_standard based on key?
|
||||
properties = []
|
||||
for key, values in annotations.items():
|
||||
@ -680,24 +704,24 @@ def annotations_to_properties(annotations: annotations_t) -> list[fatrec.Propert
|
||||
|
||||
|
||||
def properties_to_annotations(
|
||||
properties: list[fatrec.Property],
|
||||
propnames: dict[int, NString],
|
||||
propstrings: dict[int, AString],
|
||||
properties: List[fatrec.Property],
|
||||
propnames: Dict[int, NString],
|
||||
propstrings: Dict[int, AString],
|
||||
) -> annotations_t:
|
||||
annotations = {}
|
||||
for proprec in properties:
|
||||
assert proprec.name is not None
|
||||
assert(proprec.name is not None)
|
||||
if isinstance(proprec.name, int):
|
||||
key = propnames[proprec.name].string
|
||||
else:
|
||||
key = proprec.name.string
|
||||
values: list[str | float | int] = []
|
||||
values: List[Union[str, float, int]] = []
|
||||
|
||||
assert proprec.values is not None
|
||||
assert(proprec.values is not None)
|
||||
for value in proprec.values:
|
||||
if isinstance(value, float | int):
|
||||
if isinstance(value, (float, int)):
|
||||
values.append(value)
|
||||
elif isinstance(value, NString | AString):
|
||||
elif isinstance(value, (NString, AString)):
|
||||
values.append(value.string)
|
||||
elif isinstance(value, PropStringReference):
|
||||
values.append(propstrings[value.ref].string) # dereference
|
||||
@ -711,25 +735,3 @@ def properties_to_annotations(
|
||||
properties = [fatrec.Property(key, vals, is_standard=False)
|
||||
for key, vals in annotations.items()]
|
||||
return properties
|
||||
|
||||
|
||||
def check_valid_names(
|
||||
names: Iterable[str],
|
||||
) -> None:
|
||||
"""
|
||||
Check all provided names to see if they're valid GDSII cell names.
|
||||
|
||||
Args:
|
||||
names: Collection of names to check
|
||||
max_length: Max allowed length
|
||||
|
||||
"""
|
||||
allowed_chars = set(string.ascii_letters + string.digits + string.punctuation + ' ')
|
||||
|
||||
bad_chars = [
|
||||
name for name in names
|
||||
if not set(name).issubset(allowed_chars)
|
||||
]
|
||||
|
||||
if bad_chars:
|
||||
raise LibraryError('Names contain invalid characters:\n' + pformat(bad_chars))
|
||||
|
580
masque/file/python_gdsii.py
Normal file
580
masque/file/python_gdsii.py
Normal file
@ -0,0 +1,580 @@
|
||||
"""
|
||||
GDSII file format readers and writers using python-gdsii
|
||||
|
||||
Note that GDSII references follow the same convention as `masque`,
|
||||
with this order of operations:
|
||||
1. Mirroring
|
||||
2. Rotation
|
||||
3. Scaling
|
||||
4. Offset and array expansion (no mirroring/rotation/scaling applied to offsets)
|
||||
|
||||
Scaling, rotation, and mirroring apply to individual instances, not grid
|
||||
vectors or offsets.
|
||||
|
||||
Notes:
|
||||
* absolute positioning is not supported
|
||||
* PLEX is not supported
|
||||
* ELFLAGS are not supported
|
||||
* GDS does not support library- or structure-level annotations
|
||||
"""
|
||||
from typing import List, Any, Dict, Tuple, Callable, Union, Iterable, Optional
|
||||
from typing import Sequence
|
||||
import re
|
||||
import io
|
||||
import copy
|
||||
import base64
|
||||
import struct
|
||||
import logging
|
||||
import pathlib
|
||||
import gzip
|
||||
|
||||
import numpy
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
# python-gdsii
|
||||
import gdsii.library #type: ignore
|
||||
import gdsii.structure #type: ignore
|
||||
import gdsii.elements #type: ignore
|
||||
|
||||
from .utils import clean_pattern_vertices, is_gzipped
|
||||
from .. import Pattern, SubPattern, PatternError, Label, Shape
|
||||
from ..shapes import Polygon, Path
|
||||
from ..repetition import Grid
|
||||
from ..utils import get_bit, set_bit, layer_t, normalize_mirror, annotations_t
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
path_cap_map = {
|
||||
None: Path.Cap.Flush,
|
||||
0: Path.Cap.Flush,
|
||||
1: Path.Cap.Circle,
|
||||
2: Path.Cap.Square,
|
||||
4: Path.Cap.SquareCustom,
|
||||
}
|
||||
|
||||
|
||||
def rint_cast(val: ArrayLike) -> NDArray[numpy.int32]:
|
||||
return numpy.rint(val, dtype=numpy.int32, casting='unsafe')
|
||||
|
||||
|
||||
def build(
|
||||
patterns: Union[Pattern, Sequence[Pattern]],
|
||||
meters_per_unit: float,
|
||||
logical_units_per_unit: float = 1,
|
||||
library_name: str = 'masque-gdsii-write',
|
||||
*,
|
||||
modify_originals: bool = False,
|
||||
disambiguate_func: Callable[[Iterable[Pattern]], None] = None,
|
||||
) -> gdsii.library.Library:
|
||||
"""
|
||||
Convert a `Pattern` or list of patterns to a GDSII stream, by first calling
|
||||
`.polygonize()` to change the shapes into polygons, and then writing patterns
|
||||
as GDSII structures, polygons as boundary elements, and subpatterns as structure
|
||||
references (sref).
|
||||
|
||||
For each shape,
|
||||
layer is chosen to be equal to `shape.layer` if it is an int,
|
||||
or `shape.layer[0]` if it is a tuple
|
||||
datatype is chosen to be `shape.layer[1]` if available,
|
||||
otherwise `0`
|
||||
|
||||
It is often a good idea to run `pattern.subpatternize()` prior to calling this function,
|
||||
especially if calling `.polygonize()` will result in very many vertices.
|
||||
|
||||
If you want pattern polygonized with non-default arguments, just call `pattern.polygonize()`
|
||||
prior to calling this function.
|
||||
|
||||
Args:
|
||||
patterns: A Pattern or list of patterns to convert.
|
||||
meters_per_unit: Written into the GDSII file, meters per (database) length unit.
|
||||
All distances are assumed to be an integer multiple of this unit, and are stored as such.
|
||||
logical_units_per_unit: Written into the GDSII file. Allows the GDSII to specify a
|
||||
"logical" unit which is different from the "database" unit, for display purposes.
|
||||
Default `1`.
|
||||
library_name: Library name written into the GDSII file.
|
||||
Default 'masque-gdsii-write'.
|
||||
modify_originals: If `True`, the original pattern is modified as part of the writing
|
||||
process. Otherwise, a copy is made and `deepunlock()`-ed.
|
||||
Default `False`.
|
||||
disambiguate_func: Function which takes a list of patterns and alters them
|
||||
to make their names valid and unique. Default is `disambiguate_pattern_names`, which
|
||||
attempts to adhere to the GDSII standard as well as possible.
|
||||
WARNING: No additional error checking is performed on the results.
|
||||
|
||||
Returns:
|
||||
`gdsii.library.Library`
|
||||
"""
|
||||
if isinstance(patterns, Pattern):
|
||||
patterns = [patterns]
|
||||
|
||||
if disambiguate_func is None:
|
||||
disambiguate_func = disambiguate_pattern_names # type: ignore
|
||||
assert(disambiguate_func is not None) # placate mypy
|
||||
|
||||
if not modify_originals:
|
||||
patterns = [p.deepunlock() for p in copy.deepcopy(patterns)]
|
||||
|
||||
patterns = [p.wrap_repeated_shapes() for p in patterns]
|
||||
|
||||
# Create library
|
||||
lib = gdsii.library.Library(version=600,
|
||||
name=library_name.encode('ASCII'),
|
||||
logical_unit=logical_units_per_unit,
|
||||
physical_unit=meters_per_unit)
|
||||
|
||||
# Get a dict of id(pattern) -> pattern
|
||||
patterns_by_id = {id(pattern): pattern for pattern in patterns}
|
||||
for pattern in patterns:
|
||||
for i, p in pattern.referenced_patterns_by_id().items():
|
||||
patterns_by_id[i] = p
|
||||
|
||||
disambiguate_func(patterns_by_id.values())
|
||||
|
||||
# Now create a structure for each pattern, and add in any Boundary and SREF elements
|
||||
for pat in patterns_by_id.values():
|
||||
structure = gdsii.structure.Structure(name=pat.name.encode('ASCII'))
|
||||
lib.append(structure)
|
||||
|
||||
structure += _shapes_to_elements(pat.shapes)
|
||||
structure += _labels_to_texts(pat.labels)
|
||||
structure += _subpatterns_to_refs(pat.subpatterns)
|
||||
|
||||
return lib
|
||||
|
||||
|
||||
def write(
|
||||
patterns: Union[Pattern, Sequence[Pattern]],
|
||||
stream: io.BufferedIOBase,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
"""
|
||||
Write a `Pattern` or list of patterns to a GDSII file.
|
||||
See `masque.file.gdsii.build()` for details.
|
||||
|
||||
Args:
|
||||
patterns: A Pattern or list of patterns to write to file.
|
||||
stream: Stream to write to.
|
||||
*args: passed to `masque.file.gdsii.build()`
|
||||
**kwargs: passed to `masque.file.gdsii.build()`
|
||||
"""
|
||||
lib = build(patterns, *args, **kwargs)
|
||||
lib.save(stream)
|
||||
return
|
||||
|
||||
def writefile(
|
||||
patterns: Union[Sequence[Pattern], Pattern],
|
||||
filename: Union[str, pathlib.Path],
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
"""
|
||||
Wrapper for `masque.file.gdsii.write()` that takes a filename or path instead of a stream.
|
||||
|
||||
Will automatically compress the file if it has a .gz suffix.
|
||||
|
||||
Args:
|
||||
patterns: `Pattern` or list of patterns to save
|
||||
filename: Filename to save to.
|
||||
*args: passed to `masque.file.gdsii.write`
|
||||
**kwargs: passed to `masque.file.gdsii.write`
|
||||
"""
|
||||
path = pathlib.Path(filename)
|
||||
if path.suffix == '.gz':
|
||||
open_func: Callable = gzip.open
|
||||
else:
|
||||
open_func = open
|
||||
|
||||
with io.BufferedWriter(open_func(path, mode='wb')) as stream:
|
||||
write(patterns, stream, *args, **kwargs)
|
||||
|
||||
|
||||
def readfile(
|
||||
filename: Union[str, pathlib.Path],
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> Tuple[Dict[str, Pattern], Dict[str, Any]]:
|
||||
"""
|
||||
Wrapper for `masque.file.gdsii.read()` that takes a filename or path instead of a stream.
|
||||
|
||||
Will automatically decompress gzipped files.
|
||||
|
||||
Args:
|
||||
filename: Filename to save to.
|
||||
*args: passed to `masque.file.gdsii.read`
|
||||
**kwargs: passed to `masque.file.gdsii.read`
|
||||
"""
|
||||
path = pathlib.Path(filename)
|
||||
if is_gzipped(path):
|
||||
open_func: Callable = gzip.open
|
||||
else:
|
||||
open_func = open
|
||||
|
||||
with io.BufferedReader(open_func(path, mode='rb')) as stream:
|
||||
results = read(stream, *args, **kwargs)
|
||||
return results
|
||||
|
||||
|
||||
def read(
|
||||
stream: io.BufferedIOBase,
|
||||
clean_vertices: bool = True,
|
||||
) -> Tuple[Dict[str, Pattern], Dict[str, Any]]:
|
||||
"""
|
||||
Read a gdsii file and translate it into a dict of Pattern objects. GDSII structures are
|
||||
translated into Pattern objects; boundaries are translated into polygons, and srefs and arefs
|
||||
are translated into SubPattern objects.
|
||||
|
||||
Additional library info is returned in a dict, containing:
|
||||
'name': name of the library
|
||||
'meters_per_unit': number of meters per database unit (all values are in database units)
|
||||
'logical_units_per_unit': number of "logical" units displayed by layout tools (typically microns)
|
||||
per database unit
|
||||
|
||||
Args:
|
||||
stream: Stream to read from.
|
||||
clean_vertices: If `True`, remove any redundant vertices when loading polygons.
|
||||
The cleaning process removes any polygons with zero area or <3 vertices.
|
||||
Default `True`.
|
||||
|
||||
Returns:
|
||||
- Dict of pattern_name:Patterns generated from GDSII structures
|
||||
- Dict of GDSII library info
|
||||
"""
|
||||
|
||||
lib = gdsii.library.Library.load(stream)
|
||||
|
||||
library_info = {'name': lib.name.decode('ASCII'),
|
||||
'meters_per_unit': lib.physical_unit,
|
||||
'logical_units_per_unit': lib.logical_unit,
|
||||
}
|
||||
|
||||
raw_mode = True # Whether to construct shapes in raw mode (less error checking)
|
||||
|
||||
patterns = []
|
||||
for structure in lib:
|
||||
pat = Pattern(name=structure.name.decode('ASCII'))
|
||||
for element in structure:
|
||||
# Switch based on element type:
|
||||
if isinstance(element, gdsii.elements.Boundary):
|
||||
poly = _boundary_to_polygon(element, raw_mode)
|
||||
pat.shapes.append(poly)
|
||||
|
||||
if isinstance(element, gdsii.elements.Path):
|
||||
path = _gpath_to_mpath(element, raw_mode)
|
||||
pat.shapes.append(path)
|
||||
|
||||
elif isinstance(element, gdsii.elements.Text):
|
||||
label = Label(offset=element.xy.astype(float),
|
||||
layer=(element.layer, element.text_type),
|
||||
string=element.string.decode('ASCII'))
|
||||
pat.labels.append(label)
|
||||
|
||||
elif isinstance(element, (gdsii.elements.SRef, gdsii.elements.ARef)):
|
||||
pat.subpatterns.append(_ref_to_subpat(element))
|
||||
|
||||
if clean_vertices:
|
||||
clean_pattern_vertices(pat)
|
||||
patterns.append(pat)
|
||||
|
||||
# Create a dict of {pattern.name: pattern, ...}, then fix up all subpattern.pattern entries
|
||||
# according to the subpattern.identifier (which is deleted after use).
|
||||
patterns_dict = dict(((p.name, p) for p in patterns))
|
||||
for p in patterns_dict.values():
|
||||
for sp in p.subpatterns:
|
||||
sp.pattern = patterns_dict[sp.identifier[0].decode('ASCII')]
|
||||
del sp.identifier
|
||||
|
||||
return patterns_dict, library_info
|
||||
|
||||
|
||||
def _mlayer2gds(mlayer: layer_t) -> Tuple[int, int]:
|
||||
""" Helper to turn a layer tuple-or-int into a layer and datatype"""
|
||||
if isinstance(mlayer, int):
|
||||
layer = mlayer
|
||||
data_type = 0
|
||||
elif isinstance(mlayer, tuple):
|
||||
layer = mlayer[0]
|
||||
if len(mlayer) > 1:
|
||||
data_type = mlayer[1]
|
||||
else:
|
||||
data_type = 0
|
||||
else:
|
||||
raise PatternError(f'Invalid layer for gdsii: {mlayer}. Note that gdsii layers cannot be strings.')
|
||||
return layer, data_type
|
||||
|
||||
|
||||
def _ref_to_subpat(
|
||||
element: Union[gdsii.elements.SRef,
|
||||
gdsii.elements.ARef]
|
||||
) -> SubPattern:
|
||||
"""
|
||||
Helper function to create a SubPattern from an SREF or AREF. Sets subpat.pattern to None
|
||||
and sets the instance .identifier to (struct_name,).
|
||||
|
||||
NOTE: "Absolute" means not affected by parent elements.
|
||||
That's not currently supported by masque at all (and not planned).
|
||||
"""
|
||||
rotation = 0.0
|
||||
offset = numpy.array(element.xy[0], dtype=float)
|
||||
scale = 1.0
|
||||
mirror_across_x = False
|
||||
repetition = None
|
||||
|
||||
if element.strans is not None:
|
||||
if element.mag is not None:
|
||||
scale = element.mag
|
||||
# Bit 13 means absolute scale
|
||||
if get_bit(element.strans, 15 - 13):
|
||||
raise PatternError('Absolute scale is not implemented in masque!')
|
||||
if element.angle is not None:
|
||||
rotation = numpy.deg2rad(element.angle)
|
||||
# Bit 14 means absolute rotation
|
||||
if get_bit(element.strans, 15 - 14):
|
||||
raise PatternError('Absolute rotation is not implemented in masque!')
|
||||
# Bit 0 means mirror x-axis
|
||||
if get_bit(element.strans, 15 - 0):
|
||||
mirror_across_x = True
|
||||
|
||||
if isinstance(element, gdsii.elements.ARef):
|
||||
a_count = element.cols
|
||||
b_count = element.rows
|
||||
a_vector = (element.xy[1] - offset) / a_count
|
||||
b_vector = (element.xy[2] - offset) / b_count
|
||||
repetition = Grid(a_vector=a_vector, b_vector=b_vector,
|
||||
a_count=a_count, b_count=b_count)
|
||||
|
||||
subpat = SubPattern(pattern=None,
|
||||
offset=offset,
|
||||
rotation=rotation,
|
||||
scale=scale,
|
||||
mirrored=(mirror_across_x, False),
|
||||
annotations=_properties_to_annotations(element.properties),
|
||||
repetition=repetition)
|
||||
subpat.identifier = (element.struct_name,)
|
||||
return subpat
|
||||
|
||||
|
||||
def _gpath_to_mpath(element: gdsii.elements.Path, raw_mode: bool) -> Path:
|
||||
if element.path_type in path_cap_map:
|
||||
cap = path_cap_map[element.path_type]
|
||||
else:
|
||||
raise PatternError(f'Unrecognized path type: {element.path_type}')
|
||||
|
||||
args = {'vertices': element.xy.astype(float),
|
||||
'layer': (element.layer, element.data_type),
|
||||
'width': element.width if element.width is not None else 0.0,
|
||||
'cap': cap,
|
||||
'offset': numpy.zeros(2),
|
||||
'annotations': _properties_to_annotations(element.properties),
|
||||
'raw': raw_mode,
|
||||
}
|
||||
|
||||
if cap == Path.Cap.SquareCustom:
|
||||
args['cap_extensions'] = numpy.zeros(2)
|
||||
if element.bgn_extn is not None:
|
||||
args['cap_extensions'][0] = element.bgn_extn
|
||||
if element.end_extn is not None:
|
||||
args['cap_extensions'][1] = element.end_extn
|
||||
|
||||
return Path(**args)
|
||||
|
||||
|
||||
def _boundary_to_polygon(element: gdsii.elements.Boundary, raw_mode: bool) -> Polygon:
|
||||
args = {'vertices': element.xy[:-1].astype(float),
|
||||
'layer': (element.layer, element.data_type),
|
||||
'offset': numpy.zeros(2),
|
||||
'annotations': _properties_to_annotations(element.properties),
|
||||
'raw': raw_mode,
|
||||
}
|
||||
return Polygon(**args)
|
||||
|
||||
|
||||
def _subpatterns_to_refs(
|
||||
subpatterns: List[SubPattern],
|
||||
) -> List[Union[gdsii.elements.ARef, gdsii.elements.SRef]]:
|
||||
refs = []
|
||||
for subpat in subpatterns:
|
||||
if subpat.pattern is None:
|
||||
continue
|
||||
encoded_name = subpat.pattern.name.encode('ASCII')
|
||||
|
||||
# Note: GDS mirrors first and rotates second
|
||||
mirror_across_x, extra_angle = normalize_mirror(subpat.mirrored)
|
||||
rep = subpat.repetition
|
||||
|
||||
new_refs: List[Union[gdsii.elements.SRef, gdsii.elements.ARef]]
|
||||
ref: Union[gdsii.elements.SRef, gdsii.elements.ARef]
|
||||
if isinstance(rep, Grid):
|
||||
b_vector = rep.b_vector if rep.b_vector is not None else numpy.zeros(2)
|
||||
b_count = rep.b_count if rep.b_count is not None else 1
|
||||
xy: NDArray[numpy.float64] = numpy.array(subpat.offset) + [
|
||||
[0, 0],
|
||||
rep.a_vector * rep.a_count,
|
||||
b_vector * b_count,
|
||||
]
|
||||
ref = gdsii.elements.ARef(
|
||||
struct_name=encoded_name,
|
||||
xy=rint_cast(xy),
|
||||
cols=rint_cast(rep.a_count),
|
||||
rows=rint_cast(rep.b_count),
|
||||
)
|
||||
new_refs = [ref]
|
||||
elif rep is None:
|
||||
ref = gdsii.elements.SRef(
|
||||
struct_name=encoded_name,
|
||||
xy=rint_cast([subpat.offset]),
|
||||
)
|
||||
new_refs = [ref]
|
||||
else:
|
||||
new_refs = [gdsii.elements.SRef(
|
||||
struct_name=encoded_name,
|
||||
xy=rint_cast([subpat.offset + dd]),
|
||||
)
|
||||
for dd in rep.displacements]
|
||||
|
||||
for ref in new_refs:
|
||||
ref.angle = numpy.rad2deg(subpat.rotation + extra_angle) % 360
|
||||
# strans must be non-None for angle and mag to take effect
|
||||
ref.strans = set_bit(0, 15 - 0, mirror_across_x)
|
||||
ref.mag = subpat.scale
|
||||
ref.properties = _annotations_to_properties(subpat.annotations, 512)
|
||||
|
||||
refs += new_refs
|
||||
return refs
|
||||
|
||||
|
||||
def _properties_to_annotations(properties: List[Tuple[int, bytes]]) -> annotations_t:
|
||||
return {str(k): [v.decode()] for k, v in properties}
|
||||
|
||||
|
||||
def _annotations_to_properties(annotations: annotations_t, max_len: int = 126) -> List[Tuple[int, bytes]]:
|
||||
cum_len = 0
|
||||
props = []
|
||||
for key, vals in annotations.items():
|
||||
try:
|
||||
i = int(key)
|
||||
except ValueError:
|
||||
raise PatternError(f'Annotation key {key} is not convertable to an integer')
|
||||
if not (0 < i < 126):
|
||||
raise PatternError(f'Annotation key {key} converts to {i} (must be in the range [1,125])')
|
||||
|
||||
val_strings = ' '.join(str(val) for val in vals)
|
||||
b = val_strings.encode()
|
||||
if len(b) > 126:
|
||||
raise PatternError(f'Annotation value {b!r} is longer than 126 characters!')
|
||||
cum_len += numpy.ceil(len(b) / 2) * 2 + 2
|
||||
if cum_len > max_len:
|
||||
raise PatternError(f'Sum of annotation data will be longer than {max_len} bytes! Generated bytes were {b!r}')
|
||||
props.append((i, b))
|
||||
return props
|
||||
|
||||
|
||||
def _shapes_to_elements(
|
||||
shapes: List[Shape],
|
||||
polygonize_paths: bool = False,
|
||||
) -> List[Union[gdsii.elements.Boundary, gdsii.elements.Path]]:
|
||||
elements: List[Union[gdsii.elements.Boundary, gdsii.elements.Path]] = []
|
||||
# Add a Boundary element for each shape, and Path elements if necessary
|
||||
for shape in shapes:
|
||||
layer, data_type = _mlayer2gds(shape.layer)
|
||||
properties = _annotations_to_properties(shape.annotations, 128)
|
||||
if isinstance(shape, Path) and not polygonize_paths:
|
||||
xy = rint_cast(shape.vertices + shape.offset)
|
||||
width = rint_cast(shape.width)
|
||||
path_type = next(k for k, v in path_cap_map.items() if v == shape.cap) # reverse lookup
|
||||
path = gdsii.elements.Path(layer=layer,
|
||||
data_type=data_type,
|
||||
xy=xy)
|
||||
path.path_type = path_type
|
||||
path.width = width
|
||||
path.properties = properties
|
||||
elements.append(path)
|
||||
else:
|
||||
for polygon in shape.to_polygons():
|
||||
xy_closed = numpy.empty((polygon.vertices.shape[0] + 1, 2), dtype=numpy.int32)
|
||||
numpy.rint(polygon.vertices + polygon.offset, out=xy_closed[:-1], casting='unsafe')
|
||||
xy_closed[-1] = xy_closed[0]
|
||||
boundary = gdsii.elements.Boundary(
|
||||
layer=layer,
|
||||
data_type=data_type,
|
||||
xy=xy_closed,
|
||||
)
|
||||
boundary.properties = properties
|
||||
elements.append(boundary)
|
||||
return elements
|
||||
|
||||
|
||||
def _labels_to_texts(labels: List[Label]) -> List[gdsii.elements.Text]:
|
||||
texts = []
|
||||
for label in labels:
|
||||
properties = _annotations_to_properties(label.annotations, 128)
|
||||
layer, text_type = _mlayer2gds(label.layer)
|
||||
xy = rint_cast([label.offset])
|
||||
text = gdsii.elements.Text(
|
||||
layer=layer,
|
||||
text_type=text_type,
|
||||
xy=xy,
|
||||
string=label.string.encode('ASCII'),
|
||||
)
|
||||
text.properties = properties
|
||||
texts.append(text)
|
||||
return texts
|
||||
|
||||
|
||||
def disambiguate_pattern_names(
|
||||
patterns: Sequence[Pattern],
|
||||
max_name_length: int = 32,
|
||||
suffix_length: int = 6,
|
||||
dup_warn_filter: Optional[Callable[[str], bool]] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
patterns: List of patterns to disambiguate
|
||||
max_name_length: Names longer than this will be truncated
|
||||
suffix_length: Names which get truncated are truncated by this many extra characters. This is to
|
||||
leave room for a suffix if one is necessary.
|
||||
dup_warn_filter: (optional) Function for suppressing warnings about cell names changing. Receives
|
||||
the cell name and returns `False` if the warning should be suppressed and `True` if it should
|
||||
be displayed. Default displays all warnings.
|
||||
"""
|
||||
used_names = []
|
||||
for pat in set(patterns):
|
||||
# Shorten names which already exceed max-length
|
||||
if len(pat.name) > max_name_length:
|
||||
shortened_name = pat.name[:max_name_length - suffix_length]
|
||||
logger.warning(f'Pattern name "{pat.name}" is too long ({len(pat.name)}/{max_name_length} chars),\n'
|
||||
+ f' shortening to "{shortened_name}" before generating suffix')
|
||||
else:
|
||||
shortened_name = pat.name
|
||||
|
||||
# Remove invalid characters
|
||||
sanitized_name = re.compile(r'[^A-Za-z0-9_\?\$]').sub('_', shortened_name)
|
||||
|
||||
# Add a suffix that makes the name unique
|
||||
i = 0
|
||||
suffixed_name = sanitized_name
|
||||
while suffixed_name in used_names or suffixed_name == '':
|
||||
suffix = base64.b64encode(struct.pack('>Q', i), b'$?').decode('ASCII')
|
||||
|
||||
suffixed_name = sanitized_name + '$' + suffix[:-1].lstrip('A')
|
||||
i += 1
|
||||
|
||||
if sanitized_name == '':
|
||||
logger.warning(f'Empty pattern name saved as "{suffixed_name}"')
|
||||
elif suffixed_name != sanitized_name:
|
||||
if dup_warn_filter is None or dup_warn_filter(pat.name):
|
||||
logger.warning(f'Pattern name "{pat.name}" ({sanitized_name}) appears multiple times;\n'
|
||||
+ f' renaming to "{suffixed_name}"')
|
||||
|
||||
# Encode into a byte-string and perform some final checks
|
||||
encoded_name = suffixed_name.encode('ASCII')
|
||||
if len(encoded_name) == 0:
|
||||
# Should never happen since zero-length names are replaced
|
||||
raise PatternError(f'Zero-length name after sanitize+encode,\n originally "{pat.name}"')
|
||||
if len(encoded_name) > max_name_length:
|
||||
raise PatternError(f'Pattern name "{encoded_name!r}" length > {max_name_length} after encode,\n'
|
||||
+ f' originally "{pat.name}"')
|
||||
|
||||
pat.name = suffixed_name
|
||||
used_names.append(suffixed_name)
|
@ -1,7 +1,7 @@
|
||||
"""
|
||||
SVG file format readers and writers
|
||||
"""
|
||||
from collections.abc import Mapping
|
||||
from typing import Dict, Optional
|
||||
import warnings
|
||||
|
||||
import numpy
|
||||
@ -13,23 +13,22 @@ from .. import Pattern
|
||||
|
||||
|
||||
def writefile(
|
||||
library: Mapping[str, Pattern],
|
||||
top: str,
|
||||
pattern: Pattern,
|
||||
filename: str,
|
||||
custom_attributes: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Write a Pattern to an SVG file, by first calling .polygonize() on it
|
||||
to change the shapes into polygons, and then writing patterns as SVG
|
||||
groups (<g>, inside <defs>), polygons as paths (<path>), and refs
|
||||
groups (<g>, inside <defs>), polygons as paths (<path>), and subpatterns
|
||||
as <use> elements.
|
||||
|
||||
Note that this function modifies the Pattern.
|
||||
|
||||
If `custom_attributes` is `True`, a non-standard `pattern_layer` attribute
|
||||
is written to the relevant elements.
|
||||
If `custom_attributes` is `True`, non-standard `pattern_layer` and `pattern_dose` attributes
|
||||
are written to the relevant elements.
|
||||
|
||||
It is often a good idea to run `pattern.dedup()` on pattern prior to
|
||||
It is often a good idea to run `pattern.subpatternize()` on pattern prior to
|
||||
calling this function, especially if calling `.polygonize()` will result in very
|
||||
many vertices.
|
||||
|
||||
@ -39,18 +38,17 @@ def writefile(
|
||||
Args:
|
||||
pattern: Pattern to write to file. Modified by this function.
|
||||
filename: Filename to write to.
|
||||
custom_attributes: Whether to write non-standard `pattern_layer` attribute to the
|
||||
SVG elements.
|
||||
custom_attributes: Whether to write non-standard `pattern_layer` and
|
||||
`pattern_dose` attributes to the SVG elements.
|
||||
"""
|
||||
pattern = library[top]
|
||||
|
||||
# Polygonize pattern
|
||||
pattern.polygonize()
|
||||
|
||||
bounds = pattern.get_bounds(library=library)
|
||||
bounds = pattern.get_bounds()
|
||||
if bounds is None:
|
||||
bounds_min, bounds_max = numpy.array([[-1, -1], [1, 1]])
|
||||
warnings.warn('Pattern had no bounds (empty?); setting arbitrary viewbox', stacklevel=1)
|
||||
warnings.warn('Pattern had no bounds (empty?); setting arbitrary viewbox')
|
||||
else:
|
||||
bounds_min, bounds_max = bounds
|
||||
|
||||
@ -61,39 +59,42 @@ def writefile(
|
||||
svg = svgwrite.Drawing(filename, profile='full', viewBox=viewbox_string,
|
||||
debug=(not custom_attributes))
|
||||
|
||||
# Now create a group for each pattern and add in any Boundary and Use elements
|
||||
for name, pat in library.items():
|
||||
svg_group = svg.g(id=mangle_name(name), fill='blue', stroke='red')
|
||||
# Get a dict of id(pattern) -> pattern
|
||||
patterns_by_id = {**(pattern.referenced_patterns_by_id()), id(pattern): pattern} # type: Dict[int, Optional[Pattern]]
|
||||
|
||||
for layer, shapes in pat.shapes.items():
|
||||
for shape in shapes:
|
||||
for polygon in shape.to_polygons():
|
||||
path_spec = poly2path(polygon.vertices + polygon.offset)
|
||||
# Now create a group for each row in sd_table (ie, each pattern + dose combination)
|
||||
# and add in any Boundary and Use elements
|
||||
for pat in patterns_by_id.values():
|
||||
if pat is None:
|
||||
continue
|
||||
svg_group = svg.g(id=mangle_name(pat), fill='blue', stroke='red')
|
||||
|
||||
path = svg.path(d=path_spec)
|
||||
if custom_attributes:
|
||||
path['pattern_layer'] = layer
|
||||
for shape in pat.shapes:
|
||||
for polygon in shape.to_polygons():
|
||||
path_spec = poly2path(polygon.vertices + polygon.offset)
|
||||
|
||||
svg_group.add(path)
|
||||
path = svg.path(d=path_spec)
|
||||
if custom_attributes:
|
||||
path['pattern_layer'] = polygon.layer
|
||||
path['pattern_dose'] = polygon.dose
|
||||
|
||||
for target, refs in pat.refs.items():
|
||||
if target is None:
|
||||
svg_group.add(path)
|
||||
|
||||
for subpat in pat.subpatterns:
|
||||
if subpat.pattern is None:
|
||||
continue
|
||||
for ref in refs:
|
||||
transform = f'scale({ref.scale:g}) rotate({ref.rotation:g}) translate({ref.offset[0]:g},{ref.offset[1]:g})'
|
||||
use = svg.use(href='#' + mangle_name(target), transform=transform)
|
||||
svg_group.add(use)
|
||||
transform = f'scale({subpat.scale:g}) rotate({subpat.rotation:g}) translate({subpat.offset[0]:g},{subpat.offset[1]:g})'
|
||||
use = svg.use(href='#' + mangle_name(subpat.pattern), transform=transform)
|
||||
if custom_attributes:
|
||||
use['pattern_dose'] = subpat.dose
|
||||
svg_group.add(use)
|
||||
|
||||
svg.defs.add(svg_group)
|
||||
svg.add(svg.use(href='#' + mangle_name(top)))
|
||||
svg.add(svg.use(href='#' + mangle_name(pattern)))
|
||||
svg.save()
|
||||
|
||||
|
||||
def writefile_inverted(
|
||||
library: Mapping[str, Pattern],
|
||||
top: str,
|
||||
filename: str,
|
||||
) -> None:
|
||||
def writefile_inverted(pattern: Pattern, filename: str):
|
||||
"""
|
||||
Write an inverted Pattern to an SVG file, by first calling `.polygonize()` and
|
||||
`.flatten()` on it to change the shapes into polygons, then drawing a bounding
|
||||
@ -109,15 +110,13 @@ def writefile_inverted(
|
||||
pattern: Pattern to write to file. Modified by this function.
|
||||
filename: Filename to write to.
|
||||
"""
|
||||
pattern = library[top]
|
||||
|
||||
# Polygonize and flatten pattern
|
||||
pattern.polygonize().flatten(library)
|
||||
pattern.polygonize().flatten()
|
||||
|
||||
bounds = pattern.get_bounds(library=library)
|
||||
bounds = pattern.get_bounds()
|
||||
if bounds is None:
|
||||
bounds_min, bounds_max = numpy.array([[-1, -1], [1, 1]])
|
||||
warnings.warn('Pattern had no bounds (empty?); setting arbitrary viewbox', stacklevel=1)
|
||||
warnings.warn('Pattern had no bounds (empty?); setting arbitrary viewbox')
|
||||
else:
|
||||
bounds_min, bounds_max = bounds
|
||||
|
||||
@ -135,10 +134,9 @@ def writefile_inverted(
|
||||
path_spec = poly2path(slab_edge)
|
||||
|
||||
# Draw polygons with reversed vertex order
|
||||
for _layer, shapes in pattern.shapes.items():
|
||||
for shape in shapes:
|
||||
for polygon in shape.to_polygons():
|
||||
path_spec += poly2path(polygon.vertices[::-1] + polygon.offset)
|
||||
for shape in pattern.shapes:
|
||||
for polygon in shape.to_polygons():
|
||||
path_spec += poly2path(polygon.vertices[::-1] + polygon.offset)
|
||||
|
||||
svg.add(svg.path(d=path_spec, fill='blue', stroke='red'))
|
||||
svg.save()
|
||||
@ -154,9 +152,9 @@ def poly2path(vertices: ArrayLike) -> str:
|
||||
Returns:
|
||||
SVG path-string.
|
||||
"""
|
||||
verts = numpy.asarray(vertices)
|
||||
commands = 'M{:g},{:g} '.format(verts[0][0], verts[0][1]) # noqa: UP032
|
||||
verts = numpy.array(vertices, copy=False)
|
||||
commands = 'M{:g},{:g} '.format(verts[0][0], verts[0][1])
|
||||
for vertex in verts[1:]:
|
||||
commands += 'L{:g},{:g}'.format(vertex[0], vertex[1]) # noqa: UP032
|
||||
commands += 'L{:g},{:g}'.format(vertex[0], vertex[1])
|
||||
commands += ' Z '
|
||||
return commands
|
||||
|
@ -1,105 +1,29 @@
|
||||
"""
|
||||
Helper functions for file reading and writing
|
||||
"""
|
||||
from typing import IO
|
||||
from collections.abc import Iterator, Mapping
|
||||
from typing import Set, Tuple, List
|
||||
import re
|
||||
import copy
|
||||
import pathlib
|
||||
import logging
|
||||
import tempfile
|
||||
import shutil
|
||||
from collections import defaultdict
|
||||
from contextlib import contextmanager
|
||||
from pprint import pformat
|
||||
from itertools import chain
|
||||
|
||||
from .. import Pattern, PatternError, Library, LibraryError
|
||||
from .. import Pattern, PatternError
|
||||
from ..shapes import Polygon, Path
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def preflight(
|
||||
lib: Library,
|
||||
sort: bool = True,
|
||||
sort_elements: bool = False,
|
||||
allow_dangling_refs: bool | None = None,
|
||||
allow_named_layers: bool = True,
|
||||
prune_empty_patterns: bool = False,
|
||||
wrap_repeated_shapes: bool = False,
|
||||
) -> Library:
|
||||
def mangle_name(pattern: Pattern, dose_multiplier: float = 1.0) -> str:
|
||||
"""
|
||||
Run a standard set of useful operations and checks, usually done immediately prior
|
||||
to writing to a file (or immediately after reading).
|
||||
Create a name using `pattern.name`, `id(pattern)`, and the dose multiplier.
|
||||
|
||||
Args:
|
||||
sort: Whether to sort the patterns based on their names, and optionaly sort the pattern contents.
|
||||
Default True. Useful for reproducible builds.
|
||||
sort_elements: Whether to sort the pattern contents. Requires sort=True to run.
|
||||
allow_dangling_refs: If `None` (default), warns about any refs to patterns that are not
|
||||
in the provided library. If `True`, no check is performed; if `False`, a `LibraryError`
|
||||
is raised instead.
|
||||
allow_named_layers: If `False`, raises a `PatternError` if any layer is referred to by
|
||||
a string instead of a number (or tuple).
|
||||
prune_empty_patterns: Runs `Library.prune_empty()`, recursively deleting any empty patterns.
|
||||
wrap_repeated_shapes: Runs `Library.wrap_repeated_shapes()`, turning repeated shapes into
|
||||
repeated refs containing non-repeated shapes.
|
||||
|
||||
Returns:
|
||||
`lib` or an equivalent sorted library
|
||||
"""
|
||||
if sort:
|
||||
lib = Library(dict(sorted(
|
||||
(nn, pp.sort(sort_elements=sort_elements)) for nn, pp in lib.items()
|
||||
)))
|
||||
|
||||
if not allow_dangling_refs:
|
||||
refs = lib.referenced_patterns()
|
||||
dangling = refs - set(lib.keys())
|
||||
if dangling:
|
||||
msg = 'Dangling refs found: ' + pformat(dangling)
|
||||
if allow_dangling_refs is None:
|
||||
logger.warning(msg)
|
||||
else:
|
||||
raise LibraryError(msg)
|
||||
|
||||
if not allow_named_layers:
|
||||
named_layers: Mapping[str, set] = defaultdict(set)
|
||||
for name, pat in lib.items():
|
||||
for layer in chain(pat.shapes.keys(), pat.labels.keys()):
|
||||
if isinstance(layer, str):
|
||||
named_layers[name].add(layer)
|
||||
named_layers = dict(named_layers)
|
||||
if named_layers:
|
||||
raise PatternError('Non-numeric layers found:' + pformat(named_layers))
|
||||
|
||||
if prune_empty_patterns:
|
||||
pruned = lib.prune_empty()
|
||||
if pruned:
|
||||
logger.info(f'Preflight pruned {len(pruned)} empty patterns')
|
||||
logger.debug('Pruned: ' + pformat(pruned))
|
||||
else:
|
||||
logger.debug('Preflight found no empty patterns')
|
||||
|
||||
if wrap_repeated_shapes:
|
||||
lib.wrap_repeated_shapes()
|
||||
|
||||
return lib
|
||||
|
||||
|
||||
def mangle_name(name: str) -> str:
|
||||
"""
|
||||
Sanitize a name.
|
||||
|
||||
Args:
|
||||
name: Name we want to mangle.
|
||||
pattern: Pattern whose name we want to mangle.
|
||||
dose_multiplier: Dose multiplier to mangle with.
|
||||
|
||||
Returns:
|
||||
Mangled name.
|
||||
"""
|
||||
expression = re.compile(r'[^A-Za-z0-9_\?\$]')
|
||||
sanitized_name = expression.sub('_', name)
|
||||
full_name = '{}_{}_{}'.format(pattern.name, dose_multiplier, id(pattern))
|
||||
sanitized_name = expression.sub('_', full_name)
|
||||
return sanitized_name
|
||||
|
||||
|
||||
@ -114,39 +38,149 @@ def clean_pattern_vertices(pat: Pattern) -> Pattern:
|
||||
Returns:
|
||||
pat
|
||||
"""
|
||||
for shapes in pat.shapes.values():
|
||||
remove_inds = []
|
||||
for ii, shape in enumerate(shapes):
|
||||
if not isinstance(shape, Polygon | Path):
|
||||
continue
|
||||
try:
|
||||
shape.clean_vertices()
|
||||
except PatternError:
|
||||
remove_inds.append(ii)
|
||||
for ii in sorted(remove_inds, reverse=True):
|
||||
del shapes[ii]
|
||||
remove_inds = []
|
||||
for ii, shape in enumerate(pat.shapes):
|
||||
if not isinstance(shape, (Polygon, Path)):
|
||||
continue
|
||||
try:
|
||||
shape.clean_vertices()
|
||||
except PatternError:
|
||||
remove_inds.append(ii)
|
||||
for ii in sorted(remove_inds, reverse=True):
|
||||
del pat.shapes[ii]
|
||||
return pat
|
||||
|
||||
|
||||
def make_dose_table(patterns: List[Pattern], dose_multiplier: float = 1.0) -> Set[Tuple[int, float]]:
|
||||
"""
|
||||
Create a set containing `(id(pat), written_dose)` for each pattern (including subpatterns)
|
||||
|
||||
Args:
|
||||
pattern: Source Patterns.
|
||||
dose_multiplier: Multiplier for all written_dose entries.
|
||||
|
||||
Returns:
|
||||
`{(id(subpat.pattern), written_dose), ...}`
|
||||
"""
|
||||
dose_table = {(id(pattern), dose_multiplier) for pattern in patterns}
|
||||
for pattern in patterns:
|
||||
for subpat in pattern.subpatterns:
|
||||
if subpat.pattern is None:
|
||||
continue
|
||||
subpat_dose_entry = (id(subpat.pattern), subpat.dose * dose_multiplier)
|
||||
if subpat_dose_entry not in dose_table:
|
||||
subpat_dose_table = make_dose_table([subpat.pattern], subpat.dose * dose_multiplier)
|
||||
dose_table = dose_table.union(subpat_dose_table)
|
||||
return dose_table
|
||||
|
||||
|
||||
def dtype2dose(pattern: Pattern) -> Pattern:
|
||||
"""
|
||||
For each shape in the pattern, if the layer is a tuple, set the
|
||||
layer to the tuple's first element and set the dose to the
|
||||
tuple's second element.
|
||||
|
||||
Generally intended for use with `Pattern.apply()`.
|
||||
|
||||
Args:
|
||||
pattern: Pattern to modify
|
||||
|
||||
Returns:
|
||||
pattern
|
||||
"""
|
||||
for shape in pattern.shapes:
|
||||
if isinstance(shape.layer, tuple):
|
||||
shape.dose = shape.layer[1]
|
||||
shape.layer = shape.layer[0]
|
||||
return pattern
|
||||
|
||||
|
||||
def dose2dtype(
|
||||
patterns: List[Pattern],
|
||||
) -> Tuple[List[Pattern], List[float]]:
|
||||
"""
|
||||
For each shape in each pattern, set shape.layer to the tuple
|
||||
(base_layer, datatype), where:
|
||||
layer is chosen to be equal to the original shape.layer if it is an int,
|
||||
or shape.layer[0] if it is a tuple. `str` layers raise a PatterError.
|
||||
datatype is chosen arbitrarily, based on calcualted dose for each shape.
|
||||
Shapes with equal calcualted dose will have the same datatype.
|
||||
A list of doses is retured, providing a mapping between datatype
|
||||
(list index) and dose (list entry).
|
||||
|
||||
Note that this function modifies the input Pattern(s).
|
||||
|
||||
Args:
|
||||
patterns: A `Pattern` or list of patterns to write to file. Modified by this function.
|
||||
|
||||
Returns:
|
||||
(patterns, dose_list)
|
||||
patterns: modified input patterns
|
||||
dose_list: A list of doses, providing a mapping between datatype (int, list index)
|
||||
and dose (float, list entry).
|
||||
"""
|
||||
# Get a dict of id(pattern) -> pattern
|
||||
patterns_by_id = {id(pattern): pattern for pattern in patterns}
|
||||
for pattern in patterns:
|
||||
for i, p in pattern.referenced_patterns_by_id().items():
|
||||
patterns_by_id[i] = p
|
||||
|
||||
# Get a table of (id(pat), written_dose) for each pattern and subpattern
|
||||
sd_table = make_dose_table(patterns)
|
||||
|
||||
# Figure out all the unique doses necessary to write this pattern
|
||||
# This means going through each row in sd_table and adding the dose values needed to write
|
||||
# that subpattern at that dose level
|
||||
dose_vals = set()
|
||||
for pat_id, pat_dose in sd_table:
|
||||
pat = patterns_by_id[pat_id]
|
||||
for shape in pat.shapes:
|
||||
dose_vals.add(shape.dose * pat_dose)
|
||||
|
||||
if len(dose_vals) > 256:
|
||||
raise PatternError('Too many dose values: {}, maximum 256 when using dtypes.'.format(len(dose_vals)))
|
||||
|
||||
dose_vals_list = list(dose_vals)
|
||||
|
||||
# Create a new pattern for each non-1-dose entry in the dose table
|
||||
# and update the shapes to reflect their new dose
|
||||
new_pats = {} # (id, dose) -> new_pattern mapping
|
||||
for pat_id, pat_dose in sd_table:
|
||||
if pat_dose == 1:
|
||||
new_pats[(pat_id, pat_dose)] = patterns_by_id[pat_id]
|
||||
continue
|
||||
|
||||
old_pat = patterns_by_id[pat_id]
|
||||
pat = old_pat.copy() # keep old subpatterns
|
||||
pat.shapes = copy.deepcopy(old_pat.shapes)
|
||||
pat.labels = copy.deepcopy(old_pat.labels)
|
||||
|
||||
encoded_name = mangle_name(pat, pat_dose)
|
||||
if len(encoded_name) == 0:
|
||||
raise PatternError('Zero-length name after mangle+encode, originally "{}"'.format(pat.name))
|
||||
pat.name = encoded_name
|
||||
|
||||
for shape in pat.shapes:
|
||||
data_type = dose_vals_list.index(shape.dose * pat_dose)
|
||||
if isinstance(shape.layer, int):
|
||||
shape.layer = (shape.layer, data_type)
|
||||
elif isinstance(shape.layer, tuple):
|
||||
shape.layer = (shape.layer[0], data_type)
|
||||
else:
|
||||
raise PatternError(f'Invalid layer for gdsii: {shape.layer}')
|
||||
|
||||
new_pats[(pat_id, pat_dose)] = pat
|
||||
|
||||
# Go back through all the dose-specific patterns and fix up their subpattern entries
|
||||
for (pat_id, pat_dose), pat in new_pats.items():
|
||||
for subpat in pat.subpatterns:
|
||||
dose_mult = subpat.dose * pat_dose
|
||||
subpat.pattern = new_pats[(id(subpat.pattern), dose_mult)]
|
||||
|
||||
return patterns, dose_vals_list
|
||||
|
||||
|
||||
def is_gzipped(path: pathlib.Path) -> bool:
|
||||
with path.open('rb') as stream:
|
||||
with open(path, 'rb') as stream:
|
||||
magic_bytes = stream.read(2)
|
||||
return magic_bytes == b'\x1f\x8b'
|
||||
|
||||
|
||||
@contextmanager
|
||||
def tmpfile(path: str | pathlib.Path) -> Iterator[IO[bytes]]:
|
||||
"""
|
||||
Context manager which allows you to write to a temporary file,
|
||||
and move that file into its final location only after the write
|
||||
has finished.
|
||||
"""
|
||||
path = pathlib.Path(path)
|
||||
suffixes = ''.join(path.suffixes)
|
||||
with tempfile.NamedTemporaryFile(suffix=suffixes, delete=False) as tmp_stream:
|
||||
yield tmp_stream
|
||||
|
||||
try:
|
||||
shutil.move(tmp_stream.name, path)
|
||||
finally:
|
||||
pathlib.Path(tmp_stream.name).unlink(missing_ok=True)
|
||||
|
@ -1,30 +1,31 @@
|
||||
from typing import Self, Any
|
||||
from typing import Tuple, Dict, Optional, TypeVar
|
||||
import copy
|
||||
import functools
|
||||
|
||||
import numpy
|
||||
from numpy.typing import ArrayLike, NDArray
|
||||
|
||||
from .repetition import Repetition
|
||||
from .utils import rotation_matrix_2d, annotations_t, annotations_eq, annotations_lt, rep2key
|
||||
from .traits import PositionableImpl, Copyable, Pivotable, RepeatableImpl, Bounded
|
||||
from .utils import rotation_matrix_2d, layer_t, AutoSlots, annotations_t
|
||||
from .traits import PositionableImpl, LayerableImpl, Copyable, Pivotable, LockableImpl, RepeatableImpl
|
||||
from .traits import AnnotatableImpl
|
||||
|
||||
|
||||
@functools.total_ordering
|
||||
class Label(PositionableImpl, RepeatableImpl, AnnotatableImpl, Bounded, Pivotable, Copyable):
|
||||
L = TypeVar('L', bound='Label')
|
||||
|
||||
|
||||
class Label(PositionableImpl, LayerableImpl, LockableImpl, RepeatableImpl, AnnotatableImpl,
|
||||
Pivotable, Copyable, metaclass=AutoSlots):
|
||||
"""
|
||||
A text annotation with a position (but no size; it is not drawn)
|
||||
A text annotation with a position and layer (but no size; it is not drawn)
|
||||
"""
|
||||
__slots__ = (
|
||||
'_string',
|
||||
# Inherited
|
||||
'_offset', '_repetition', '_annotations',
|
||||
)
|
||||
__slots__ = ( '_string', 'identifier')
|
||||
|
||||
_string: str
|
||||
""" Label string """
|
||||
|
||||
identifier: Tuple
|
||||
""" Arbitrary identifier tuple, useful for keeping track of history when flattening """
|
||||
|
||||
'''
|
||||
---- Properties
|
||||
'''
|
||||
@ -45,45 +46,38 @@ class Label(PositionableImpl, RepeatableImpl, AnnotatableImpl, Bounded, Pivotabl
|
||||
string: str,
|
||||
*,
|
||||
offset: ArrayLike = (0.0, 0.0),
|
||||
repetition: Repetition | None = None,
|
||||
annotations: annotations_t | None = None,
|
||||
layer: layer_t = 0,
|
||||
repetition: Optional[Repetition] = None,
|
||||
annotations: Optional[annotations_t] = None,
|
||||
locked: bool = False,
|
||||
identifier: Tuple = (),
|
||||
) -> None:
|
||||
LockableImpl.unlock(self)
|
||||
self.identifier = identifier
|
||||
self.string = string
|
||||
self.offset = numpy.array(offset, dtype=float)
|
||||
self.offset = numpy.array(offset, dtype=float, copy=True)
|
||||
self.layer = layer
|
||||
self.repetition = repetition
|
||||
self.annotations = annotations if annotations is not None else {}
|
||||
self.set_locked(locked)
|
||||
|
||||
def __copy__(self) -> Self:
|
||||
return type(self)(
|
||||
string=self.string,
|
||||
offset=self.offset.copy(),
|
||||
repetition=self.repetition,
|
||||
)
|
||||
def __copy__(self: L) -> L:
|
||||
return type(self)(string=self.string,
|
||||
offset=self.offset.copy(),
|
||||
layer=self.layer,
|
||||
repetition=self.repetition,
|
||||
locked=self.locked,
|
||||
identifier=self.identifier)
|
||||
|
||||
def __deepcopy__(self, memo: dict | None = None) -> Self:
|
||||
def __deepcopy__(self: L, memo: Dict = None) -> L:
|
||||
memo = {} if memo is None else memo
|
||||
new = copy.copy(self)
|
||||
LockableImpl.unlock(new)
|
||||
new._offset = self._offset.copy()
|
||||
new.set_locked(self.locked)
|
||||
return new
|
||||
|
||||
def __lt__(self, other: 'Label') -> bool:
|
||||
if self.string != other.string:
|
||||
return self.string < other.string
|
||||
if not numpy.array_equal(self.offset, other.offset):
|
||||
return tuple(self.offset) < tuple(other.offset)
|
||||
if self.repetition != other.repetition:
|
||||
return rep2key(self.repetition) < rep2key(other.repetition)
|
||||
return annotations_lt(self.annotations, other.annotations)
|
||||
|
||||
def __eq__(self, other: Any) -> bool:
|
||||
return (
|
||||
self.string == other.string
|
||||
and numpy.array_equal(self.offset, other.offset)
|
||||
and self.repetition == other.repetition
|
||||
and annotations_eq(self.annotations, other.annotations)
|
||||
)
|
||||
|
||||
def rotate_around(self, pivot: ArrayLike, rotation: float) -> Self:
|
||||
def rotate_around(self: L, pivot: ArrayLike, rotation: float) -> L:
|
||||
"""
|
||||
Rotate the label around a point.
|
||||
|
||||
@ -94,13 +88,13 @@ class Label(PositionableImpl, RepeatableImpl, AnnotatableImpl, Bounded, Pivotabl
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
pivot = numpy.asarray(pivot, dtype=float)
|
||||
pivot = numpy.array(pivot, dtype=float)
|
||||
self.translate(-pivot)
|
||||
self.offset = numpy.dot(rotation_matrix_2d(rotation), self.offset)
|
||||
self.translate(+pivot)
|
||||
return self
|
||||
|
||||
def get_bounds_single(self) -> NDArray[numpy.float64]:
|
||||
def get_bounds(self) -> NDArray[numpy.float64]:
|
||||
"""
|
||||
Return the bounds of the label.
|
||||
|
||||
@ -112,3 +106,17 @@ class Label(PositionableImpl, RepeatableImpl, AnnotatableImpl, Bounded, Pivotabl
|
||||
Bounds [[xmin, xmax], [ymin, ymax]]
|
||||
"""
|
||||
return numpy.array([self.offset, self.offset])
|
||||
|
||||
def lock(self: L) -> L:
|
||||
PositionableImpl._lock(self)
|
||||
LockableImpl.lock(self)
|
||||
return self
|
||||
|
||||
def unlock(self: L) -> L:
|
||||
LockableImpl.unlock(self)
|
||||
PositionableImpl._unlock(self)
|
||||
return self
|
||||
|
||||
def __repr__(self) -> str:
|
||||
locked = ' L' if self.locked else ''
|
||||
return f'<Label "{self.string}" l{self.layer} o{self.offset}{locked}>'
|
||||
|
1383
masque/library.py
1383
masque/library.py
File diff suppressed because it is too large
Load Diff
2
masque/library/__init__.py
Normal file
2
masque/library/__init__.py
Normal file
@ -0,0 +1,2 @@
|
||||
from .library import Library, PatternGenerator
|
||||
from .device_library import DeviceLibrary, LibDeviceLibrary
|
298
masque/library/device_library.py
Normal file
298
masque/library/device_library.py
Normal file
@ -0,0 +1,298 @@
|
||||
"""
|
||||
DeviceLibrary class for managing unique name->device mappings and
|
||||
deferred loading or creation.
|
||||
"""
|
||||
from typing import Dict, Callable, TypeVar, TYPE_CHECKING
|
||||
from typing import Any, Tuple, Union, Iterator
|
||||
import logging
|
||||
from pprint import pformat
|
||||
|
||||
from ..error import DeviceLibraryError
|
||||
from ..library import Library
|
||||
from ..builder import Device
|
||||
from .. import Pattern
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
D = TypeVar('D', bound='DeviceLibrary')
|
||||
L = TypeVar('L', bound='LibDeviceLibrary')
|
||||
|
||||
|
||||
class DeviceLibrary:
|
||||
"""
|
||||
This class maps names to functions which generate or load the
|
||||
relevant `Device` object.
|
||||
|
||||
This class largely functions the same way as `Library`, but
|
||||
operates on `Device`s rather than `Patterns` and thus has no
|
||||
need for distinctions between primary/secondary devices (as
|
||||
there is no inter-`Device` hierarchy).
|
||||
|
||||
Each device is cached the first time it is used. The cache can
|
||||
be disabled by setting the `enable_cache` attribute to `False`.
|
||||
"""
|
||||
generators: Dict[str, Callable[[], Device]]
|
||||
cache: Dict[Union[str, Tuple[str, str]], Device]
|
||||
enable_cache: bool = True
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.generators = {}
|
||||
self.cache = {}
|
||||
|
||||
def __setitem__(self, key: str, value: Callable[[], Device]) -> None:
|
||||
self.generators[key] = value
|
||||
if key in self.cache:
|
||||
del self.cache[key]
|
||||
|
||||
def __delitem__(self, key: str) -> None:
|
||||
del self.generators[key]
|
||||
if key in self.cache:
|
||||
del self.cache[key]
|
||||
|
||||
def __getitem__(self, key: str) -> Device:
|
||||
if self.enable_cache and key in self.cache:
|
||||
logger.debug(f'found {key} in cache')
|
||||
return self.cache[key]
|
||||
|
||||
logger.debug(f'loading {key}')
|
||||
dev = self.generators[key]()
|
||||
self.cache[key] = dev
|
||||
return dev
|
||||
|
||||
def __iter__(self) -> Iterator[str]:
|
||||
return iter(self.keys())
|
||||
|
||||
def __contains__(self, key: str) -> bool:
|
||||
return key in self.generators
|
||||
|
||||
def keys(self) -> Iterator[str]:
|
||||
return iter(self.generators.keys())
|
||||
|
||||
def values(self) -> Iterator[Device]:
|
||||
return iter(self[key] for key in self.keys())
|
||||
|
||||
def items(self) -> Iterator[Tuple[str, Device]]:
|
||||
return iter((key, self[key]) for key in self.keys())
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return '<DeviceLibrary with keys ' + repr(list(self.generators.keys())) + '>'
|
||||
|
||||
def set_const(self, const: Device) -> None:
|
||||
"""
|
||||
Convenience function to avoid having to manually wrap
|
||||
already-generated Device objects into callables.
|
||||
|
||||
Args:
|
||||
const: Pre-generated device object
|
||||
"""
|
||||
self.generators[const.pattern.name] = lambda: const
|
||||
|
||||
def add(
|
||||
self: D,
|
||||
other: D,
|
||||
use_ours: Callable[[str], bool] = lambda name: False,
|
||||
use_theirs: Callable[[str], bool] = lambda name: False,
|
||||
) -> D:
|
||||
"""
|
||||
Add keys from another library into this one.
|
||||
|
||||
There must be no conflicting keys.
|
||||
|
||||
Args:
|
||||
other: The library to insert keys from
|
||||
use_ours: Decision function for name conflicts. Will be called with duplicate cell names.
|
||||
Should return `True` if the value from `self` should be used.
|
||||
use_theirs: Decision function for name conflicts. Same format as `use_ours`.
|
||||
Should return `True` if the value from `other` should be used.
|
||||
`use_ours` takes priority over `use_theirs`.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
duplicates = set(self.keys()) & set(other.keys())
|
||||
keep_ours = set(name for name in duplicates if use_ours(name))
|
||||
keep_theirs = set(name for name in duplicates - keep_ours if use_theirs(name))
|
||||
conflicts = duplicates - keep_ours - keep_theirs
|
||||
if conflicts:
|
||||
raise DeviceLibraryError('Duplicate keys encountered in DeviceLibrary merge: '
|
||||
+ pformat(conflicts))
|
||||
|
||||
for name in set(other.generators.keys()) - keep_ours:
|
||||
self.generators[name] = other.generators[name]
|
||||
if name in other.cache:
|
||||
self.cache[name] = other.cache[name]
|
||||
return self
|
||||
|
||||
def clear_cache(self: D) -> D:
|
||||
"""
|
||||
Clear the cache of this library.
|
||||
This is usually used before modifying or deleting cells, e.g. when merging
|
||||
with another library.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.cache = {}
|
||||
return self
|
||||
|
||||
def add_device(
|
||||
self,
|
||||
name: str,
|
||||
fn: Callable[[], Device],
|
||||
dev2pat: Callable[[Device], Pattern],
|
||||
prefix: str = '',
|
||||
) -> None:
|
||||
"""
|
||||
Convenience function for adding a device to the library.
|
||||
|
||||
- The device is generated with the provided `fn()`
|
||||
- Port info is written to the pattern using the provied dev2pat
|
||||
- The pattern is renamed to match the provided `prefix + name`
|
||||
- If `prefix` is non-empty, a wrapped copy is also added, named
|
||||
`name` (no prefix). See `wrap_device()` for details.
|
||||
|
||||
Adding devices with this function helps to
|
||||
- Make sure Pattern names are reflective of what the devices are named
|
||||
- Ensure port info is written into the `Pattern`, so that the `Device`
|
||||
can be reconstituted from the layout.
|
||||
- Simplify adding a prefix to all device names, to make it easier to
|
||||
track their provenance and purpose, while also allowing for
|
||||
generic device names which can later be swapped out with different
|
||||
underlying implementations.
|
||||
|
||||
Args:
|
||||
name: Base name for the device. If a prefix is used, this is the
|
||||
"generic" name (e.g. "L3_cavity" vs "2022_02_02_L3_cavity").
|
||||
fn: Function which is called to generate the device.
|
||||
dev2pat: Post-processing function which is called to add the port
|
||||
info into the device's pattern.
|
||||
prefix: If present, the actual device is named `prefix + name`, and
|
||||
a second device with name `name` is also added (containing only
|
||||
this one).
|
||||
"""
|
||||
def build_dev() -> Device:
|
||||
dev = fn()
|
||||
dev.pattern = dev2pat(dev)
|
||||
dev.pattern.rename(prefix + name)
|
||||
return dev
|
||||
|
||||
self[prefix + name] = build_dev
|
||||
if prefix:
|
||||
self.wrap_device(name, prefix + name)
|
||||
|
||||
def wrap_device(
|
||||
self,
|
||||
name: str,
|
||||
old_name: str,
|
||||
) -> None:
|
||||
"""
|
||||
Create a new device which simply contains an instance of an already-existing device.
|
||||
|
||||
This is useful for assigning an alternate name to a device, while still keeping
|
||||
the original name available for traceability.
|
||||
|
||||
Args:
|
||||
name: Name for the wrapped device.
|
||||
old_name: Name of the existing device to wrap.
|
||||
"""
|
||||
|
||||
def build_wrapped_dev() -> Device:
|
||||
old_dev = self[old_name]
|
||||
wrapper = Pattern(name=name)
|
||||
wrapper.addsp(old_dev.pattern)
|
||||
return Device(wrapper, old_dev.ports)
|
||||
|
||||
self[name] = build_wrapped_dev
|
||||
|
||||
|
||||
class LibDeviceLibrary(DeviceLibrary):
|
||||
"""
|
||||
Extends `DeviceLibrary`, enabling it to ingest `Library` objects
|
||||
(e.g. obtained by loading a GDS file).
|
||||
|
||||
Each `Library` object must be accompanied by a `pat2dev` function,
|
||||
which takes in the `Pattern` and returns a full `Device` (including
|
||||
port info). This is usually accomplished by scanning the `Pattern` for
|
||||
port-related geometry, but could also bake in external info.
|
||||
|
||||
`Library` objects are ingested into `underlying`, which is a
|
||||
`Library` which is kept in sync with the `DeviceLibrary` when
|
||||
devices are removed (or new libraries added via `add_library()`).
|
||||
"""
|
||||
underlying: Library
|
||||
|
||||
def __init__(self) -> None:
|
||||
DeviceLibrary.__init__(self)
|
||||
self.underlying = Library()
|
||||
|
||||
def __setitem__(self, key: str, value: Callable[[], Device]) -> None:
|
||||
self.generators[key] = value
|
||||
if key in self.cache:
|
||||
del self.cache[key]
|
||||
|
||||
# If any `Library` that has been (or will be) added has an entry for `key`,
|
||||
# it will be added to `self.underlying` and then returned by it during subpattern
|
||||
# resolution for other entries, and will conflict with the name for our
|
||||
# wrapped device. To avoid that, we need to set ourselves as the "true" source of
|
||||
# the `Pattern` named `key`.
|
||||
if key in self.underlying:
|
||||
raise DeviceLibraryError(f'Device name {key} already exists in underlying Library!'
|
||||
' Demote or delete it first.')
|
||||
|
||||
# NOTE that this means the `Device` may be cached without the `Pattern` being in
|
||||
# the `underlying` cache yet!
|
||||
self.underlying.set_value(key, '__DeviceLibrary', lambda: self[key].pattern)
|
||||
|
||||
def __delitem__(self, key: str) -> None:
|
||||
DeviceLibrary.__delitem__(self, key)
|
||||
if key in self.underlying:
|
||||
del self.underlying[key]
|
||||
|
||||
def add_library(
|
||||
self: L,
|
||||
lib: Library,
|
||||
pat2dev: Callable[[Pattern], Device],
|
||||
use_ours: Callable[[Union[str, Tuple[str, str]]], bool] = lambda name: False,
|
||||
use_theirs: Callable[[Union[str, Tuple[str, str]]], bool] = lambda name: False,
|
||||
) -> L:
|
||||
"""
|
||||
Add a pattern `Library` into this `LibDeviceLibrary`.
|
||||
|
||||
This requires a `pat2dev` function which can transform each `Pattern`
|
||||
into a `Device`. For example, this can be accomplished by scanning
|
||||
the `Pattern` data for port location info or by looking up port info
|
||||
based on the pattern name or other characteristics in a hardcoded or
|
||||
user-supplied dictionary.
|
||||
|
||||
Args:
|
||||
lib: Pattern library to add.
|
||||
pat2dev: Function for transforming each `Pattern` object from `lib`
|
||||
into a `Device` which will be returned by this device library.
|
||||
use_ours: Decision function for name conflicts. Will be called with
|
||||
duplicate cell names, and (name, tag) tuples from the underlying library.
|
||||
Should return `True` if the value from `self` should be used.
|
||||
use_theirs: Decision function for name conflicts. Same format as `use_ours`.
|
||||
Should return `True` if the value from `other` should be used.
|
||||
`use_ours` takes priority over `use_theirs`.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
duplicates = set(lib.keys()) & set(self.keys())
|
||||
keep_ours = set(name for name in duplicates if use_ours(name))
|
||||
keep_theirs = set(name for name in duplicates - keep_ours if use_theirs(name))
|
||||
bad_duplicates = duplicates - keep_ours - keep_theirs
|
||||
if bad_duplicates:
|
||||
raise DeviceLibraryError('Duplicate devices (no action specified): ' + pformat(bad_duplicates))
|
||||
|
||||
# No 'bad' duplicates, so all duplicates should be overwritten
|
||||
for name in keep_theirs:
|
||||
self.underlying.demote(name)
|
||||
|
||||
self.underlying.add(lib, use_ours, use_theirs)
|
||||
|
||||
for name in lib:
|
||||
self.generators[name] = lambda name=name: pat2dev(self.underlying[name])
|
||||
return self
|
355
masque/library/library.py
Normal file
355
masque/library/library.py
Normal file
@ -0,0 +1,355 @@
|
||||
"""
|
||||
Library class for managing unique name->pattern mappings and
|
||||
deferred loading or creation.
|
||||
"""
|
||||
from typing import Dict, Callable, TypeVar, TYPE_CHECKING
|
||||
from typing import Any, Tuple, Union, Iterator
|
||||
import logging
|
||||
from pprint import pformat
|
||||
from dataclasses import dataclass
|
||||
import copy
|
||||
|
||||
from ..error import LibraryError
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..pattern import Pattern
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class PatternGenerator:
|
||||
__slots__ = ('tag', 'gen')
|
||||
tag: str
|
||||
""" Unique identifier for the source """
|
||||
|
||||
gen: Callable[[], 'Pattern']
|
||||
""" Function which generates a pattern when called """
|
||||
|
||||
|
||||
L = TypeVar('L', bound='Library')
|
||||
|
||||
|
||||
class Library:
|
||||
"""
|
||||
This class is usually used to create a library of Patterns by mapping names to
|
||||
functions which generate or load the relevant `Pattern` object as-needed.
|
||||
|
||||
Generated/loaded patterns can have "symbolic" references, where a SubPattern
|
||||
object `sp` has a `None`-valued `sp.pattern` attribute, in which case the
|
||||
Library expects `sp.identifier[0]` to contain a string which specifies the
|
||||
referenced pattern's name.
|
||||
|
||||
Patterns can either be "primary" (default) or "secondary". Both get the
|
||||
same deferred-load behavior, but "secondary" patterns may have conflicting
|
||||
names and are not accessible through basic []-indexing. They are only used
|
||||
to fill symbolic references in cases where there is no "primary" pattern
|
||||
available, and only if both the referencing and referenced pattern-generators'
|
||||
`tag` values match (i.e., only if they came from the same source).
|
||||
|
||||
Primary patterns can be turned into secondary patterns with the `demote`
|
||||
method, `promote` performs the reverse (secondary -> primary) operation.
|
||||
|
||||
The `set_const` and `set_value` methods provide an easy way to transparently
|
||||
construct PatternGenerator objects and directly set create "secondary"
|
||||
patterns.
|
||||
|
||||
The cache can be disabled by setting the `enable_cache` attribute to `False`.
|
||||
"""
|
||||
primary: Dict[str, PatternGenerator]
|
||||
secondary: Dict[Tuple[str, str], PatternGenerator]
|
||||
cache: Dict[Union[str, Tuple[str, str]], 'Pattern']
|
||||
enable_cache: bool = True
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.primary = {}
|
||||
self.secondary = {}
|
||||
self.cache = {}
|
||||
|
||||
def __setitem__(self, key: str, value: PatternGenerator) -> None:
|
||||
self.primary[key] = value
|
||||
if key in self.cache:
|
||||
logger.warning(f'Replaced library item "{key}" & existing cache entry.'
|
||||
' Previously-generated Pattern will *not* be updated!')
|
||||
del self.cache[key]
|
||||
|
||||
def __delitem__(self, key: str) -> None:
|
||||
if isinstance(key, str):
|
||||
del self.primary[key]
|
||||
elif isinstance(key, tuple):
|
||||
del self.secondary[key]
|
||||
|
||||
if key in self.cache:
|
||||
logger.warning(f'Deleting library item "{key}" & existing cache entry.'
|
||||
' Previously-generated Pattern may remain in the wild!')
|
||||
del self.cache[key]
|
||||
|
||||
def __getitem__(self, key: str) -> 'Pattern':
|
||||
return self.get_primary(key)
|
||||
|
||||
def __iter__(self) -> Iterator[str]:
|
||||
return iter(self.keys())
|
||||
|
||||
def __contains__(self, key: str) -> bool:
|
||||
return key in self.primary
|
||||
|
||||
def get_primary(self, key: str) -> 'Pattern':
|
||||
if self.enable_cache and key in self.cache:
|
||||
logger.debug(f'found {key} in cache')
|
||||
return self.cache[key]
|
||||
|
||||
logger.debug(f'loading {key}')
|
||||
pg = self.primary[key]
|
||||
pat = pg.gen()
|
||||
self.resolve_subpatterns(pat, pg.tag)
|
||||
self.cache[key] = pat
|
||||
return pat
|
||||
|
||||
def get_secondary(self, key: str, tag: str) -> 'Pattern':
|
||||
logger.debug(f'get_secondary({key}, {tag})')
|
||||
key2 = (key, tag)
|
||||
if self.enable_cache and key2 in self.cache:
|
||||
return self.cache[key2]
|
||||
|
||||
pg = self.secondary[key2]
|
||||
pat = pg.gen()
|
||||
self.resolve_subpatterns(pat, pg.tag)
|
||||
self.cache[key2] = pat
|
||||
return pat
|
||||
|
||||
def set_secondary(self, key: str, tag: str, value: PatternGenerator) -> None:
|
||||
self.secondary[(key, tag)] = value
|
||||
if (key, tag) in self.cache:
|
||||
logger.warning(f'Replaced library item "{key}" & existing cache entry.'
|
||||
' Previously-generated Pattern will *not* be updated!')
|
||||
del self.cache[(key, tag)]
|
||||
|
||||
def resolve_subpatterns(self, pat: 'Pattern', tag: str) -> 'Pattern':
|
||||
logger.debug(f'Resolving subpatterns in {pat.name}')
|
||||
for sp in pat.subpatterns:
|
||||
if sp.pattern is not None:
|
||||
continue
|
||||
|
||||
key = sp.identifier[0]
|
||||
if key in self.primary:
|
||||
sp.pattern = self.get_primary(key)
|
||||
continue
|
||||
|
||||
if (key, tag) in self.secondary:
|
||||
sp.pattern = self.get_secondary(key, tag)
|
||||
continue
|
||||
|
||||
raise LibraryError(f'Broken reference to {key} (tag {tag})')
|
||||
return pat
|
||||
|
||||
def keys(self) -> Iterator[str]:
|
||||
return iter(self.primary.keys())
|
||||
|
||||
def values(self) -> Iterator['Pattern']:
|
||||
return iter(self[key] for key in self.keys())
|
||||
|
||||
def items(self) -> Iterator[Tuple[str, 'Pattern']]:
|
||||
return iter((key, self[key]) for key in self.keys())
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return '<Library with keys ' + repr(list(self.primary.keys())) + '>'
|
||||
|
||||
def set_const(
|
||||
self,
|
||||
key: str,
|
||||
tag: Any,
|
||||
const: 'Pattern',
|
||||
secondary: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Convenience function to avoid having to manually wrap
|
||||
constant values into callables.
|
||||
|
||||
Args:
|
||||
key: Lookup key, usually the cell/pattern name
|
||||
tag: Unique tag for the source, used to disambiguate secondary patterns
|
||||
const: Pattern object to return
|
||||
secondary: If True, this pattern is not accessible for normal lookup, and is
|
||||
only used as a sub-component of other patterns if no non-secondary
|
||||
equivalent is available.
|
||||
"""
|
||||
pg = PatternGenerator(tag=tag, gen=lambda: const)
|
||||
if secondary:
|
||||
self.secondary[(key, tag)] = pg
|
||||
else:
|
||||
self.primary[key] = pg
|
||||
|
||||
def set_value(
|
||||
self,
|
||||
key: str,
|
||||
tag: str,
|
||||
value: Callable[[], 'Pattern'],
|
||||
secondary: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Convenience function to automatically build a PatternGenerator.
|
||||
|
||||
Args:
|
||||
key: Lookup key, usually the cell/pattern name
|
||||
tag: Unique tag for the source, used to disambiguate secondary patterns
|
||||
value: Callable which takes no arguments and generates the `Pattern` object
|
||||
secondary: If True, this pattern is not accessible for normal lookup, and is
|
||||
only used as a sub-component of other patterns if no non-secondary
|
||||
equivalent is available.
|
||||
"""
|
||||
pg = PatternGenerator(tag=tag, gen=value)
|
||||
if secondary:
|
||||
self.secondary[(key, tag)] = pg
|
||||
else:
|
||||
self.primary[key] = pg
|
||||
|
||||
def precache(self: L) -> L:
|
||||
"""
|
||||
Force all patterns into the cache
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
for key in self.primary:
|
||||
_ = self.get_primary(key)
|
||||
for key2 in self.secondary:
|
||||
_ = self.get_secondary(*key2)
|
||||
return self
|
||||
|
||||
def add(
|
||||
self: L,
|
||||
other: L,
|
||||
use_ours: Callable[[Union[str, Tuple[str, str]]], bool] = lambda name: False,
|
||||
use_theirs: Callable[[Union[str, Tuple[str, str]]], bool] = lambda name: False,
|
||||
) -> L:
|
||||
"""
|
||||
Add keys from another library into this one.
|
||||
|
||||
Args:
|
||||
other: The library to insert keys from
|
||||
use_ours: Decision function for name conflicts.
|
||||
May be called with cell names and (name, tag) tuples for primary or
|
||||
secondary cells, respectively.
|
||||
Should return `True` if the value from `self` should be used.
|
||||
use_theirs: Decision function for name conflicts. Same format as `use_ours`.
|
||||
Should return `True` if the value from `other` should be used.
|
||||
`use_ours` takes priority over `use_theirs`.
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
duplicates1 = set(self.primary.keys()) & set(other.primary.keys())
|
||||
duplicates2 = set(self.secondary.keys()) & set(other.secondary.keys())
|
||||
keep_ours1 = set(name for name in duplicates1 if use_ours(name))
|
||||
keep_ours2 = set(name for name in duplicates2 if use_ours(name))
|
||||
keep_theirs1 = set(name for name in duplicates1 - keep_ours1 if use_theirs(name))
|
||||
keep_theirs2 = set(name for name in duplicates2 - keep_ours2 if use_theirs(name))
|
||||
conflicts1 = duplicates1 - keep_ours1 - keep_theirs1
|
||||
conflicts2 = duplicates2 - keep_ours2 - keep_theirs2
|
||||
|
||||
if conflicts1:
|
||||
raise LibraryError('Unresolved duplicate keys encountered in library merge: ' + pformat(conflicts1))
|
||||
|
||||
if conflicts2:
|
||||
raise LibraryError('Unresolved duplicate secondary keys encountered in library merge: ' + pformat(conflicts2))
|
||||
|
||||
for key1 in set(other.primary.keys()) - keep_ours1:
|
||||
self[key1] = other.primary[key1]
|
||||
if key1 in other.cache:
|
||||
self.cache[key1] = other.cache[key1]
|
||||
|
||||
for key2 in set(other.secondary.keys()) - keep_ours2:
|
||||
self.set_secondary(*key2, other.secondary[key2])
|
||||
if key2 in other.cache:
|
||||
self.cache[key2] = other.cache[key2]
|
||||
|
||||
return self
|
||||
|
||||
def demote(self, key: str) -> None:
|
||||
"""
|
||||
Turn a primary pattern into a secondary one.
|
||||
It will no longer be accessible through [] indexing and will only be used to
|
||||
when referenced by other patterns from the same source, and only if no primary
|
||||
pattern with the same name exists.
|
||||
|
||||
Args:
|
||||
key: Lookup key, usually the cell/pattern name
|
||||
"""
|
||||
pg = self.primary[key]
|
||||
key2 = (key, pg.tag)
|
||||
self.secondary[key2] = pg
|
||||
if key in self.cache:
|
||||
self.cache[key2] = self.cache[key]
|
||||
del self[key]
|
||||
|
||||
def promote(self, key: str, tag: str) -> None:
|
||||
"""
|
||||
Turn a secondary pattern into a primary one.
|
||||
It will become accessible through [] indexing and will be used to satisfy any
|
||||
reference to a pattern with its key, regardless of tag.
|
||||
|
||||
Args:
|
||||
key: Lookup key, usually the cell/pattern name
|
||||
tag: Unique tag for identifying the pattern's source, used to disambiguate
|
||||
secondary patterns
|
||||
"""
|
||||
if key in self.primary:
|
||||
raise LibraryError(f'Promoting ({key}, {tag}), but {key} already exists in primary!')
|
||||
|
||||
key2 = (key, tag)
|
||||
pg = self.secondary[key2]
|
||||
self.primary[key] = pg
|
||||
if key2 in self.cache:
|
||||
self.cache[key] = self.cache[key2]
|
||||
del self.secondary[key2]
|
||||
del self.cache[key2]
|
||||
|
||||
def copy(self, preserve_cache: bool = False) -> 'Library':
|
||||
"""
|
||||
Create a copy of this `Library`.
|
||||
|
||||
A shallow copy is made of the contained dicts.
|
||||
Note that you should probably clear the cache (with `clear_cache()`) after copying.
|
||||
|
||||
Returns:
|
||||
A copy of self
|
||||
"""
|
||||
new = Library()
|
||||
new.primary.update(self.primary)
|
||||
new.secondary.update(self.secondary)
|
||||
new.cache.update(self.cache)
|
||||
return new
|
||||
|
||||
def clear_cache(self: L) -> L:
|
||||
"""
|
||||
Clear the cache of this library.
|
||||
This is usually used before modifying or deleting cells, e.g. when merging
|
||||
with another library.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.cache = {}
|
||||
return self
|
||||
|
||||
|
||||
r"""
|
||||
# Add a filter for names which aren't added
|
||||
|
||||
- Registration:
|
||||
- scanned files (tag=filename, gen_fn[stream, {name: pos}])
|
||||
- generator functions (tag='fn?', gen_fn[params])
|
||||
- merge decision function (based on tag and cell name, can be "neither") ??? neither=keep both, load using same tag!
|
||||
- Load process:
|
||||
- file:
|
||||
- read single cell
|
||||
- check subpat identifiers, and load stuff recursively based on those. If not present, load from same file??
|
||||
- function:
|
||||
- generate cell
|
||||
- traverse and check if we should load any subcells from elsewhere. replace if so.
|
||||
* should fn generate subcells at all, or register those separately and have us control flow? maybe ask us and generate itself if not present?
|
||||
|
||||
- Scan all GDS files, save name -> (file, position). Keep the streams handy.
|
||||
- Merge all names. This requires subcell merge because we don't know hierarchy.
|
||||
- possibly include a "neither" option during merge, to deal with subcells. Means: just use parent's file.
|
||||
"""
|
@ -1,5 +1,4 @@
|
||||
from typing import TypeVar, Generic
|
||||
from collections.abc import Callable
|
||||
from typing import Callable, TypeVar, Generic
|
||||
from functools import lru_cache
|
||||
|
||||
|
1821
masque/pattern.py
1821
masque/pattern.py
File diff suppressed because it is too large
Load Diff
539
masque/ports.py
539
masque/ports.py
@ -1,539 +0,0 @@
|
||||
from typing import overload, Self, NoReturn, Any
|
||||
from collections.abc import Iterable, KeysView, ValuesView, Mapping
|
||||
import warnings
|
||||
import traceback
|
||||
import logging
|
||||
import functools
|
||||
from collections import Counter
|
||||
from abc import ABCMeta, abstractmethod
|
||||
from itertools import chain
|
||||
|
||||
import numpy
|
||||
from numpy import pi
|
||||
from numpy.typing import ArrayLike, NDArray
|
||||
|
||||
from .traits import PositionableImpl, Rotatable, PivotableImpl, Copyable, Mirrorable
|
||||
from .utils import rotate_offsets_around
|
||||
from .error import PortError
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@functools.total_ordering
|
||||
class Port(PositionableImpl, Rotatable, PivotableImpl, Copyable, Mirrorable):
|
||||
"""
|
||||
A point at which a `Device` can be snapped to another `Device`.
|
||||
|
||||
Each port has an `offset` ((x, y) position) and may also have a
|
||||
`rotation` (orientation) and a `ptype` (port type).
|
||||
|
||||
The `rotation` is an angle, in radians, measured counterclockwise
|
||||
from the +x axis, pointing inwards into the device which owns the port.
|
||||
The rotation may be set to `None`, indicating that any orientation is
|
||||
allowed (e.g. for a DC electrical port). It is stored modulo 2pi.
|
||||
|
||||
The `ptype` is an arbitrary string, default of `unk` (unknown).
|
||||
"""
|
||||
__slots__ = (
|
||||
'ptype', '_rotation',
|
||||
# inherited:
|
||||
'_offset',
|
||||
)
|
||||
|
||||
_rotation: float | None
|
||||
""" radians counterclockwise from +x, pointing into device body.
|
||||
Can be `None` to signify undirected port """
|
||||
|
||||
ptype: str
|
||||
""" Port types must match to be plugged together if both are non-zero """
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
offset: ArrayLike,
|
||||
rotation: float | None,
|
||||
ptype: str = 'unk',
|
||||
) -> None:
|
||||
self.offset = offset
|
||||
self.rotation = rotation
|
||||
self.ptype = ptype
|
||||
|
||||
@property
|
||||
def rotation(self) -> float | None:
|
||||
""" Rotation, radians counterclockwise, pointing into device body. Can be None. """
|
||||
return self._rotation
|
||||
|
||||
@rotation.setter
|
||||
def rotation(self, val: float) -> None:
|
||||
if val is None:
|
||||
self._rotation = None
|
||||
else:
|
||||
if not numpy.size(val) == 1:
|
||||
raise PortError('Rotation must be a scalar')
|
||||
self._rotation = val % (2 * pi)
|
||||
|
||||
@property
|
||||
def x(self) -> float:
|
||||
""" Alias for offset[0] """
|
||||
return self.offset[0]
|
||||
|
||||
@x.setter
|
||||
def x(self, val: float) -> None:
|
||||
self.offset[0] = val
|
||||
|
||||
@property
|
||||
def y(self) -> float:
|
||||
""" Alias for offset[1] """
|
||||
return self.offset[1]
|
||||
|
||||
@y.setter
|
||||
def y(self, val: float) -> None:
|
||||
self.offset[1] = val
|
||||
|
||||
def copy(self) -> Self:
|
||||
return self.deepcopy()
|
||||
|
||||
def get_bounds(self) -> NDArray[numpy.float64]:
|
||||
return numpy.vstack((self.offset, self.offset))
|
||||
|
||||
def set_ptype(self, ptype: str) -> Self:
|
||||
""" Chainable setter for `ptype` """
|
||||
self.ptype = ptype
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int = 0) -> Self:
|
||||
self.offset[1 - axis] *= -1
|
||||
if self.rotation is not None:
|
||||
self.rotation *= -1
|
||||
self.rotation += axis * pi
|
||||
return self
|
||||
|
||||
def rotate(self, rotation: float) -> Self:
|
||||
if self.rotation is not None:
|
||||
self.rotation += rotation
|
||||
return self
|
||||
|
||||
def set_rotation(self, rotation: float | None) -> Self:
|
||||
self.rotation = rotation
|
||||
return self
|
||||
|
||||
def __repr__(self) -> str:
|
||||
if self.rotation is None:
|
||||
rot = 'any'
|
||||
else:
|
||||
rot = str(numpy.rad2deg(self.rotation))
|
||||
return f'<{self.offset}, {rot}, [{self.ptype}]>'
|
||||
|
||||
def __lt__(self, other: 'Port') -> bool:
|
||||
if self.ptype != other.ptype:
|
||||
return self.ptype < other.ptype
|
||||
if not numpy.array_equal(self.offset, other.offset):
|
||||
return tuple(self.offset) < tuple(other.offset)
|
||||
if self.rotation != other.rotation:
|
||||
if self.rotation is None:
|
||||
return True
|
||||
if other.rotation is None:
|
||||
return False
|
||||
return self.rotation < other.rotation
|
||||
return False
|
||||
|
||||
def __eq__(self, other: Any) -> bool:
|
||||
return (
|
||||
type(self) is type(other)
|
||||
and self.ptype == other.ptype
|
||||
and numpy.array_equal(self.offset, other.offset)
|
||||
and self.rotation == other.rotation
|
||||
)
|
||||
|
||||
|
||||
class PortList(metaclass=ABCMeta):
|
||||
__slots__ = () # Allow subclasses to use __slots__
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def ports(self) -> dict[str, Port]:
|
||||
""" Uniquely-named ports which can be used to snap to other Device instances"""
|
||||
pass
|
||||
|
||||
@ports.setter
|
||||
@abstractmethod
|
||||
def ports(self, value: dict[str, Port]) -> None:
|
||||
pass
|
||||
|
||||
@overload
|
||||
def __getitem__(self, key: str) -> Port:
|
||||
pass
|
||||
|
||||
@overload
|
||||
def __getitem__(self, key: list[str] | tuple[str, ...] | KeysView[str] | ValuesView[str]) -> dict[str, Port]:
|
||||
pass
|
||||
|
||||
def __getitem__(self, key: str | Iterable[str]) -> Port | dict[str, Port]:
|
||||
"""
|
||||
For convenience, ports can be read out using square brackets:
|
||||
- `pattern['A'] == Port((0, 0), 0)`
|
||||
- ```
|
||||
pattern[['A', 'B']] == {
|
||||
'A': Port((0, 0), 0),
|
||||
'B': Port((0, 0), pi),
|
||||
}
|
||||
```
|
||||
"""
|
||||
if isinstance(key, str):
|
||||
return self.ports[key]
|
||||
else: # noqa: RET505
|
||||
return {k: self.ports[k] for k in key}
|
||||
|
||||
def __contains__(self, key: str) -> NoReturn:
|
||||
raise NotImplementedError('PortsList.__contains__ is left unimplemented. Use `key in container.ports` instead.')
|
||||
|
||||
# NOTE: Didn't add keys(), items(), values(), __contains__(), etc.
|
||||
# because it's weird on stuff like Pattern that contains other lists
|
||||
# and because you can just grab .ports and use that instead
|
||||
|
||||
def mkport(
|
||||
self,
|
||||
name: str,
|
||||
value: Port,
|
||||
) -> Self:
|
||||
"""
|
||||
Create a port, raising a `PortError` if a port with the same name already exists.
|
||||
|
||||
Args:
|
||||
name: Name for the port. A port with this name should not already exist.
|
||||
value: The `Port` object to which `name` will refer.
|
||||
|
||||
Returns:
|
||||
self
|
||||
|
||||
Raises:
|
||||
`PortError` if the name already exists.
|
||||
"""
|
||||
if name in self.ports:
|
||||
raise PortError(f'Port {name} already exists.')
|
||||
assert name not in self.ports
|
||||
self.ports[name] = value
|
||||
return self
|
||||
|
||||
def rename_ports(
|
||||
self,
|
||||
mapping: dict[str, str | None],
|
||||
overwrite: bool = False,
|
||||
) -> Self:
|
||||
"""
|
||||
Renames ports as specified by `mapping`.
|
||||
Ports can be explicitly deleted by mapping them to `None`.
|
||||
|
||||
Args:
|
||||
mapping: dict of `{'old_name': 'new_name'}` pairs. Names can be mapped
|
||||
to `None` to perform an explicit deletion. `'new_name'` can also
|
||||
overwrite an existing non-renamed port to implicitly delete it if
|
||||
`overwrite` is set to `True`.
|
||||
overwrite: Allows implicit deletion of ports if set to `True`; see `mapping`.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
if not overwrite:
|
||||
duplicates = (set(self.ports.keys()) - set(mapping.keys())) & set(mapping.values())
|
||||
if duplicates:
|
||||
raise PortError(f'Unrenamed ports would be overwritten: {duplicates}')
|
||||
|
||||
renamed = {vv: self.ports.pop(kk) for kk, vv in mapping.items()}
|
||||
if None in renamed:
|
||||
del renamed[None]
|
||||
|
||||
self.ports.update(renamed) # type: ignore
|
||||
return self
|
||||
|
||||
def add_port_pair(
|
||||
self,
|
||||
offset: ArrayLike = (0, 0),
|
||||
rotation: float = 0.0,
|
||||
names: tuple[str, str] = ('A', 'B'),
|
||||
ptype: str = 'unk',
|
||||
) -> Self:
|
||||
"""
|
||||
Add a pair of ports with opposing directions at the specified location.
|
||||
|
||||
Args:
|
||||
offset: Location at which to add the ports
|
||||
rotation: Orientation of the first port. Radians, counterclockwise.
|
||||
Default 0.
|
||||
names: Names for the two ports. Default 'A' and 'B'
|
||||
ptype: Sets the port type for both ports.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
new_ports = {
|
||||
names[0]: Port(offset, rotation=rotation, ptype=ptype),
|
||||
names[1]: Port(offset, rotation=rotation + pi, ptype=ptype),
|
||||
}
|
||||
self.check_ports(names)
|
||||
self.ports.update(new_ports)
|
||||
return self
|
||||
|
||||
def plugged(
|
||||
self,
|
||||
connections: dict[str, str],
|
||||
) -> Self:
|
||||
"""
|
||||
Verify that the ports specified by `connections` are coincident and have opposing
|
||||
rotations, then remove the ports.
|
||||
|
||||
This is used when ports have been "manually" aligned as part of some other routing,
|
||||
but for whatever reason were not eliminated via `plug()`.
|
||||
|
||||
Args:
|
||||
connections: Pairs of ports which "plug" each other (same offset, opposing directions)
|
||||
|
||||
Returns:
|
||||
self
|
||||
|
||||
Raises:
|
||||
`PortError` if the ports are not properly aligned.
|
||||
"""
|
||||
a_names, b_names = list(zip(*connections.items(), strict=True))
|
||||
a_ports = [self.ports[pp] for pp in a_names]
|
||||
b_ports = [self.ports[pp] for pp in b_names]
|
||||
|
||||
a_types = [pp.ptype for pp in a_ports]
|
||||
b_types = [pp.ptype for pp in b_ports]
|
||||
type_conflicts = numpy.array([at != bt and 'unk' not in (at, bt)
|
||||
for at, bt in zip(a_types, b_types, strict=True)])
|
||||
|
||||
if type_conflicts.any():
|
||||
msg = 'Ports have conflicting types:\n'
|
||||
for nn, (k, v) in enumerate(connections.items()):
|
||||
if type_conflicts[nn]:
|
||||
msg += f'{k} | {a_types[nn]}:{b_types[nn]} | {v}\n'
|
||||
msg = ''.join(traceback.format_stack()) + '\n' + msg
|
||||
warnings.warn(msg, stacklevel=2)
|
||||
|
||||
a_offsets = numpy.array([pp.offset for pp in a_ports])
|
||||
b_offsets = numpy.array([pp.offset for pp in b_ports])
|
||||
a_rotations = numpy.array([pp.rotation if pp.rotation is not None else 0 for pp in a_ports])
|
||||
b_rotations = numpy.array([pp.rotation if pp.rotation is not None else 0 for pp in b_ports])
|
||||
a_has_rot = numpy.array([pp.rotation is not None for pp in a_ports], dtype=bool)
|
||||
b_has_rot = numpy.array([pp.rotation is not None for pp in b_ports], dtype=bool)
|
||||
has_rot = a_has_rot & b_has_rot
|
||||
|
||||
if has_rot.any():
|
||||
rotations = numpy.mod(a_rotations - b_rotations - pi, 2 * pi)
|
||||
rotations[~has_rot] = rotations[has_rot][0]
|
||||
|
||||
if not numpy.allclose(rotations, 0):
|
||||
rot_deg = numpy.rad2deg(rotations)
|
||||
msg = 'Port orientations do not match:\n'
|
||||
for nn, (k, v) in enumerate(connections.items()):
|
||||
if not numpy.isclose(rot_deg[nn], 0):
|
||||
msg += f'{k} | {rot_deg[nn]:g} | {v}\n'
|
||||
raise PortError(msg)
|
||||
|
||||
translations = a_offsets - b_offsets
|
||||
if not numpy.allclose(translations, 0):
|
||||
msg = 'Port translations do not match:\n'
|
||||
for nn, (k, v) in enumerate(connections.items()):
|
||||
if not numpy.allclose(translations[nn], 0):
|
||||
msg += f'{k} | {translations[nn]} | {v}\n'
|
||||
raise PortError(msg)
|
||||
|
||||
for pp in chain(a_names, b_names):
|
||||
del self.ports[pp]
|
||||
return self
|
||||
|
||||
def check_ports(
|
||||
self,
|
||||
other_names: Iterable[str],
|
||||
map_in: dict[str, str] | None = None,
|
||||
map_out: dict[str, str | None] | None = None,
|
||||
) -> Self:
|
||||
"""
|
||||
Given the provided port mappings, check that:
|
||||
- All of the ports specified in the mappings exist
|
||||
- There are no duplicate port names after all the mappings are performed
|
||||
|
||||
Args:
|
||||
other_names: List of port names being considered for inclusion into
|
||||
`self.ports` (before mapping)
|
||||
map_in: dict of `{'self_port': 'other_port'}` mappings, specifying
|
||||
port connections between the two devices.
|
||||
map_out: dict of `{'old_name': 'new_name'}` mappings, specifying
|
||||
new names for unconnected `other_names` ports.
|
||||
|
||||
Returns:
|
||||
self
|
||||
|
||||
Raises:
|
||||
`PortError` if any ports specified in `map_in` or `map_out` do not
|
||||
exist in `self.ports` or `other_names`.
|
||||
`PortError` if there are any duplicate names after `map_in` and `map_out`
|
||||
are applied.
|
||||
"""
|
||||
if map_in is None:
|
||||
map_in = {}
|
||||
|
||||
if map_out is None:
|
||||
map_out = {}
|
||||
|
||||
other = set(other_names)
|
||||
|
||||
missing_inkeys = set(map_in.keys()) - set(self.ports.keys())
|
||||
if missing_inkeys:
|
||||
raise PortError(f'`map_in` keys not present in device: {missing_inkeys}')
|
||||
|
||||
missing_invals = set(map_in.values()) - other
|
||||
if missing_invals:
|
||||
raise PortError(f'`map_in` values not present in other device: {missing_invals}')
|
||||
|
||||
missing_outkeys = set(map_out.keys()) - other
|
||||
if missing_outkeys:
|
||||
raise PortError(f'`map_out` keys not present in other device: {missing_outkeys}')
|
||||
|
||||
orig_remaining = set(self.ports.keys()) - set(map_in.keys())
|
||||
other_remaining = other - set(map_out.keys()) - set(map_in.values())
|
||||
mapped_vals = set(map_out.values())
|
||||
mapped_vals.discard(None)
|
||||
|
||||
conflicts_final = orig_remaining & (other_remaining | mapped_vals)
|
||||
if conflicts_final:
|
||||
raise PortError(f'Device ports conflict with existing ports: {conflicts_final}')
|
||||
|
||||
conflicts_partial = other_remaining & mapped_vals
|
||||
if conflicts_partial:
|
||||
raise PortError(f'`map_out` targets conflict with non-mapped outputs: {conflicts_partial}')
|
||||
|
||||
map_out_counts = Counter(map_out.values())
|
||||
map_out_counts[None] = 0
|
||||
conflicts_out = {k for k, v in map_out_counts.items() if v > 1}
|
||||
if conflicts_out:
|
||||
raise PortError(f'Duplicate targets in `map_out`: {conflicts_out}')
|
||||
|
||||
return self
|
||||
|
||||
def find_transform(
|
||||
self,
|
||||
other: 'PortList',
|
||||
map_in: dict[str, str],
|
||||
*,
|
||||
mirrored: bool = False,
|
||||
set_rotation: bool | None = None,
|
||||
) -> tuple[NDArray[numpy.float64], float, NDArray[numpy.float64]]:
|
||||
"""
|
||||
Given a device `other` and a mapping `map_in` specifying port connections,
|
||||
find the transform which will correctly align the specified ports.
|
||||
|
||||
Args:
|
||||
other: a device
|
||||
map_in: dict of `{'self_port': 'other_port'}` mappings, specifying
|
||||
port connections between the two devices.
|
||||
mirrored: Mirrors `other` across the x axis prior to
|
||||
connecting any ports.
|
||||
set_rotation: If the necessary rotation cannot be determined from
|
||||
the ports being connected (i.e. all pairs have at least one
|
||||
port with `rotation=None`), `set_rotation` must be provided
|
||||
to indicate how much `other` should be rotated. Otherwise,
|
||||
`set_rotation` must remain `None`.
|
||||
|
||||
Returns:
|
||||
- The (x, y) translation (performed last)
|
||||
- The rotation (radians, counterclockwise)
|
||||
- The (x, y) pivot point for the rotation
|
||||
|
||||
The rotation should be performed before the translation.
|
||||
"""
|
||||
s_ports = self[map_in.keys()]
|
||||
o_ports = other[map_in.values()]
|
||||
return self.find_port_transform(
|
||||
s_ports=s_ports,
|
||||
o_ports=o_ports,
|
||||
map_in=map_in,
|
||||
mirrored=mirrored,
|
||||
set_rotation=set_rotation,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def find_port_transform(
|
||||
s_ports: Mapping[str, Port],
|
||||
o_ports: Mapping[str, Port],
|
||||
map_in: dict[str, str],
|
||||
*,
|
||||
mirrored: bool = False,
|
||||
set_rotation: bool | None = None,
|
||||
) -> tuple[NDArray[numpy.float64], float, NDArray[numpy.float64]]:
|
||||
"""
|
||||
Given two sets of ports (s_ports and o_ports) and a mapping `map_in`
|
||||
specifying port connections, find the transform which will correctly
|
||||
align the specified o_ports onto their respective s_ports.
|
||||
|
||||
Args:t
|
||||
s_ports: A list of stationary ports
|
||||
o_ports: A list of ports which are to be moved/mirrored.
|
||||
map_in: dict of `{'s_port': 'o_port'}` mappings, specifying
|
||||
port connections.
|
||||
mirrored: Mirrors `o_ports` across the x axis prior to
|
||||
connecting any ports.
|
||||
set_rotation: If the necessary rotation cannot be determined from
|
||||
the ports being connected (i.e. all pairs have at least one
|
||||
port with `rotation=None`), `set_rotation` must be provided
|
||||
to indicate how much `o_ports` should be rotated. Otherwise,
|
||||
`set_rotation` must remain `None`.
|
||||
|
||||
Returns:
|
||||
- The (x, y) translation (performed last)
|
||||
- The rotation (radians, counterclockwise)
|
||||
- The (x, y) pivot point for the rotation
|
||||
|
||||
The rotation should be performed before the translation.
|
||||
"""
|
||||
s_offsets = numpy.array([p.offset for p in s_ports.values()])
|
||||
o_offsets = numpy.array([p.offset for p in o_ports.values()])
|
||||
s_types = [p.ptype for p in s_ports.values()]
|
||||
o_types = [p.ptype for p in o_ports.values()]
|
||||
|
||||
s_rotations = numpy.array([p.rotation if p.rotation is not None else 0 for p in s_ports.values()])
|
||||
o_rotations = numpy.array([p.rotation if p.rotation is not None else 0 for p in o_ports.values()])
|
||||
s_has_rot = numpy.array([p.rotation is not None for p in s_ports.values()], dtype=bool)
|
||||
o_has_rot = numpy.array([p.rotation is not None for p in o_ports.values()], dtype=bool)
|
||||
has_rot = s_has_rot & o_has_rot
|
||||
|
||||
if mirrored:
|
||||
o_offsets[:, 1] *= -1
|
||||
o_rotations *= -1
|
||||
|
||||
type_conflicts = numpy.array([st != ot and 'unk' not in (st, ot)
|
||||
for st, ot in zip(s_types, o_types, strict=True)])
|
||||
if type_conflicts.any():
|
||||
msg = 'Ports have conflicting types:\n'
|
||||
for nn, (k, v) in enumerate(map_in.items()):
|
||||
if type_conflicts[nn]:
|
||||
msg += f'{k} | {s_types[nn]}:{o_types[nn]} | {v}\n'
|
||||
msg = ''.join(traceback.format_stack()) + '\n' + msg
|
||||
warnings.warn(msg, stacklevel=2)
|
||||
|
||||
rotations = numpy.mod(s_rotations - o_rotations - pi, 2 * pi)
|
||||
if not has_rot.any():
|
||||
if set_rotation is None:
|
||||
PortError('Must provide set_rotation if rotation is indeterminate')
|
||||
rotations[:] = set_rotation
|
||||
else:
|
||||
rotations[~has_rot] = rotations[has_rot][0]
|
||||
|
||||
if not numpy.allclose(rotations[:1], rotations):
|
||||
rot_deg = numpy.rad2deg(rotations)
|
||||
msg = 'Port orientations do not match:\n'
|
||||
for nn, (k, v) in enumerate(map_in.items()):
|
||||
msg += f'{k} | {rot_deg[nn]:g} | {v}\n'
|
||||
raise PortError(msg)
|
||||
|
||||
pivot = o_offsets[0].copy()
|
||||
rotate_offsets_around(o_offsets, pivot, rotations[0])
|
||||
translations = s_offsets - o_offsets
|
||||
if not numpy.allclose(translations[:1], translations):
|
||||
msg = 'Port translations do not match:\n'
|
||||
for nn, (k, v) in enumerate(map_in.items()):
|
||||
msg += f'{k} | {translations[nn]} | {v}\n'
|
||||
raise PortError(msg)
|
||||
|
||||
return translations[0], rotations[0], o_offsets[0]
|
236
masque/ref.py
236
masque/ref.py
@ -1,236 +0,0 @@
|
||||
"""
|
||||
Ref provides basic support for nesting Pattern objects within each other.
|
||||
It carries offset, rotation, mirroring, and scaling data for each individual instance.
|
||||
"""
|
||||
from typing import TYPE_CHECKING, Self, Any
|
||||
from collections.abc import Mapping
|
||||
import copy
|
||||
import functools
|
||||
|
||||
import numpy
|
||||
from numpy import pi
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
|
||||
from .utils import annotations_t, rotation_matrix_2d, annotations_eq, annotations_lt, rep2key
|
||||
from .repetition import Repetition
|
||||
from .traits import (
|
||||
PositionableImpl, RotatableImpl, ScalableImpl,
|
||||
Mirrorable, PivotableImpl, Copyable, RepeatableImpl, AnnotatableImpl,
|
||||
)
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from . import Pattern
|
||||
|
||||
|
||||
@functools.total_ordering
|
||||
class Ref(
|
||||
PositionableImpl, RotatableImpl, ScalableImpl, Mirrorable,
|
||||
PivotableImpl, Copyable, RepeatableImpl, AnnotatableImpl,
|
||||
):
|
||||
"""
|
||||
`Ref` provides basic support for nesting Pattern objects within each other.
|
||||
|
||||
It containts the transformation (mirror, rotation, scale, offset, repetition)
|
||||
and annotations for a single instantiation of a `Pattern`.
|
||||
|
||||
Note that the target (i.e. which pattern a `Ref` instantiates) is not stored within the
|
||||
`Ref` itself, but is specified by the containing `Pattern`.
|
||||
|
||||
Order of operations is (mirror, rotate, scale, translate, repeat).
|
||||
"""
|
||||
__slots__ = (
|
||||
'_mirrored',
|
||||
# inherited
|
||||
'_offset', '_rotation', 'scale', '_repetition', '_annotations',
|
||||
)
|
||||
|
||||
_mirrored: bool
|
||||
""" Whether to mirror the instance across the x axis (new_y = -old_y)ubefore rotating. """
|
||||
|
||||
# Mirrored property
|
||||
@property
|
||||
def mirrored(self) -> bool: # mypy#3004, setter should be SupportsBool
|
||||
return self._mirrored
|
||||
|
||||
@mirrored.setter
|
||||
def mirrored(self, val: bool) -> None:
|
||||
self._mirrored = bool(val)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
offset: ArrayLike = (0.0, 0.0),
|
||||
rotation: float = 0.0,
|
||||
mirrored: bool = False,
|
||||
scale: float = 1.0,
|
||||
repetition: Repetition | None = None,
|
||||
annotations: annotations_t | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
Note: Order is (mirror, rotate, scale, translate, repeat)
|
||||
|
||||
Args:
|
||||
offset: (x, y) offset applied to the referenced pattern. Not affected by rotation etc.
|
||||
rotation: Rotation (radians, counterclockwise) relative to the referenced pattern's (0, 0).
|
||||
mirrored: Whether to mirror the referenced pattern across its x axis before rotating.
|
||||
scale: Scaling factor applied to the pattern's geometry.
|
||||
repetition: `Repetition` object, default `None`
|
||||
"""
|
||||
self.offset = offset
|
||||
self.rotation = rotation
|
||||
self.scale = scale
|
||||
self.mirrored = mirrored
|
||||
self.repetition = repetition
|
||||
self.annotations = annotations if annotations is not None else {}
|
||||
|
||||
def __copy__(self) -> 'Ref':
|
||||
new = Ref(
|
||||
offset=self.offset.copy(),
|
||||
rotation=self.rotation,
|
||||
scale=self.scale,
|
||||
mirrored=self.mirrored,
|
||||
repetition=copy.deepcopy(self.repetition),
|
||||
annotations=copy.deepcopy(self.annotations),
|
||||
)
|
||||
return new
|
||||
|
||||
def __deepcopy__(self, memo: dict | None = None) -> 'Ref':
|
||||
memo = {} if memo is None else memo
|
||||
new = copy.copy(self)
|
||||
#new.repetition = copy.deepcopy(self.repetition, memo)
|
||||
#new.annotations = copy.deepcopy(self.annotations, memo)
|
||||
return new
|
||||
|
||||
def __lt__(self, other: 'Ref') -> bool:
|
||||
if (self.offset != other.offset).any():
|
||||
return tuple(self.offset) < tuple(other.offset)
|
||||
if self.mirrored != other.mirrored:
|
||||
return self.mirrored < other.mirrored
|
||||
if self.rotation != other.rotation:
|
||||
return self.rotation < other.rotation
|
||||
if self.scale != other.scale:
|
||||
return self.scale < other.scale
|
||||
if self.repetition != other.repetition:
|
||||
return rep2key(self.repetition) < rep2key(other.repetition)
|
||||
return annotations_lt(self.annotations, other.annotations)
|
||||
|
||||
def __eq__(self, other: Any) -> bool:
|
||||
return (
|
||||
numpy.array_equal(self.offset, other.offset)
|
||||
and self.mirrored == other.mirrored
|
||||
and self.rotation == other.rotation
|
||||
and self.scale == other.scale
|
||||
and self.repetition == other.repetition
|
||||
and annotations_eq(self.annotations, other.annotations)
|
||||
)
|
||||
|
||||
def as_pattern(
|
||||
self,
|
||||
pattern: 'Pattern',
|
||||
) -> 'Pattern':
|
||||
"""
|
||||
Args:
|
||||
pattern: Pattern object to transform
|
||||
|
||||
Returns:
|
||||
A copy of the referenced Pattern which has been scaled, rotated, etc.
|
||||
according to this `Ref`'s properties.
|
||||
"""
|
||||
pattern = pattern.deepcopy()
|
||||
|
||||
if self.scale != 1:
|
||||
pattern.scale_by(self.scale)
|
||||
if self.mirrored:
|
||||
pattern.mirror()
|
||||
if self.rotation % (2 * pi) != 0:
|
||||
pattern.rotate_around((0.0, 0.0), self.rotation)
|
||||
if numpy.any(self.offset):
|
||||
pattern.translate_elements(self.offset)
|
||||
|
||||
if self.repetition is not None:
|
||||
combined = type(pattern)()
|
||||
for dd in self.repetition.displacements:
|
||||
temp_pat = pattern.deepcopy()
|
||||
temp_pat.ports = {}
|
||||
temp_pat.translate_elements(dd)
|
||||
combined.append(temp_pat)
|
||||
pattern = combined
|
||||
|
||||
return pattern
|
||||
|
||||
def rotate(self, rotation: float) -> Self:
|
||||
self.rotation += rotation
|
||||
if self.repetition is not None:
|
||||
self.repetition.rotate(rotation)
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int = 0) -> Self:
|
||||
self.mirror_target(axis)
|
||||
self.rotation *= -1
|
||||
if self.repetition is not None:
|
||||
self.repetition.mirror(axis)
|
||||
return self
|
||||
|
||||
def mirror_target(self, axis: int = 0) -> Self:
|
||||
self.mirrored = not self.mirrored
|
||||
self.rotation += axis * pi
|
||||
return self
|
||||
|
||||
def mirror2d_target(self, across_x: bool = False, across_y: bool = False) -> Self:
|
||||
self.mirrored = bool((self.mirrored + across_x + across_y) % 2)
|
||||
if across_y:
|
||||
self.rotation += pi
|
||||
return self
|
||||
|
||||
def as_transforms(self) -> NDArray[numpy.float64]:
|
||||
xys = self.offset[None, :]
|
||||
if self.repetition is not None:
|
||||
xys = xys + self.repetition.displacements
|
||||
transforms = numpy.empty((xys.shape[0], 4))
|
||||
transforms[:, :2] = xys
|
||||
transforms[:, 2] = self.rotation
|
||||
transforms[:, 3] = self.mirrored
|
||||
return transforms
|
||||
|
||||
def get_bounds_single(
|
||||
self,
|
||||
pattern: 'Pattern',
|
||||
*,
|
||||
library: Mapping[str, 'Pattern'] | None = None,
|
||||
) -> NDArray[numpy.float64] | None:
|
||||
"""
|
||||
Return a `numpy.ndarray` containing `[[x_min, y_min], [x_max, y_max]]`, corresponding to the
|
||||
extent of the `Ref` in each dimension.
|
||||
Returns `None` if the contained `Pattern` is empty.
|
||||
|
||||
Args:
|
||||
library: Name-to-Pattern mapping for resul
|
||||
|
||||
Returns:
|
||||
`[[x_min, y_min], [x_max, y_max]]` or `None`
|
||||
"""
|
||||
if pattern.is_empty():
|
||||
# no need to run as_pattern()
|
||||
return None
|
||||
|
||||
# if rotation is manhattan, can take pattern's bounds and transform them
|
||||
if numpy.isclose(self.rotation % (pi / 2), 0):
|
||||
unrot_bounds = pattern.get_bounds(library)
|
||||
if unrot_bounds is None:
|
||||
return None
|
||||
|
||||
if self.mirrored:
|
||||
unrot_bounds[:, 1] *= -1
|
||||
|
||||
corners = (rotation_matrix_2d(self.rotation) @ unrot_bounds.T).T
|
||||
bounds = numpy.vstack((numpy.min(corners, axis=0),
|
||||
numpy.max(corners, axis=0))) * self.scale + [self.offset]
|
||||
return bounds
|
||||
return self.as_pattern(pattern=pattern).get_bounds(library)
|
||||
|
||||
def __repr__(self) -> str:
|
||||
rotation = f' r{numpy.rad2deg(self.rotation):g}' if self.rotation != 0 else ''
|
||||
scale = f' d{self.scale:g}' if self.scale != 1 else ''
|
||||
mirrored = ' m' if self.mirrored else ''
|
||||
return f'<Ref {self.offset}{rotation}{scale}{mirrored}>'
|
@ -2,28 +2,24 @@
|
||||
Repetitions provide support for efficiently representing multiple identical
|
||||
instances of an object .
|
||||
"""
|
||||
from typing import Any, Self, TypeVar, cast
|
||||
|
||||
from typing import Union, Dict, Optional, Sequence, Any, Type
|
||||
import copy
|
||||
import functools
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
import numpy
|
||||
from numpy.typing import ArrayLike, NDArray
|
||||
|
||||
from .traits import Copyable, Scalable, Rotatable, Mirrorable, Bounded
|
||||
from .error import PatternError
|
||||
from .utils import rotation_matrix_2d
|
||||
from .utils import rotation_matrix_2d, AutoSlots
|
||||
from .traits import LockableImpl, Copyable, Scalable, Rotatable, Mirrorable
|
||||
|
||||
|
||||
GG = TypeVar('GG', bound='Grid')
|
||||
|
||||
|
||||
@functools.total_ordering
|
||||
class Repetition(Copyable, Rotatable, Mirrorable, Scalable, Bounded, metaclass=ABCMeta):
|
||||
class Repetition(Copyable, Rotatable, Mirrorable, Scalable, metaclass=ABCMeta):
|
||||
"""
|
||||
Interface common to all objects which specify repetitions
|
||||
"""
|
||||
__slots__ = () # Allow subclasses to use __slots__
|
||||
__slots__ = ()
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
@ -33,16 +29,8 @@ class Repetition(Copyable, Rotatable, Mirrorable, Scalable, Bounded, metaclass=A
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def __le__(self, other: 'Repetition') -> bool:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def __eq__(self, other: Any) -> bool:
|
||||
pass
|
||||
|
||||
|
||||
class Grid(Repetition):
|
||||
class Grid(LockableImpl, Repetition, metaclass=AutoSlots):
|
||||
"""
|
||||
`Grid` describes a 2D grid formed by two basis vectors and two 'counts' (sizes).
|
||||
|
||||
@ -51,10 +39,10 @@ class Grid(Repetition):
|
||||
|
||||
Note that the offsets in either the 2D or 1D grids do not have to be axis-aligned.
|
||||
"""
|
||||
__slots__ = (
|
||||
'_a_vector', '_b_vector',
|
||||
'_a_count', '_b_count',
|
||||
)
|
||||
__slots__ = ('_a_vector',
|
||||
'_b_vector',
|
||||
'_a_count',
|
||||
'_b_count')
|
||||
|
||||
_a_vector: NDArray[numpy.float64]
|
||||
""" Vector `[x, y]` specifying the first lattice vector of the grid.
|
||||
@ -64,7 +52,7 @@ class Grid(Repetition):
|
||||
_a_count: int
|
||||
""" Number of instances along the direction specified by the `a_vector` """
|
||||
|
||||
_b_vector: NDArray[numpy.float64] | None
|
||||
_b_vector: Optional[NDArray[numpy.float64]]
|
||||
""" Vector `[x, y]` specifying a second lattice vector for the grid.
|
||||
Specifies center-to-center spacing between adjacent elements.
|
||||
Can be `None` for a 1D array.
|
||||
@ -77,8 +65,9 @@ class Grid(Repetition):
|
||||
self,
|
||||
a_vector: ArrayLike,
|
||||
a_count: int,
|
||||
b_vector: ArrayLike | None = None,
|
||||
b_count: int | None = 1,
|
||||
b_vector: Optional[ArrayLike] = None,
|
||||
b_count: Optional[int] = 1,
|
||||
locked: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
@ -90,6 +79,7 @@ class Grid(Repetition):
|
||||
Can be omitted when specifying a 1D array.
|
||||
b_count: Number of elements in the `b_vector` direction.
|
||||
Should be omitted if `b_vector` was omitted.
|
||||
locked: Whether the `Grid` is locked after initialization.
|
||||
|
||||
Raises:
|
||||
PatternError if `b_*` inputs conflict with each other
|
||||
@ -101,26 +91,29 @@ class Grid(Repetition):
|
||||
if b_vector is None:
|
||||
if b_count > 1:
|
||||
raise PatternError('Repetition has b_count > 1 but no b_vector')
|
||||
b_vector = numpy.array([0.0, 0.0])
|
||||
else:
|
||||
b_vector = numpy.array([0.0, 0.0])
|
||||
|
||||
if a_count < 1:
|
||||
raise PatternError(f'Repetition has too-small a_count: {a_count}')
|
||||
if b_count < 1:
|
||||
raise PatternError(f'Repetition has too-small b_count: {b_count}')
|
||||
|
||||
object.__setattr__(self, 'locked', False)
|
||||
self.a_vector = a_vector # type: ignore # setter handles type conversion
|
||||
self.b_vector = b_vector # type: ignore # setter handles type conversion
|
||||
self.a_count = a_count
|
||||
self.b_count = b_count
|
||||
self.locked = locked
|
||||
|
||||
@classmethod
|
||||
def aligned(
|
||||
cls: type[GG],
|
||||
cls: Type,
|
||||
x: float,
|
||||
y: float,
|
||||
x_count: int,
|
||||
y_count: int,
|
||||
) -> GG:
|
||||
) -> 'Grid':
|
||||
"""
|
||||
Simple constructor for an axis-aligned 2D grid
|
||||
|
||||
@ -136,17 +129,18 @@ class Grid(Repetition):
|
||||
return cls(a_vector=(x, 0), b_vector=(0, y), a_count=x_count, b_count=y_count)
|
||||
|
||||
def __copy__(self) -> 'Grid':
|
||||
new = Grid(
|
||||
a_vector=self.a_vector.copy(),
|
||||
b_vector=copy.copy(self.b_vector),
|
||||
a_count=self.a_count,
|
||||
b_count=self.b_count,
|
||||
)
|
||||
new = Grid(a_vector=self.a_vector.copy(),
|
||||
b_vector=copy.copy(self.b_vector),
|
||||
a_count=self.a_count,
|
||||
b_count=self.b_count,
|
||||
locked=self.locked)
|
||||
return new
|
||||
|
||||
def __deepcopy__(self, memo: dict | None = None) -> Self:
|
||||
def __deepcopy__(self, memo: Dict = None) -> 'Grid':
|
||||
memo = {} if memo is None else memo
|
||||
new = copy.copy(self)
|
||||
LocakbleImpl.unlock(new)
|
||||
new.locked = self.locked
|
||||
return new
|
||||
|
||||
# a_vector property
|
||||
@ -156,20 +150,22 @@ class Grid(Repetition):
|
||||
|
||||
@a_vector.setter
|
||||
def a_vector(self, val: ArrayLike) -> None:
|
||||
val = numpy.array(val, dtype=float)
|
||||
if not isinstance(val, numpy.ndarray):
|
||||
val = numpy.array(val, dtype=float)
|
||||
|
||||
if val.size != 2:
|
||||
raise PatternError('a_vector must be convertible to size-2 ndarray')
|
||||
self._a_vector = val.flatten()
|
||||
self._a_vector = val.flatten().astype(float)
|
||||
|
||||
# b_vector property
|
||||
@property
|
||||
def b_vector(self) -> NDArray[numpy.float64] | None:
|
||||
def b_vector(self) -> Optional[NDArray[numpy.float64]]:
|
||||
return self._b_vector
|
||||
|
||||
@b_vector.setter
|
||||
def b_vector(self, val: ArrayLike) -> None:
|
||||
val = numpy.array(val, dtype=float)
|
||||
if not isinstance(val, numpy.ndarray):
|
||||
val = numpy.array(val, dtype=float, copy=True)
|
||||
|
||||
if val.size != 2:
|
||||
raise PatternError('b_vector must be convertible to size-2 ndarray')
|
||||
@ -206,7 +202,7 @@ class Grid(Repetition):
|
||||
return (aa.flatten()[:, None] * self.a_vector[None, :]
|
||||
+ bb.flatten()[:, None] * self.b_vector[None, :]) # noqa
|
||||
|
||||
def rotate(self, rotation: float) -> Self:
|
||||
def rotate(self, rotation: float) -> 'Grid':
|
||||
"""
|
||||
Rotate lattice vectors (around (0, 0))
|
||||
|
||||
@ -221,7 +217,7 @@ class Grid(Repetition):
|
||||
self.b_vector = numpy.dot(rotation_matrix_2d(rotation), self.b_vector)
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int = 0) -> Self:
|
||||
def mirror(self, axis: int) -> 'Grid':
|
||||
"""
|
||||
Mirror the Grid across an axis.
|
||||
|
||||
@ -237,7 +233,7 @@ class Grid(Repetition):
|
||||
self.b_vector[1 - axis] *= -1
|
||||
return self
|
||||
|
||||
def get_bounds(self) -> NDArray[numpy.float64] | None:
|
||||
def get_bounds(self) -> Optional[NDArray[numpy.float64]]:
|
||||
"""
|
||||
Return a `numpy.ndarray` containing `[[x_min, y_min], [x_max, y_max]]`, corresponding to the
|
||||
extent of the `Grid` in each dimension.
|
||||
@ -245,19 +241,15 @@ class Grid(Repetition):
|
||||
Returns:
|
||||
`[[x_min, y_min], [x_max, y_max]]` or `None`
|
||||
"""
|
||||
a_extent = self.a_vector * (self.a_count - 1)
|
||||
if self.b_count is None:
|
||||
b_extent = numpy.zeros(2)
|
||||
else:
|
||||
assert self.b_vector is not None
|
||||
b_extent = self.b_vector * (self.b_count - 1)
|
||||
a_extent = self.a_vector * self.a_count
|
||||
b_extent = self.b_vector * self.b_count if (self.b_vector is not None) else 0 # type: Union[NDArray[numpy.float64], float]
|
||||
|
||||
corners = numpy.stack(((0, 0), a_extent, b_extent, a_extent + b_extent))
|
||||
corners = ((0, 0), a_extent, b_extent, a_extent + b_extent)
|
||||
xy_min = numpy.min(corners, axis=0)
|
||||
xy_max = numpy.max(corners, axis=0)
|
||||
return numpy.array((xy_min, xy_max))
|
||||
|
||||
def scale_by(self, c: float) -> Self:
|
||||
def scale_by(self, c: float) -> 'Grid':
|
||||
"""
|
||||
Scale the Grid by a factor
|
||||
|
||||
@ -272,12 +264,39 @@ class Grid(Repetition):
|
||||
self.b_vector *= c
|
||||
return self
|
||||
|
||||
def lock(self) -> 'Grid':
|
||||
"""
|
||||
Lock the `Grid`, disallowing changes.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.a_vector.flags.writeable = False
|
||||
if self.b_vector is not None:
|
||||
self.b_vector.flags.writeable = False
|
||||
LockableImpl.lock(self)
|
||||
return self
|
||||
|
||||
def unlock(self) -> 'Grid':
|
||||
"""
|
||||
Unlock the `Grid`
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.a_vector.flags.writeable = True
|
||||
if self.b_vector is not None:
|
||||
self.b_vector.flags.writeable = True
|
||||
LockableImpl.unlock(self)
|
||||
return self
|
||||
|
||||
def __repr__(self) -> str:
|
||||
locked = ' L' if self.locked else ''
|
||||
bv = f', {self.b_vector}' if self.b_vector is not None else ''
|
||||
return (f'<Grid {self.a_count}x{self.b_count} ({self.a_vector}{bv})>')
|
||||
return (f'<Grid {self.a_count}x{self.b_count} ({self.a_vector}{bv}){locked}>')
|
||||
|
||||
def __eq__(self, other: Any) -> bool:
|
||||
if type(other) is not type(self):
|
||||
if not isinstance(other, type(self)):
|
||||
return False
|
||||
if self.a_count != other.a_count or self.b_count != other.b_count:
|
||||
return False
|
||||
@ -287,30 +306,14 @@ class Grid(Repetition):
|
||||
return True
|
||||
if self.b_vector is None or other.b_vector is None:
|
||||
return False
|
||||
if any(self.b_vector[ii] != other.b_vector[ii] for ii in range(2)): # noqa: SIM103
|
||||
if any(self.b_vector[ii] != other.b_vector[ii] for ii in range(2)):
|
||||
return False
|
||||
if self.locked != other.locked:
|
||||
return False
|
||||
return True
|
||||
|
||||
def __le__(self, other: Repetition) -> bool:
|
||||
if type(self) is not type(other):
|
||||
return repr(type(self)) < repr(type(other))
|
||||
other = cast(Grid, other)
|
||||
if self.a_count != other.a_count:
|
||||
return self.a_count < other.a_count
|
||||
if self.b_count != other.b_count:
|
||||
return self.b_count < other.b_count
|
||||
if not numpy.array_equal(self.a_vector, other.a_vector):
|
||||
return tuple(self.a_vector) < tuple(other.a_vector)
|
||||
if self.b_vector is None:
|
||||
return other.b_vector is not None
|
||||
if other.b_vector is None:
|
||||
return False
|
||||
if not numpy.array_equal(self.b_vector, other.b_vector):
|
||||
return tuple(self.a_vector) < tuple(other.a_vector)
|
||||
return False
|
||||
|
||||
|
||||
class Arbitrary(Repetition):
|
||||
class Arbitrary(LockableImpl, Repetition, metaclass=AutoSlots):
|
||||
"""
|
||||
`Arbitrary` is a simple list of (absolute) displacements for instances.
|
||||
|
||||
@ -327,47 +330,63 @@ class Arbitrary(Repetition):
|
||||
"""
|
||||
|
||||
@property
|
||||
def displacements(self) -> Any: # mypy#3004 NDArray[numpy.float64]:
|
||||
def displacements(self) -> Any: # TODO: mypy#3004 NDArray[numpy.float64]:
|
||||
return self._displacements
|
||||
|
||||
@displacements.setter
|
||||
def displacements(self, val: ArrayLike) -> None:
|
||||
vala = numpy.array(val, dtype=float)
|
||||
order = numpy.lexsort(vala.T[::-1]) # sortrows
|
||||
self._displacements = vala[order]
|
||||
vala: NDArray[numpy.float64] = numpy.array(val, dtype=float)
|
||||
vala = numpy.sort(vala.view([('', vala.dtype)] * vala.shape[1]), 0).view(vala.dtype) # sort rows
|
||||
self._displacements = vala
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
displacements: ArrayLike,
|
||||
locked: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
displacements: List of vectors (Nx2 ndarray) specifying displacements.
|
||||
locked: Whether the object is locked after initialization.
|
||||
"""
|
||||
object.__setattr__(self, 'locked', False)
|
||||
self.displacements = displacements
|
||||
self.locked = locked
|
||||
|
||||
def lock(self) -> 'Arbitrary':
|
||||
"""
|
||||
Lock the object, disallowing changes.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self._displacements.flags.writeable = False
|
||||
LockableImpl.lock(self)
|
||||
return self
|
||||
|
||||
def unlock(self) -> 'Arbitrary':
|
||||
"""
|
||||
Unlock the object
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self._displacements.flags.writeable = True
|
||||
LockableImpl.unlock(self)
|
||||
return self
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return (f'<Arbitrary {len(self.displacements)}pts >')
|
||||
locked = ' L' if self.locked else ''
|
||||
return (f'<Arbitrary {len(self.displacements)}pts {locked}>')
|
||||
|
||||
def __eq__(self, other: Any) -> bool:
|
||||
if not type(other) is not type(self):
|
||||
if not isinstance(other, type(self)):
|
||||
return False
|
||||
if self.locked != other.locked:
|
||||
return False
|
||||
return numpy.array_equal(self.displacements, other.displacements)
|
||||
|
||||
def __le__(self, other: Repetition) -> bool:
|
||||
if type(self) is not type(other):
|
||||
return repr(type(self)) < repr(type(other))
|
||||
other = cast(Arbitrary, other)
|
||||
if self.displacements.size != other.displacements.size:
|
||||
return self.displacements.size < other.displacements.size
|
||||
|
||||
neq = (self.displacements != other.displacements)
|
||||
if neq.any():
|
||||
return self.displacements[neq][0] < other.displacements[neq][0]
|
||||
|
||||
return False
|
||||
|
||||
def rotate(self, rotation: float) -> Self:
|
||||
def rotate(self, rotation: float) -> 'Arbitrary':
|
||||
"""
|
||||
Rotate dispacements (around (0, 0))
|
||||
|
||||
@ -380,7 +399,7 @@ class Arbitrary(Repetition):
|
||||
self.displacements = numpy.dot(rotation_matrix_2d(rotation), self.displacements.T).T
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int = 0) -> Self:
|
||||
def mirror(self, axis: int) -> 'Arbitrary':
|
||||
"""
|
||||
Mirror the displacements across an axis.
|
||||
|
||||
@ -394,7 +413,7 @@ class Arbitrary(Repetition):
|
||||
self.displacements[1 - axis] *= -1
|
||||
return self
|
||||
|
||||
def get_bounds(self) -> NDArray[numpy.float64] | None:
|
||||
def get_bounds(self) -> Optional[NDArray[numpy.float64]]:
|
||||
"""
|
||||
Return a `numpy.ndarray` containing `[[x_min, y_min], [x_max, y_max]]`, corresponding to the
|
||||
extent of the `displacements` in each dimension.
|
||||
@ -406,7 +425,7 @@ class Arbitrary(Repetition):
|
||||
xy_max = numpy.max(self.displacements, axis=0)
|
||||
return numpy.array((xy_min, xy_max))
|
||||
|
||||
def scale_by(self, c: float) -> Self:
|
||||
def scale_by(self, c: float) -> 'Arbitrary':
|
||||
"""
|
||||
Scale the displacements by a factor
|
||||
|
||||
|
@ -3,15 +3,11 @@ Shapes for use with the Pattern class, as well as the Shape abstract class from
|
||||
which they are derived.
|
||||
"""
|
||||
|
||||
from .shape import (
|
||||
Shape as Shape,
|
||||
normalized_shape_tuple as normalized_shape_tuple,
|
||||
DEFAULT_POLY_NUM_VERTICES as DEFAULT_POLY_NUM_VERTICES,
|
||||
)
|
||||
from .shape import Shape, normalized_shape_tuple, DEFAULT_POLY_NUM_POINTS
|
||||
|
||||
from .polygon import Polygon as Polygon
|
||||
from .circle import Circle as Circle
|
||||
from .ellipse import Ellipse as Ellipse
|
||||
from .arc import Arc as Arc
|
||||
from .text import Text as Text
|
||||
from .path import Path as Path
|
||||
from .polygon import Polygon
|
||||
from .circle import Circle
|
||||
from .ellipse import Ellipse
|
||||
from .arc import Arc
|
||||
from .text import Text
|
||||
from .path import Path
|
||||
|
@ -1,19 +1,19 @@
|
||||
from typing import Any, cast
|
||||
from typing import List, Dict, Optional, Sequence, Any
|
||||
import copy
|
||||
import functools
|
||||
import math
|
||||
|
||||
import numpy
|
||||
from numpy import pi
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
|
||||
from . import Shape, Polygon, normalized_shape_tuple, DEFAULT_POLY_NUM_VERTICES
|
||||
from ..error import PatternError
|
||||
from . import Shape, Polygon, normalized_shape_tuple, DEFAULT_POLY_NUM_POINTS
|
||||
from .. import PatternError
|
||||
from ..repetition import Repetition
|
||||
from ..utils import is_scalar, annotations_t, annotations_lt, annotations_eq, rep2key
|
||||
from ..utils import is_scalar, layer_t, AutoSlots, annotations_t
|
||||
from ..traits import LockableImpl
|
||||
|
||||
|
||||
@functools.total_ordering
|
||||
class Arc(Shape):
|
||||
class Arc(Shape, metaclass=AutoSlots):
|
||||
"""
|
||||
An elliptical arc, formed by cutting off an elliptical ring with two rays which exit from its
|
||||
center. It has a position, two radii, a start and stop angle, a rotation, and a width.
|
||||
@ -22,11 +22,8 @@ class Arc(Shape):
|
||||
The rotation gives the angle from x-axis, counterclockwise, to the first (x) radius.
|
||||
The start and stop angle are measured counterclockwise from the first (x) radius.
|
||||
"""
|
||||
__slots__ = (
|
||||
'_radii', '_angles', '_width', '_rotation',
|
||||
# Inherited
|
||||
'_offset', '_repetition', '_annotations',
|
||||
)
|
||||
__slots__ = ('_radii', '_angles', '_width', '_rotation',
|
||||
'poly_num_points', 'poly_max_arclen')
|
||||
|
||||
_radii: NDArray[numpy.float64]
|
||||
""" Two radii for defining an ellipse """
|
||||
@ -40,9 +37,15 @@ class Arc(Shape):
|
||||
_width: float
|
||||
""" Width of the arc """
|
||||
|
||||
poly_num_points: Optional[int]
|
||||
""" Sets the default number of points for `.polygonize()` """
|
||||
|
||||
poly_max_arclen: Optional[float]
|
||||
""" Sets the default max segement length for `.polygonize()` """
|
||||
|
||||
# radius properties
|
||||
@property
|
||||
def radii(self) -> Any: # mypy#3004 NDArray[numpy.float64]:
|
||||
def radii(self) -> Any: #TODO mypy#3004 NDArray[numpy.float64]:
|
||||
"""
|
||||
Return the radii `[rx, ry]`
|
||||
"""
|
||||
@ -79,7 +82,7 @@ class Arc(Shape):
|
||||
|
||||
# arc start/stop angle properties
|
||||
@property
|
||||
def angles(self) -> Any: # mypy#3004 NDArray[numpy.float64]:
|
||||
def angles(self) -> Any: #TODO mypy#3004 NDArray[numpy.float64]:
|
||||
"""
|
||||
Return the start and stop angles `[a_start, a_stop]`.
|
||||
Angles are measured from x-axis after rotation
|
||||
@ -154,16 +157,24 @@ class Arc(Shape):
|
||||
angles: ArrayLike,
|
||||
width: float,
|
||||
*,
|
||||
poly_num_points: Optional[int] = DEFAULT_POLY_NUM_POINTS,
|
||||
poly_max_arclen: Optional[float] = None,
|
||||
offset: ArrayLike = (0.0, 0.0),
|
||||
rotation: float = 0,
|
||||
repetition: Repetition | None = None,
|
||||
annotations: annotations_t | None = None,
|
||||
mirrored: Sequence[bool] = (False, False),
|
||||
layer: layer_t = 0,
|
||||
dose: float = 1.0,
|
||||
repetition: Optional[Repetition] = None,
|
||||
annotations: Optional[annotations_t] = None,
|
||||
locked: bool = False,
|
||||
raw: bool = False,
|
||||
) -> None:
|
||||
LockableImpl.unlock(self)
|
||||
self.identifier = ()
|
||||
if raw:
|
||||
assert isinstance(radii, numpy.ndarray)
|
||||
assert isinstance(angles, numpy.ndarray)
|
||||
assert isinstance(offset, numpy.ndarray)
|
||||
assert(isinstance(radii, numpy.ndarray))
|
||||
assert(isinstance(angles, numpy.ndarray))
|
||||
assert(isinstance(offset, numpy.ndarray))
|
||||
self._radii = radii
|
||||
self._angles = angles
|
||||
self._width = width
|
||||
@ -171,6 +182,8 @@ class Arc(Shape):
|
||||
self._rotation = rotation
|
||||
self._repetition = repetition
|
||||
self._annotations = annotations if annotations is not None else {}
|
||||
self._layer = layer
|
||||
self._dose = dose
|
||||
else:
|
||||
self.radii = radii
|
||||
self.angles = angles
|
||||
@ -179,54 +192,35 @@ class Arc(Shape):
|
||||
self.rotation = rotation
|
||||
self.repetition = repetition
|
||||
self.annotations = annotations if annotations is not None else {}
|
||||
self.layer = layer
|
||||
self.dose = dose
|
||||
self.poly_num_points = poly_num_points
|
||||
self.poly_max_arclen = poly_max_arclen
|
||||
[self.mirror(a) for a, do in enumerate(mirrored) if do]
|
||||
self.set_locked(locked)
|
||||
|
||||
def __deepcopy__(self, memo: dict | None = None) -> 'Arc':
|
||||
def __deepcopy__(self, memo: Dict = None) -> 'Arc':
|
||||
memo = {} if memo is None else memo
|
||||
new = copy.copy(self)
|
||||
Shape.unlock(new)
|
||||
new._offset = self._offset.copy()
|
||||
new._radii = self._radii.copy()
|
||||
new._angles = self._angles.copy()
|
||||
new._annotations = copy.deepcopy(self._annotations)
|
||||
new.set_locked(self.locked)
|
||||
return new
|
||||
|
||||
def __eq__(self, other: Any) -> bool:
|
||||
return (
|
||||
type(self) is type(other)
|
||||
and numpy.array_equal(self.offset, other.offset)
|
||||
and numpy.array_equal(self.radii, other.radii)
|
||||
and numpy.array_equal(self.angles, other.angles)
|
||||
and self.width == other.width
|
||||
and self.rotation == other.rotation
|
||||
and self.repetition == other.repetition
|
||||
and annotations_eq(self.annotations, other.annotations)
|
||||
)
|
||||
|
||||
def __lt__(self, other: Shape) -> bool:
|
||||
if type(self) is not type(other):
|
||||
if repr(type(self)) != repr(type(other)):
|
||||
return repr(type(self)) < repr(type(other))
|
||||
return id(type(self)) < id(type(other))
|
||||
other = cast(Arc, other)
|
||||
if self.width != other.width:
|
||||
return self.width < other.width
|
||||
if not numpy.array_equal(self.radii, other.radii):
|
||||
return tuple(self.radii) < tuple(other.radii)
|
||||
if not numpy.array_equal(self.angles, other.angles):
|
||||
return tuple(self.angles) < tuple(other.angles)
|
||||
if not numpy.array_equal(self.offset, other.offset):
|
||||
return tuple(self.offset) < tuple(other.offset)
|
||||
if self.rotation != other.rotation:
|
||||
return self.rotation < other.rotation
|
||||
if self.repetition != other.repetition:
|
||||
return rep2key(self.repetition) < rep2key(other.repetition)
|
||||
return annotations_lt(self.annotations, other.annotations)
|
||||
|
||||
def to_polygons(
|
||||
self,
|
||||
num_vertices: int | None = DEFAULT_POLY_NUM_VERTICES,
|
||||
max_arclen: float | None = None,
|
||||
) -> list[Polygon]:
|
||||
if (num_vertices is None) and (max_arclen is None):
|
||||
poly_num_points: Optional[int] = None,
|
||||
poly_max_arclen: Optional[float] = None,
|
||||
) -> List[Polygon]:
|
||||
if poly_num_points is None:
|
||||
poly_num_points = self.poly_num_points
|
||||
if poly_max_arclen is None:
|
||||
poly_max_arclen = self.poly_max_arclen
|
||||
|
||||
if (poly_num_points is None) and (poly_max_arclen is None):
|
||||
raise PatternError('Max number of points and arclength left unspecified'
|
||||
+ ' (default was also overridden)')
|
||||
|
||||
@ -235,62 +229,27 @@ class Arc(Shape):
|
||||
# Convert from polar angle to ellipse parameter (for [rx*cos(t), ry*sin(t)] representation)
|
||||
a_ranges = self._angles_to_parameters()
|
||||
|
||||
# Approximate perimeter via numerical integration
|
||||
# Approximate perimeter
|
||||
# Ramanujan, S., "Modular Equations and Approximations to ,"
|
||||
# Quart. J. Pure. Appl. Math., vol. 45 (1913-1914), pp. 350-372
|
||||
a0, a1 = a_ranges[1] # use outer arc
|
||||
h = ((r1 - r0) / (r1 + r0)) ** 2
|
||||
ellipse_perimeter = pi * (r1 + r0) * (1 + 3 * h / (10 + math.sqrt(4 - 3 * h)))
|
||||
perimeter = abs(a0 - a1) / (2 * pi) * ellipse_perimeter # TODO: make this more accurate
|
||||
|
||||
#perimeter1 = numpy.trapz(numpy.sqrt(r0sin * r0sin + r1cos * r1cos), dx=dt)
|
||||
#from scipy.special import ellipeinc
|
||||
#m = 1 - (r1 / r0) ** 2
|
||||
#t1 = ellipeinc(a1 - pi / 2, m)
|
||||
#t0 = ellipeinc(a0 - pi / 2, m)
|
||||
#perimeter2 = r0 * (t1 - t0)
|
||||
|
||||
def get_arclens(n_pts: int, a0: float, a1: float, dr: float) -> tuple[NDArray[numpy.float64], NDArray[numpy.float64]]:
|
||||
""" Get `n_pts` arclengths """
|
||||
t, dt = numpy.linspace(a0, a1, n_pts, retstep=True) # NOTE: could probably use an adaptive number of points
|
||||
r0sin = (r0 + dr) * numpy.sin(t)
|
||||
r1cos = (r1 + dr) * numpy.cos(t)
|
||||
arc_dl = numpy.sqrt(r0sin * r0sin + r1cos * r1cos)
|
||||
#arc_lengths = numpy.diff(t) * (arc_dl[1:] + arc_dl[:-1]) / 2
|
||||
arc_lengths = (arc_dl[1:] + arc_dl[:-1]) * numpy.abs(dt) / 2
|
||||
return arc_lengths, t
|
||||
n = []
|
||||
if poly_num_points is not None:
|
||||
n += [poly_num_points]
|
||||
if poly_max_arclen is not None:
|
||||
n += [perimeter / poly_max_arclen]
|
||||
num_points = int(round(max(n)))
|
||||
|
||||
wh = self.width / 2.0
|
||||
if num_vertices is not None:
|
||||
n_pts = numpy.ceil(max(self.radii + wh) / min(self.radii) * num_vertices * 100).astype(int)
|
||||
perimeter_inner = get_arclens(n_pts, *a_ranges[0], dr=-wh)[0].sum()
|
||||
perimeter_outer = get_arclens(n_pts, *a_ranges[1], dr= wh)[0].sum()
|
||||
implied_arclen = (perimeter_outer + perimeter_inner + self.width * 2) / num_vertices
|
||||
max_arclen = min(implied_arclen, max_arclen if max_arclen is not None else numpy.inf)
|
||||
assert max_arclen is not None
|
||||
|
||||
def get_thetas(inner: bool) -> NDArray[numpy.float64]:
|
||||
""" Figure out the parameter values at which we should place vertices to meet the arclength constraint"""
|
||||
dr = -wh if inner else wh
|
||||
|
||||
n_pts = numpy.ceil(2 * pi * max(self.radii + dr) / max_arclen).astype(int)
|
||||
arc_lengths, thetas = get_arclens(n_pts, *a_ranges[0 if inner else 1], dr=dr)
|
||||
|
||||
keep = [0]
|
||||
removable = (numpy.cumsum(arc_lengths) <= max_arclen)
|
||||
start = 1
|
||||
while start < arc_lengths.size:
|
||||
next_to_keep = start + numpy.where(removable)[0][-1] # TODO: any chance we haven't sampled finely enough?
|
||||
keep.append(next_to_keep)
|
||||
removable = (numpy.cumsum(arc_lengths[next_to_keep + 1:]) <= max_arclen)
|
||||
start = next_to_keep + 1
|
||||
if keep[-1] != thetas.size - 1:
|
||||
keep.append(thetas.size - 1)
|
||||
|
||||
thetas = thetas[keep]
|
||||
if inner:
|
||||
thetas = thetas[::-1]
|
||||
return thetas
|
||||
|
||||
if wh in (r0, r1):
|
||||
if wh == r0 or wh == r1:
|
||||
thetas_inner = numpy.zeros(1) # Don't generate multiple vertices if we're at the origin
|
||||
else:
|
||||
thetas_inner = get_thetas(inner=True)
|
||||
thetas_outer = get_thetas(inner=False)
|
||||
thetas_inner = numpy.linspace(a_ranges[0][1], a_ranges[0][0], num_points, endpoint=True)
|
||||
thetas_outer = numpy.linspace(a_ranges[1][0], a_ranges[1][1], num_points, endpoint=True)
|
||||
|
||||
sin_th_i, cos_th_i = (numpy.sin(thetas_inner), numpy.cos(thetas_inner))
|
||||
sin_th_o, cos_th_o = (numpy.sin(thetas_outer), numpy.cos(thetas_outer))
|
||||
@ -304,11 +263,11 @@ class Arc(Shape):
|
||||
ys = numpy.hstack((ys1, ys2))
|
||||
xys = numpy.vstack((xs, ys)).T
|
||||
|
||||
poly = Polygon(xys, offset=self.offset, rotation=self.rotation)
|
||||
poly = Polygon(xys, dose=self.dose, layer=self.layer, offset=self.offset, rotation=self.rotation)
|
||||
return [poly]
|
||||
|
||||
def get_bounds_single(self) -> NDArray[numpy.float64]:
|
||||
"""
|
||||
def get_bounds(self) -> NDArray[numpy.float64]:
|
||||
'''
|
||||
Equation for rotated ellipse is
|
||||
`x = x0 + a * cos(t) * cos(rot) - b * sin(t) * sin(phi)`
|
||||
`y = y0 + a * cos(t) * sin(rot) + b * sin(t) * cos(rot)`
|
||||
@ -319,12 +278,12 @@ class Arc(Shape):
|
||||
where -+ is for x, y cases, so that's where the extrema are.
|
||||
|
||||
If the extrema are innaccessible due to arc constraints, check the arc endpoints instead.
|
||||
"""
|
||||
'''
|
||||
a_ranges = self._angles_to_parameters()
|
||||
|
||||
mins = []
|
||||
maxs = []
|
||||
for a, sgn in zip(a_ranges, (-1, +1), strict=True):
|
||||
for a, sgn in zip(a_ranges, (-1, +1)):
|
||||
wh = sgn * self.width / 2
|
||||
rx = self.radius_x + wh
|
||||
ry = self.radius_y + wh
|
||||
@ -381,7 +340,7 @@ class Arc(Shape):
|
||||
self.rotation += theta
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int = 0) -> 'Arc':
|
||||
def mirror(self, axis: int) -> 'Arc':
|
||||
self.offset[axis - 1] *= -1
|
||||
self.rotation *= -1
|
||||
self.rotation += axis * pi
|
||||
@ -415,27 +374,23 @@ class Arc(Shape):
|
||||
rotation %= 2 * pi
|
||||
width = self.width
|
||||
|
||||
return ((type(self), radii, angles, width / norm_value),
|
||||
(self.offset, scale / norm_value, rotation, False),
|
||||
lambda: Arc(
|
||||
radii=radii * norm_value,
|
||||
angles=angles,
|
||||
width=width * norm_value,
|
||||
))
|
||||
return ((type(self), radii, angles, width / norm_value, self.layer),
|
||||
(self.offset, scale / norm_value, rotation, False, self.dose),
|
||||
lambda: Arc(radii=radii * norm_value, angles=angles, width=width * norm_value, layer=self.layer))
|
||||
|
||||
def get_cap_edges(self) -> NDArray[numpy.float64]:
|
||||
"""
|
||||
'''
|
||||
Returns:
|
||||
```
|
||||
[[[x0, y0], [x1, y1]], array of 4 points, specifying the two cuts which
|
||||
[[x2, y2], [x3, y3]]], would create this arc from its corresponding ellipse.
|
||||
```
|
||||
"""
|
||||
'''
|
||||
a_ranges = self._angles_to_parameters()
|
||||
|
||||
mins = []
|
||||
maxs = []
|
||||
for a, sgn in zip(a_ranges, (-1, +1), strict=True):
|
||||
for a, sgn in zip(a_ranges, (-1, +1)):
|
||||
wh = sgn * self.width / 2
|
||||
rx = self.radius_x + wh
|
||||
ry = self.radius_y + wh
|
||||
@ -454,28 +409,41 @@ class Arc(Shape):
|
||||
return numpy.array([mins, maxs]) + self.offset
|
||||
|
||||
def _angles_to_parameters(self) -> NDArray[numpy.float64]:
|
||||
"""
|
||||
Convert from polar angle to ellipse parameter (for [rx*cos(t), ry*sin(t)] representation)
|
||||
|
||||
'''
|
||||
Returns:
|
||||
"Eccentric anomaly" parameter ranges for the inner and outer edges, in the form
|
||||
`[[a_min_inner, a_max_inner], [a_min_outer, a_max_outer]]`
|
||||
"""
|
||||
'''
|
||||
a = []
|
||||
for sgn in (-1, +1):
|
||||
wh = sgn * self.width / 2.0
|
||||
wh = sgn * self.width / 2
|
||||
rx = self.radius_x + wh
|
||||
ry = self.radius_y + wh
|
||||
|
||||
# create paremeter 'a' for parametrized ellipse
|
||||
a0, a1 = (numpy.arctan2(rx * numpy.sin(a), ry * numpy.cos(a)) for a in self.angles)
|
||||
sign = numpy.sign(self.angles[1] - self.angles[0])
|
||||
if sign != numpy.sign(a1 - a0):
|
||||
a1 += sign * 2 * pi
|
||||
|
||||
a.append((a0, a1))
|
||||
return numpy.array(a, dtype=float)
|
||||
return numpy.array(a)
|
||||
|
||||
def lock(self) -> 'Arc':
|
||||
self.radii.flags.writeable = False
|
||||
self.angles.flags.writeable = False
|
||||
Shape.lock(self)
|
||||
return self
|
||||
|
||||
def unlock(self) -> 'Arc':
|
||||
Shape.unlock(self)
|
||||
self.radii.flags.writeable = True
|
||||
self.angles.flags.writeable = True
|
||||
return self
|
||||
|
||||
def __repr__(self) -> str:
|
||||
angles = f' a°{numpy.rad2deg(self.angles)}'
|
||||
rotation = f' r°{numpy.rad2deg(self.rotation):g}' if self.rotation != 0 else ''
|
||||
return f'<Arc o{self.offset} r{self.radii}{angles} w{self.width:g}{rotation}>'
|
||||
dose = f' d{self.dose:g}' if self.dose != 1 else ''
|
||||
locked = ' L' if self.locked else ''
|
||||
return f'<Arc l{self.layer} o{self.offset} r{self.radii}{angles} w{self.width:g}{rotation}{dose}{locked}>'
|
||||
|
@ -1,31 +1,32 @@
|
||||
from typing import Any, cast
|
||||
from typing import List, Dict, Optional
|
||||
import copy
|
||||
import functools
|
||||
|
||||
import numpy
|
||||
from numpy import pi
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
|
||||
from . import Shape, Polygon, normalized_shape_tuple, DEFAULT_POLY_NUM_VERTICES
|
||||
from ..error import PatternError
|
||||
from . import Shape, Polygon, normalized_shape_tuple, DEFAULT_POLY_NUM_POINTS
|
||||
from .. import PatternError
|
||||
from ..repetition import Repetition
|
||||
from ..utils import is_scalar, annotations_t, annotations_lt, annotations_eq, rep2key
|
||||
from ..utils import is_scalar, layer_t, AutoSlots, annotations_t
|
||||
from ..traits import LockableImpl
|
||||
|
||||
|
||||
@functools.total_ordering
|
||||
class Circle(Shape):
|
||||
class Circle(Shape, metaclass=AutoSlots):
|
||||
"""
|
||||
A circle, which has a position and radius.
|
||||
"""
|
||||
__slots__ = (
|
||||
'_radius',
|
||||
# Inherited
|
||||
'_offset', '_repetition', '_annotations',
|
||||
)
|
||||
__slots__ = ('_radius', 'poly_num_points', 'poly_max_arclen')
|
||||
|
||||
_radius: float
|
||||
""" Circle radius """
|
||||
|
||||
poly_num_points: Optional[int]
|
||||
""" Sets the default number of points for `.polygonize()` """
|
||||
|
||||
poly_max_arclen: Optional[float]
|
||||
""" Sets the default max segement length for `.polygonize()` """
|
||||
|
||||
# radius property
|
||||
@property
|
||||
def radius(self) -> float:
|
||||
@ -46,83 +47,81 @@ class Circle(Shape):
|
||||
self,
|
||||
radius: float,
|
||||
*,
|
||||
poly_num_points: Optional[int] = DEFAULT_POLY_NUM_POINTS,
|
||||
poly_max_arclen: Optional[float] = None,
|
||||
offset: ArrayLike = (0.0, 0.0),
|
||||
repetition: Repetition | None = None,
|
||||
annotations: annotations_t | None = None,
|
||||
layer: layer_t = 0,
|
||||
dose: float = 1.0,
|
||||
repetition: Optional[Repetition] = None,
|
||||
annotations: Optional[annotations_t] = None,
|
||||
locked: bool = False,
|
||||
raw: bool = False,
|
||||
) -> None:
|
||||
LockableImpl.unlock(self)
|
||||
self.identifier = ()
|
||||
if raw:
|
||||
assert isinstance(offset, numpy.ndarray)
|
||||
assert(isinstance(offset, numpy.ndarray))
|
||||
self._radius = radius
|
||||
self._offset = offset
|
||||
self._repetition = repetition
|
||||
self._annotations = annotations if annotations is not None else {}
|
||||
self._layer = layer
|
||||
self._dose = dose
|
||||
else:
|
||||
self.radius = radius
|
||||
self.offset = offset
|
||||
self.repetition = repetition
|
||||
self.annotations = annotations if annotations is not None else {}
|
||||
self.layer = layer
|
||||
self.dose = dose
|
||||
self.poly_num_points = poly_num_points
|
||||
self.poly_max_arclen = poly_max_arclen
|
||||
self.set_locked(locked)
|
||||
|
||||
def __deepcopy__(self, memo: dict | None = None) -> 'Circle':
|
||||
def __deepcopy__(self, memo: Dict = None) -> 'Circle':
|
||||
memo = {} if memo is None else memo
|
||||
new = copy.copy(self)
|
||||
Shape.unlock(new)
|
||||
new._offset = self._offset.copy()
|
||||
new._annotations = copy.deepcopy(self._annotations)
|
||||
new.set_locked(self.locked)
|
||||
return new
|
||||
|
||||
def __eq__(self, other: Any) -> bool:
|
||||
return (
|
||||
type(self) is type(other)
|
||||
and numpy.array_equal(self.offset, other.offset)
|
||||
and self.radius == other.radius
|
||||
and self.repetition == other.repetition
|
||||
and annotations_eq(self.annotations, other.annotations)
|
||||
)
|
||||
|
||||
def __lt__(self, other: Shape) -> bool:
|
||||
if type(self) is not type(other):
|
||||
if repr(type(self)) != repr(type(other)):
|
||||
return repr(type(self)) < repr(type(other))
|
||||
return id(type(self)) < id(type(other))
|
||||
other = cast(Circle, other)
|
||||
if not self.radius == other.radius:
|
||||
return self.radius < other.radius
|
||||
if not numpy.array_equal(self.offset, other.offset):
|
||||
return tuple(self.offset) < tuple(other.offset)
|
||||
if self.repetition != other.repetition:
|
||||
return rep2key(self.repetition) < rep2key(other.repetition)
|
||||
return annotations_lt(self.annotations, other.annotations)
|
||||
|
||||
def to_polygons(
|
||||
self,
|
||||
num_vertices: int | None = DEFAULT_POLY_NUM_VERTICES,
|
||||
max_arclen: float | None = None,
|
||||
) -> list[Polygon]:
|
||||
if (num_vertices is None) and (max_arclen is None):
|
||||
poly_num_points: Optional[int] = None,
|
||||
poly_max_arclen: Optional[float] = None,
|
||||
) -> List[Polygon]:
|
||||
if poly_num_points is None:
|
||||
poly_num_points = self.poly_num_points
|
||||
if poly_max_arclen is None:
|
||||
poly_max_arclen = self.poly_max_arclen
|
||||
|
||||
if (poly_num_points is None) and (poly_max_arclen is None):
|
||||
raise PatternError('Number of points and arclength left '
|
||||
'unspecified (default was also overridden)')
|
||||
|
||||
n: list[float] = []
|
||||
if num_vertices is not None:
|
||||
n += [num_vertices]
|
||||
if max_arclen is not None:
|
||||
n += [2 * pi * self.radius / max_arclen]
|
||||
num_vertices = int(round(max(n)))
|
||||
thetas = numpy.linspace(2 * pi, 0, num_vertices, endpoint=False)
|
||||
n: List[float] = []
|
||||
if poly_num_points is not None:
|
||||
n += [poly_num_points]
|
||||
if poly_max_arclen is not None:
|
||||
n += [2 * pi * self.radius / poly_max_arclen]
|
||||
num_points = int(round(max(n)))
|
||||
thetas = numpy.linspace(2 * pi, 0, num_points, endpoint=False)
|
||||
xs = numpy.cos(thetas) * self.radius
|
||||
ys = numpy.sin(thetas) * self.radius
|
||||
xys = numpy.vstack((xs, ys)).T
|
||||
|
||||
return [Polygon(xys, offset=self.offset)]
|
||||
return [Polygon(xys, offset=self.offset, dose=self.dose, layer=self.layer)]
|
||||
|
||||
def get_bounds_single(self) -> NDArray[numpy.float64]:
|
||||
def get_bounds(self) -> NDArray[numpy.float64]:
|
||||
return numpy.vstack((self.offset - self.radius,
|
||||
self.offset + self.radius))
|
||||
|
||||
def rotate(self, theta: float) -> 'Circle': # noqa: ARG002 (theta unused)
|
||||
def rotate(self, theta: float) -> 'Circle':
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int = 0) -> 'Circle': # noqa: ARG002 (axis unused)
|
||||
def mirror(self, axis: int) -> 'Circle':
|
||||
self.offset *= -1
|
||||
return self
|
||||
|
||||
@ -130,12 +129,14 @@ class Circle(Shape):
|
||||
self.radius *= c
|
||||
return self
|
||||
|
||||
def normalized_form(self, norm_value: float) -> normalized_shape_tuple:
|
||||
def normalized_form(self, norm_value) -> normalized_shape_tuple:
|
||||
rotation = 0.0
|
||||
magnitude = self.radius / norm_value
|
||||
return ((type(self),),
|
||||
(self.offset, magnitude, rotation, False),
|
||||
lambda: Circle(radius=norm_value))
|
||||
return ((type(self), self.layer),
|
||||
(self.offset, magnitude, rotation, False, self.dose),
|
||||
lambda: Circle(radius=norm_value, layer=self.layer))
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f'<Circle o{self.offset} r{self.radius:g}>'
|
||||
dose = f' d{self.dose:g}' if self.dose != 1 else ''
|
||||
locked = ' L' if self.locked else ''
|
||||
return f'<Circle l{self.layer} o{self.offset} r{self.radius:g}{dose}{locked}>'
|
||||
|
@ -1,29 +1,25 @@
|
||||
from typing import Any, Self, cast
|
||||
from typing import List, Dict, Sequence, Optional, Any
|
||||
import copy
|
||||
import math
|
||||
import functools
|
||||
|
||||
import numpy
|
||||
from numpy import pi
|
||||
from numpy.typing import ArrayLike, NDArray
|
||||
|
||||
from . import Shape, Polygon, normalized_shape_tuple, DEFAULT_POLY_NUM_VERTICES
|
||||
from ..error import PatternError
|
||||
from . import Shape, Polygon, normalized_shape_tuple, DEFAULT_POLY_NUM_POINTS
|
||||
from .. import PatternError
|
||||
from ..repetition import Repetition
|
||||
from ..utils import is_scalar, rotation_matrix_2d, annotations_t, annotations_lt, annotations_eq, rep2key
|
||||
from ..utils import is_scalar, rotation_matrix_2d, layer_t, AutoSlots, annotations_t
|
||||
from ..traits import LockableImpl
|
||||
|
||||
|
||||
@functools.total_ordering
|
||||
class Ellipse(Shape):
|
||||
class Ellipse(Shape, metaclass=AutoSlots):
|
||||
"""
|
||||
An ellipse, which has a position, two radii, and a rotation.
|
||||
The rotation gives the angle from x-axis, counterclockwise, to the first (x) radius.
|
||||
"""
|
||||
__slots__ = (
|
||||
'_radii', '_rotation',
|
||||
# Inherited
|
||||
'_offset', '_repetition', '_annotations',
|
||||
)
|
||||
__slots__ = ('_radii', '_rotation',
|
||||
'poly_num_points', 'poly_max_arclen')
|
||||
|
||||
_radii: NDArray[numpy.float64]
|
||||
""" Ellipse radii """
|
||||
@ -31,9 +27,15 @@ class Ellipse(Shape):
|
||||
_rotation: float
|
||||
""" Angle from x-axis to first radius (ccw, radians) """
|
||||
|
||||
poly_num_points: Optional[int]
|
||||
""" Sets the default number of points for `.polygonize()` """
|
||||
|
||||
poly_max_arclen: Optional[float]
|
||||
""" Sets the default max segement length for `.polygonize()` """
|
||||
|
||||
# radius properties
|
||||
@property
|
||||
def radii(self) -> Any: # mypy#3004 NDArray[numpy.float64]:
|
||||
def radii(self) -> Any: #TODO mypy#3004 NDArray[numpy.float64]:
|
||||
"""
|
||||
Return the radii `[rx, ry]`
|
||||
"""
|
||||
@ -90,67 +92,64 @@ class Ellipse(Shape):
|
||||
self,
|
||||
radii: ArrayLike,
|
||||
*,
|
||||
poly_num_points: Optional[int] = DEFAULT_POLY_NUM_POINTS,
|
||||
poly_max_arclen: Optional[float] = None,
|
||||
offset: ArrayLike = (0.0, 0.0),
|
||||
rotation: float = 0,
|
||||
repetition: Repetition | None = None,
|
||||
annotations: annotations_t | None = None,
|
||||
mirrored: Sequence[bool] = (False, False),
|
||||
layer: layer_t = 0,
|
||||
dose: float = 1.0,
|
||||
repetition: Optional[Repetition] = None,
|
||||
annotations: Optional[annotations_t] = None,
|
||||
locked: bool = False,
|
||||
raw: bool = False,
|
||||
) -> None:
|
||||
LockableImpl.unlock(self)
|
||||
self.identifier = ()
|
||||
if raw:
|
||||
assert isinstance(radii, numpy.ndarray)
|
||||
assert isinstance(offset, numpy.ndarray)
|
||||
assert(isinstance(radii, numpy.ndarray))
|
||||
assert(isinstance(offset, numpy.ndarray))
|
||||
self._radii = radii
|
||||
self._offset = offset
|
||||
self._rotation = rotation
|
||||
self._repetition = repetition
|
||||
self._annotations = annotations if annotations is not None else {}
|
||||
self._layer = layer
|
||||
self._dose = dose
|
||||
else:
|
||||
self.radii = radii
|
||||
self.offset = offset
|
||||
self.rotation = rotation
|
||||
self.repetition = repetition
|
||||
self.annotations = annotations if annotations is not None else {}
|
||||
self.layer = layer
|
||||
self.dose = dose
|
||||
[self.mirror(a) for a, do in enumerate(mirrored) if do]
|
||||
self.poly_num_points = poly_num_points
|
||||
self.poly_max_arclen = poly_max_arclen
|
||||
self.set_locked(locked)
|
||||
|
||||
def __deepcopy__(self, memo: dict | None = None) -> Self:
|
||||
def __deepcopy__(self, memo: Dict = None) -> 'Ellipse':
|
||||
memo = {} if memo is None else memo
|
||||
new = copy.copy(self)
|
||||
Shape.unlock(new)
|
||||
new._offset = self._offset.copy()
|
||||
new._radii = self._radii.copy()
|
||||
new._annotations = copy.deepcopy(self._annotations)
|
||||
new.set_locked(self.locked)
|
||||
return new
|
||||
|
||||
def __eq__(self, other: Any) -> bool:
|
||||
return (
|
||||
type(self) is type(other)
|
||||
and numpy.array_equal(self.offset, other.offset)
|
||||
and numpy.array_equal(self.radii, other.radii)
|
||||
and self.rotation == other.rotation
|
||||
and self.repetition == other.repetition
|
||||
and annotations_eq(self.annotations, other.annotations)
|
||||
)
|
||||
|
||||
def __lt__(self, other: Shape) -> bool:
|
||||
if type(self) is not type(other):
|
||||
if repr(type(self)) != repr(type(other)):
|
||||
return repr(type(self)) < repr(type(other))
|
||||
return id(type(self)) < id(type(other))
|
||||
other = cast(Ellipse, other)
|
||||
if not numpy.array_equal(self.radii, other.radii):
|
||||
return tuple(self.radii) < tuple(other.radii)
|
||||
if not numpy.array_equal(self.offset, other.offset):
|
||||
return tuple(self.offset) < tuple(other.offset)
|
||||
if self.rotation != other.rotation:
|
||||
return self.rotation < other.rotation
|
||||
if self.repetition != other.repetition:
|
||||
return rep2key(self.repetition) < rep2key(other.repetition)
|
||||
return annotations_lt(self.annotations, other.annotations)
|
||||
|
||||
def to_polygons(
|
||||
self,
|
||||
num_vertices: int | None = DEFAULT_POLY_NUM_VERTICES,
|
||||
max_arclen: float | None = None,
|
||||
) -> list[Polygon]:
|
||||
if (num_vertices is None) and (max_arclen is None):
|
||||
poly_num_points: Optional[int] = None,
|
||||
poly_max_arclen: Optional[float] = None,
|
||||
) -> List[Polygon]:
|
||||
if poly_num_points is None:
|
||||
poly_num_points = self.poly_num_points
|
||||
if poly_max_arclen is None:
|
||||
poly_max_arclen = self.poly_max_arclen
|
||||
|
||||
if (poly_num_points is None) and (poly_max_arclen is None):
|
||||
raise PatternError('Number of points and arclength left unspecified'
|
||||
' (default was also overridden)')
|
||||
|
||||
@ -163,37 +162,37 @@ class Ellipse(Shape):
|
||||
perimeter = pi * (r1 + r0) * (1 + 3 * h / (10 + math.sqrt(4 - 3 * h)))
|
||||
|
||||
n = []
|
||||
if num_vertices is not None:
|
||||
n += [num_vertices]
|
||||
if max_arclen is not None:
|
||||
n += [perimeter / max_arclen]
|
||||
num_vertices = int(round(max(n)))
|
||||
thetas = numpy.linspace(2 * pi, 0, num_vertices, endpoint=False)
|
||||
if poly_num_points is not None:
|
||||
n += [poly_num_points]
|
||||
if poly_max_arclen is not None:
|
||||
n += [perimeter / poly_max_arclen]
|
||||
num_points = int(round(max(n)))
|
||||
thetas = numpy.linspace(2 * pi, 0, num_points, endpoint=False)
|
||||
|
||||
sin_th, cos_th = (numpy.sin(thetas), numpy.cos(thetas))
|
||||
xs = r0 * cos_th
|
||||
ys = r1 * sin_th
|
||||
xys = numpy.vstack((xs, ys)).T
|
||||
|
||||
poly = Polygon(xys, offset=self.offset, rotation=self.rotation)
|
||||
poly = Polygon(xys, dose=self.dose, layer=self.layer, offset=self.offset, rotation=self.rotation)
|
||||
return [poly]
|
||||
|
||||
def get_bounds_single(self) -> NDArray[numpy.float64]:
|
||||
def get_bounds(self) -> NDArray[numpy.float64]:
|
||||
rot_radii = numpy.dot(rotation_matrix_2d(self.rotation), self.radii)
|
||||
return numpy.vstack((self.offset - rot_radii[0],
|
||||
self.offset + rot_radii[1]))
|
||||
|
||||
def rotate(self, theta: float) -> Self:
|
||||
def rotate(self, theta: float) -> 'Ellipse':
|
||||
self.rotation += theta
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int = 0) -> Self:
|
||||
def mirror(self, axis: int) -> 'Ellipse':
|
||||
self.offset[axis - 1] *= -1
|
||||
self.rotation *= -1
|
||||
self.rotation += axis * pi
|
||||
return self
|
||||
|
||||
def scale_by(self, c: float) -> Self:
|
||||
def scale_by(self, c: float) -> 'Ellipse':
|
||||
self.radii *= c
|
||||
return self
|
||||
|
||||
@ -206,10 +205,22 @@ class Ellipse(Shape):
|
||||
radii = self.radii[::-1] / self.radius_y
|
||||
scale = self.radius_y
|
||||
angle = (self.rotation + pi / 2) % pi
|
||||
return ((type(self), radii),
|
||||
(self.offset, scale / norm_value, angle, False),
|
||||
lambda: Ellipse(radii=radii * norm_value))
|
||||
return ((type(self), radii, self.layer),
|
||||
(self.offset, scale / norm_value, angle, False, self.dose),
|
||||
lambda: Ellipse(radii=radii * norm_value, layer=self.layer))
|
||||
|
||||
def lock(self) -> 'Ellipse':
|
||||
self.radii.flags.writeable = False
|
||||
Shape.lock(self)
|
||||
return self
|
||||
|
||||
def unlock(self) -> 'Ellipse':
|
||||
Shape.unlock(self)
|
||||
self.radii.flags.writeable = True
|
||||
return self
|
||||
|
||||
def __repr__(self) -> str:
|
||||
rotation = f' r{numpy.rad2deg(self.rotation):g}' if self.rotation != 0 else ''
|
||||
return f'<Ellipse o{self.offset} r{self.radii}{rotation}>'
|
||||
rotation = f' r{self.rotation*180/pi:g}' if self.rotation != 0 else ''
|
||||
dose = f' d{self.dose:g}' if self.dose != 1 else ''
|
||||
locked = ' L' if self.locked else ''
|
||||
return f'<Ellipse l{self.layer} o{self.offset} r{self.radii}{rotation}{dose}{locked}>'
|
||||
|
@ -1,7 +1,5 @@
|
||||
from typing import Any, cast
|
||||
from collections.abc import Sequence
|
||||
from typing import List, Tuple, Dict, Optional, Sequence, Any
|
||||
import copy
|
||||
import functools
|
||||
from enum import Enum
|
||||
|
||||
import numpy
|
||||
@ -9,13 +7,13 @@ from numpy import pi, inf
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
|
||||
from . import Shape, normalized_shape_tuple, Polygon, Circle
|
||||
from ..error import PatternError
|
||||
from .. import PatternError
|
||||
from ..repetition import Repetition
|
||||
from ..utils import is_scalar, rotation_matrix_2d, annotations_lt, annotations_eq, rep2key
|
||||
from ..utils import is_scalar, rotation_matrix_2d, layer_t, AutoSlots
|
||||
from ..utils import remove_colinear_vertices, remove_duplicate_vertices, annotations_t
|
||||
from ..traits import LockableImpl
|
||||
|
||||
|
||||
@functools.total_ordering
|
||||
class PathCap(Enum):
|
||||
Flush = 0 # Path ends at final vertices
|
||||
Circle = 1 # Path extends past final vertices with a semicircle of radius width/2
|
||||
@ -23,29 +21,19 @@ class PathCap(Enum):
|
||||
SquareCustom = 4 # Path extends past final vertices with a rectangle of length
|
||||
# # defined by path.cap_extensions
|
||||
|
||||
def __lt__(self, other: Any) -> bool:
|
||||
return self.value == other.value
|
||||
|
||||
|
||||
@functools.total_ordering
|
||||
class Path(Shape):
|
||||
class Path(Shape, metaclass=AutoSlots):
|
||||
"""
|
||||
A path, consisting of a bunch of vertices (Nx2 ndarray), a width, an end-cap shape,
|
||||
and an offset.
|
||||
|
||||
Note that the setter for `Path.vertices` will create a copy of the passed vertex coordinates.
|
||||
|
||||
A normalized_form(...) is available, but can be quite slow with lots of vertices.
|
||||
"""
|
||||
__slots__ = (
|
||||
'_vertices', '_width', '_cap', '_cap_extensions',
|
||||
# Inherited
|
||||
'_offset', '_repetition', '_annotations',
|
||||
)
|
||||
__slots__ = ('_vertices', '_width', '_cap', '_cap_extensions')
|
||||
_vertices: NDArray[numpy.float64]
|
||||
_width: float
|
||||
_cap: PathCap
|
||||
_cap_extensions: NDArray[numpy.float64] | None
|
||||
_cap_extensions: Optional[NDArray[numpy.float64]]
|
||||
|
||||
Cap = PathCap
|
||||
|
||||
@ -70,14 +58,12 @@ class Path(Shape):
|
||||
def cap(self) -> PathCap:
|
||||
"""
|
||||
Path end-cap
|
||||
|
||||
Note that `cap_extensions` will be reset to default values if
|
||||
`cap` is changed away from `PathCap.SquareCustom`.
|
||||
"""
|
||||
return self._cap
|
||||
|
||||
@cap.setter
|
||||
def cap(self, val: PathCap) -> None:
|
||||
# TODO: Document that setting cap can change cap_extensions
|
||||
self._cap = PathCap(val)
|
||||
if self.cap != PathCap.SquareCustom:
|
||||
self.cap_extensions = None
|
||||
@ -87,43 +73,38 @@ class Path(Shape):
|
||||
|
||||
# cap_extensions property
|
||||
@property
|
||||
def cap_extensions(self) -> Any | None: # mypy#3004 NDArray[numpy.float64]]:
|
||||
def cap_extensions(self) -> Optional[Any]: #TODO mypy#3004 NDArray[numpy.float64]]:
|
||||
"""
|
||||
Path end-cap extension
|
||||
|
||||
Note that `cap_extensions` will be reset to default values if
|
||||
`cap` is changed away from `PathCap.SquareCustom`.
|
||||
|
||||
Returns:
|
||||
2-element ndarray or `None`
|
||||
"""
|
||||
return self._cap_extensions
|
||||
|
||||
@cap_extensions.setter
|
||||
def cap_extensions(self, vals: ArrayLike | None) -> None:
|
||||
def cap_extensions(self, vals: Optional[ArrayLike]) -> None:
|
||||
custom_caps = (PathCap.SquareCustom,)
|
||||
if self.cap in custom_caps:
|
||||
if vals is None:
|
||||
raise PatternError('Tried to set cap extensions to None on path with custom cap type')
|
||||
raise Exception('Tried to set cap extensions to None on path with custom cap type')
|
||||
self._cap_extensions = numpy.array(vals, dtype=float)
|
||||
else:
|
||||
if vals is not None:
|
||||
raise PatternError('Tried to set custom cap extensions on path with non-custom cap type')
|
||||
raise Exception('Tried to set custom cap extensions on path with non-custom cap type')
|
||||
self._cap_extensions = vals
|
||||
|
||||
# vertices property
|
||||
@property
|
||||
def vertices(self) -> Any: # mypy#3004 NDArray[numpy.float64]]:
|
||||
def vertices(self) -> Any: #TODO mypy#3004 NDArray[numpy.float64]]:
|
||||
"""
|
||||
Vertices of the path (Nx2 ndarray: `[[x0, y0], [x1, y1], ...]`
|
||||
|
||||
When setting, note that a copy of the provided vertices will be made.
|
||||
Vertices of the path (Nx2 ndarray: `[[x0, y0], [x1, y1], ...]`)
|
||||
"""
|
||||
return self._vertices
|
||||
|
||||
@vertices.setter
|
||||
def vertices(self, val: ArrayLike) -> None:
|
||||
val = numpy.array(val, dtype=float)
|
||||
val = numpy.array(val, dtype=float) # TODO document that these might not be copied
|
||||
if len(val.shape) < 2 or val.shape[1] != 2:
|
||||
raise PatternError('Vertices must be an Nx2 array')
|
||||
if val.shape[0] < 2:
|
||||
@ -166,23 +147,31 @@ class Path(Shape):
|
||||
width: float = 0.0,
|
||||
*,
|
||||
cap: PathCap = PathCap.Flush,
|
||||
cap_extensions: ArrayLike | None = None,
|
||||
cap_extensions: Optional[ArrayLike] = None,
|
||||
offset: ArrayLike = (0.0, 0.0),
|
||||
rotation: float = 0,
|
||||
repetition: Repetition | None = None,
|
||||
annotations: annotations_t | None = None,
|
||||
mirrored: Sequence[bool] = (False, False),
|
||||
layer: layer_t = 0,
|
||||
dose: float = 1.0,
|
||||
repetition: Optional[Repetition] = None,
|
||||
annotations: Optional[annotations_t] = None,
|
||||
locked: bool = False,
|
||||
raw: bool = False,
|
||||
) -> None:
|
||||
LockableImpl.unlock(self)
|
||||
self._cap_extensions = None # Since .cap setter might access it
|
||||
|
||||
self.identifier = ()
|
||||
if raw:
|
||||
assert isinstance(vertices, numpy.ndarray)
|
||||
assert isinstance(offset, numpy.ndarray)
|
||||
assert isinstance(cap_extensions, numpy.ndarray) or cap_extensions is None
|
||||
assert(isinstance(vertices, numpy.ndarray))
|
||||
assert(isinstance(offset, numpy.ndarray))
|
||||
assert(isinstance(cap_extensions, numpy.ndarray) or cap_extensions is None)
|
||||
self._vertices = vertices
|
||||
self._offset = offset
|
||||
self._repetition = repetition
|
||||
self._annotations = annotations if annotations is not None else {}
|
||||
self._layer = layer
|
||||
self._dose = dose
|
||||
self._width = width
|
||||
self._cap = cap
|
||||
self._cap_extensions = cap_extensions
|
||||
@ -191,63 +180,38 @@ class Path(Shape):
|
||||
self.offset = offset
|
||||
self.repetition = repetition
|
||||
self.annotations = annotations if annotations is not None else {}
|
||||
self.layer = layer
|
||||
self.dose = dose
|
||||
self.width = width
|
||||
self.cap = cap
|
||||
self.cap_extensions = cap_extensions
|
||||
self.rotate(rotation)
|
||||
[self.mirror(a) for a, do in enumerate(mirrored) if do]
|
||||
self.set_locked(locked)
|
||||
|
||||
def __deepcopy__(self, memo: dict | None = None) -> 'Path':
|
||||
def __deepcopy__(self, memo: Dict = None) -> 'Path':
|
||||
memo = {} if memo is None else memo
|
||||
new = copy.copy(self)
|
||||
Shape.unlock(new)
|
||||
new._offset = self._offset.copy()
|
||||
new._vertices = self._vertices.copy()
|
||||
new._cap = copy.deepcopy(self._cap, memo)
|
||||
new._cap_extensions = copy.deepcopy(self._cap_extensions, memo)
|
||||
new._annotations = copy.deepcopy(self._annotations)
|
||||
new.set_locked(self.locked)
|
||||
return new
|
||||
|
||||
def __eq__(self, other: Any) -> bool:
|
||||
return (
|
||||
type(self) is type(other)
|
||||
and numpy.array_equal(self.offset, other.offset)
|
||||
and numpy.array_equal(self.vertices, other.vertices)
|
||||
and self.width == other.width
|
||||
and self.cap == other.cap
|
||||
and numpy.array_equal(self.cap_extensions, other.cap_extensions) # type: ignore
|
||||
and self.repetition == other.repetition
|
||||
and annotations_eq(self.annotations, other.annotations)
|
||||
)
|
||||
|
||||
def __lt__(self, other: Shape) -> bool:
|
||||
if type(self) is not type(other):
|
||||
if repr(type(self)) != repr(type(other)):
|
||||
return repr(type(self)) < repr(type(other))
|
||||
return id(type(self)) < id(type(other))
|
||||
other = cast(Path, other)
|
||||
if self.width != other.width:
|
||||
return self.width < other.width
|
||||
if self.cap != other.cap:
|
||||
return self.cap < other.cap
|
||||
if not numpy.array_equal(self.cap_extensions, other.cap_extensions): # type: ignore
|
||||
if other.cap_extensions is None:
|
||||
return False
|
||||
if self.cap_extensions is None:
|
||||
return True
|
||||
return tuple(self.cap_extensions) < tuple(other.cap_extensions)
|
||||
if not numpy.array_equal(self.offset, other.offset):
|
||||
return tuple(self.offset) < tuple(other.offset)
|
||||
if self.repetition != other.repetition:
|
||||
return rep2key(self.repetition) < rep2key(other.repetition)
|
||||
return annotations_lt(self.annotations, other.annotations)
|
||||
|
||||
@staticmethod
|
||||
def travel(
|
||||
travel_pairs: Sequence[tuple[float, float]],
|
||||
travel_pairs: Sequence[Tuple[float, float]],
|
||||
width: float = 0.0,
|
||||
cap: PathCap = PathCap.Flush,
|
||||
cap_extensions: tuple[float, float] | None = None,
|
||||
cap_extensions: Optional[Tuple[float, float]] = None,
|
||||
offset: ArrayLike = (0.0, 0.0),
|
||||
rotation: float = 0,
|
||||
mirrored: Sequence[bool] = (False, False),
|
||||
layer: layer_t = 0,
|
||||
dose: float = 1.0,
|
||||
) -> 'Path':
|
||||
"""
|
||||
Build a path by specifying the turn angles and travel distances
|
||||
@ -264,11 +228,16 @@ class Path(Shape):
|
||||
Default `(0, 0)` or `None`, depending on cap type
|
||||
offset: Offset, default `(0, 0)`
|
||||
rotation: Rotation counterclockwise, in radians. Default `0`
|
||||
mirrored: Whether to mirror across the x or y axes. For example,
|
||||
`mirrored=(True, False)` results in a reflection across the x-axis,
|
||||
multiplying the path's y-coordinates by -1. Default `(False, False)`
|
||||
layer: Layer, default `0`
|
||||
dose: Dose, default `1.0`
|
||||
|
||||
Returns:
|
||||
The resulting Path object
|
||||
"""
|
||||
# TODO: Path.travel() needs testing
|
||||
#TODO: needs testing
|
||||
direction = numpy.array([1, 0])
|
||||
|
||||
verts = [numpy.zeros(2)]
|
||||
@ -277,13 +246,14 @@ class Path(Shape):
|
||||
verts.append(verts[-1] + direction * distance)
|
||||
|
||||
return Path(vertices=verts, width=width, cap=cap, cap_extensions=cap_extensions,
|
||||
offset=offset, rotation=rotation)
|
||||
offset=offset, rotation=rotation, mirrored=mirrored,
|
||||
layer=layer, dose=dose)
|
||||
|
||||
def to_polygons(
|
||||
self,
|
||||
num_vertices: int | None = None,
|
||||
max_arclen: float | None = None,
|
||||
) -> list['Polygon']:
|
||||
poly_num_points: int = None,
|
||||
poly_max_arclen: float = None,
|
||||
) -> List['Polygon']:
|
||||
extensions = self._calculate_cap_extensions()
|
||||
|
||||
v = remove_colinear_vertices(self.vertices, closed_path=False)
|
||||
@ -292,7 +262,7 @@ class Path(Shape):
|
||||
|
||||
if self.width == 0:
|
||||
verts = numpy.vstack((v, v[::-1]))
|
||||
return [Polygon(offset=self.offset, vertices=verts)]
|
||||
return [Polygon(offset=self.offset, vertices=verts, dose=self.dose, layer=self.layer)]
|
||||
|
||||
perp = dvdir[:, ::-1] * [[1, -1]] * self.width / 2
|
||||
|
||||
@ -343,33 +313,31 @@ class Path(Shape):
|
||||
o1.append(v[-1] - perp[-1])
|
||||
verts = numpy.vstack((o0, o1[::-1]))
|
||||
|
||||
polys = [Polygon(offset=self.offset, vertices=verts)]
|
||||
polys = [Polygon(offset=self.offset, vertices=verts, dose=self.dose, layer=self.layer)]
|
||||
|
||||
if self.cap == PathCap.Circle:
|
||||
#for vert in v: # not sure if every vertex, or just ends?
|
||||
for vert in [v[0], v[-1]]:
|
||||
circ = Circle(offset=vert, radius=self.width / 2)
|
||||
polys += circ.to_polygons(num_vertices=num_vertices, max_arclen=max_arclen)
|
||||
circ = Circle(offset=vert, radius=self.width / 2, dose=self.dose, layer=self.layer)
|
||||
polys += circ.to_polygons(poly_num_points=poly_num_points, poly_max_arclen=poly_max_arclen)
|
||||
|
||||
return polys
|
||||
|
||||
def get_bounds_single(self) -> NDArray[numpy.float64]:
|
||||
def get_bounds(self) -> NDArray[numpy.float64]:
|
||||
if self.cap == PathCap.Circle:
|
||||
bounds = self.offset + numpy.vstack((numpy.min(self.vertices, axis=0) - self.width / 2,
|
||||
numpy.max(self.vertices, axis=0) + self.width / 2))
|
||||
elif self.cap in (
|
||||
PathCap.Flush,
|
||||
PathCap.Square,
|
||||
PathCap.SquareCustom,
|
||||
):
|
||||
elif self.cap in (PathCap.Flush,
|
||||
PathCap.Square,
|
||||
PathCap.SquareCustom):
|
||||
bounds = numpy.array([[+inf, +inf], [-inf, -inf]])
|
||||
polys = self.to_polygons()
|
||||
for poly in polys:
|
||||
poly_bounds = poly.get_bounds_single_nonempty()
|
||||
poly_bounds = poly.get_bounds_nonempty()
|
||||
bounds[0, :] = numpy.minimum(bounds[0, :], poly_bounds[0, :])
|
||||
bounds[1, :] = numpy.maximum(bounds[1, :], poly_bounds[1, :])
|
||||
else:
|
||||
raise PatternError(f'get_bounds_single() not implemented for endcaps: {self.cap}')
|
||||
raise PatternError(f'get_bounds() not implemented for endcaps: {self.cap}')
|
||||
|
||||
return bounds
|
||||
|
||||
@ -378,7 +346,7 @@ class Path(Shape):
|
||||
self.vertices = numpy.dot(rotation_matrix_2d(theta), self.vertices.T).T
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int = 0) -> 'Path':
|
||||
def mirror(self, axis: int) -> 'Path':
|
||||
self.vertices[:, axis - 1] *= -1
|
||||
return self
|
||||
|
||||
@ -405,18 +373,15 @@ class Path(Shape):
|
||||
x_min = rotated_vertices[:, 0].argmin()
|
||||
if not is_scalar(x_min):
|
||||
y_min = rotated_vertices[x_min, 1].argmin()
|
||||
x_min = cast(Sequence, x_min)[y_min]
|
||||
x_min = x_min[y_min]
|
||||
reordered_vertices = numpy.roll(rotated_vertices, -x_min, axis=0)
|
||||
|
||||
width0 = self.width / norm_value
|
||||
|
||||
return ((type(self), reordered_vertices.data.tobytes(), width0, self.cap),
|
||||
(offset, scale / norm_value, rotation, False),
|
||||
lambda: Path(
|
||||
reordered_vertices * norm_value,
|
||||
width=self.width * norm_value,
|
||||
cap=self.cap,
|
||||
))
|
||||
return ((type(self), reordered_vertices.data.tobytes(), width0, self.cap, self.layer),
|
||||
(offset, scale / norm_value, rotation, False, self.dose),
|
||||
lambda: Path(reordered_vertices * norm_value, width=self.width * norm_value,
|
||||
cap=self.cap, layer=self.layer))
|
||||
|
||||
def clean_vertices(self) -> 'Path':
|
||||
"""
|
||||
@ -429,22 +394,22 @@ class Path(Shape):
|
||||
return self
|
||||
|
||||
def remove_duplicate_vertices(self) -> 'Path':
|
||||
"""
|
||||
'''
|
||||
Removes all consecutive duplicate (repeated) vertices.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
'''
|
||||
self.vertices = remove_duplicate_vertices(self.vertices, closed_path=False)
|
||||
return self
|
||||
|
||||
def remove_colinear_vertices(self) -> 'Path':
|
||||
"""
|
||||
'''
|
||||
Removes consecutive co-linear vertices.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
'''
|
||||
self.vertices = remove_colinear_vertices(self.vertices, closed_path=False)
|
||||
return self
|
||||
|
||||
@ -452,13 +417,29 @@ class Path(Shape):
|
||||
if self.cap == PathCap.Square:
|
||||
extensions = numpy.full(2, self.width / 2)
|
||||
elif self.cap == PathCap.SquareCustom:
|
||||
assert isinstance(self.cap_extensions, numpy.ndarray)
|
||||
assert(isinstance(self.cap_extensions, numpy.ndarray))
|
||||
extensions = self.cap_extensions
|
||||
else:
|
||||
# Flush or Circle
|
||||
extensions = numpy.zeros(2)
|
||||
return extensions
|
||||
|
||||
def lock(self) -> 'Path':
|
||||
self.vertices.flags.writeable = False
|
||||
if self.cap_extensions is not None:
|
||||
self.cap_extensions.flags.writeable = False
|
||||
Shape.lock(self)
|
||||
return self
|
||||
|
||||
def unlock(self) -> 'Path':
|
||||
Shape.unlock(self)
|
||||
self.vertices.flags.writeable = True
|
||||
if self.cap_extensions is not None:
|
||||
self.cap_extensions.flags.writeable = True
|
||||
return self
|
||||
|
||||
def __repr__(self) -> str:
|
||||
centroid = self.offset + self.vertices.mean(axis=0)
|
||||
return f'<Path centroid {centroid} v{len(self.vertices)} w{self.width} c{self.cap}>'
|
||||
dose = f' d{self.dose:g}' if self.dose != 1 else ''
|
||||
locked = ' L' if self.locked else ''
|
||||
return f'<Path l{self.layer} centroid {centroid} v{len(self.vertices)} w{self.width} c{self.cap}{dose}{locked}>'
|
||||
|
@ -1,52 +1,41 @@
|
||||
from typing import Any, cast
|
||||
from collections.abc import Sequence
|
||||
from typing import List, Dict, Optional, Sequence, Any
|
||||
import copy
|
||||
import functools
|
||||
|
||||
import numpy
|
||||
from numpy import pi
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
|
||||
from . import Shape, normalized_shape_tuple
|
||||
from ..error import PatternError
|
||||
from .. import PatternError
|
||||
from ..repetition import Repetition
|
||||
from ..utils import is_scalar, rotation_matrix_2d, annotations_lt, annotations_eq, rep2key
|
||||
from ..utils import is_scalar, rotation_matrix_2d, layer_t, AutoSlots
|
||||
from ..utils import remove_colinear_vertices, remove_duplicate_vertices, annotations_t
|
||||
from ..traits import LockableImpl
|
||||
|
||||
|
||||
@functools.total_ordering
|
||||
class Polygon(Shape):
|
||||
class Polygon(Shape, metaclass=AutoSlots):
|
||||
"""
|
||||
A polygon, consisting of a bunch of vertices (Nx2 ndarray) which specify an
|
||||
implicitly-closed boundary, and an offset.
|
||||
|
||||
Note that the setter for `Polygon.vertices` creates a copy of the
|
||||
passed vertex coordinates.
|
||||
|
||||
A `normalized_form(...)` is available, but can be quite slow with lots of vertices.
|
||||
"""
|
||||
__slots__ = (
|
||||
'_vertices',
|
||||
# Inherited
|
||||
'_offset', '_repetition', '_annotations',
|
||||
)
|
||||
__slots__ = ('_vertices',)
|
||||
|
||||
_vertices: NDArray[numpy.float64]
|
||||
""" Nx2 ndarray of vertices `[[x0, y0], [x1, y1], ...]` """
|
||||
|
||||
# vertices property
|
||||
@property
|
||||
def vertices(self) -> Any: # mypy#3004 NDArray[numpy.float64]:
|
||||
def vertices(self) -> Any: #TODO mypy#3004 NDArray[numpy.float64]:
|
||||
"""
|
||||
Vertices of the polygon (Nx2 ndarray: `[[x0, y0], [x1, y1], ...]`)
|
||||
|
||||
When setting, note that a copy of the provided vertices will be made,
|
||||
"""
|
||||
return self._vertices
|
||||
|
||||
@vertices.setter
|
||||
def vertices(self, val: ArrayLike) -> None:
|
||||
val = numpy.array(val, dtype=float)
|
||||
val = numpy.array(val, dtype=float) # TODO document that these might not be copied
|
||||
if len(val.shape) < 2 or val.shape[1] != 2:
|
||||
raise PatternError('Vertices must be an Nx2 array')
|
||||
if val.shape[0] < 3:
|
||||
@ -89,68 +78,55 @@ class Polygon(Shape):
|
||||
*,
|
||||
offset: ArrayLike = (0.0, 0.0),
|
||||
rotation: float = 0.0,
|
||||
repetition: Repetition | None = None,
|
||||
annotations: annotations_t | None = None,
|
||||
mirrored: Sequence[bool] = (False, False),
|
||||
layer: layer_t = 0,
|
||||
dose: float = 1.0,
|
||||
repetition: Optional[Repetition] = None,
|
||||
annotations: Optional[annotations_t] = None,
|
||||
locked: bool = False,
|
||||
raw: bool = False,
|
||||
) -> None:
|
||||
LockableImpl.unlock(self)
|
||||
self.identifier = ()
|
||||
if raw:
|
||||
assert isinstance(vertices, numpy.ndarray)
|
||||
assert isinstance(offset, numpy.ndarray)
|
||||
assert(isinstance(vertices, numpy.ndarray))
|
||||
assert(isinstance(offset, numpy.ndarray))
|
||||
self._vertices = vertices
|
||||
self._offset = offset
|
||||
self._repetition = repetition
|
||||
self._annotations = annotations if annotations is not None else {}
|
||||
self._layer = layer
|
||||
self._dose = dose
|
||||
else:
|
||||
self.vertices = vertices
|
||||
self.offset = offset
|
||||
self.repetition = repetition
|
||||
self.annotations = annotations if annotations is not None else {}
|
||||
self.layer = layer
|
||||
self.dose = dose
|
||||
self.rotate(rotation)
|
||||
[self.mirror(a) for a, do in enumerate(mirrored) if do]
|
||||
self.set_locked(locked)
|
||||
|
||||
def __deepcopy__(self, memo: dict | None = None) -> 'Polygon':
|
||||
def __deepcopy__(self, memo: Optional[Dict] = None) -> 'Polygon':
|
||||
memo = {} if memo is None else memo
|
||||
new = copy.copy(self)
|
||||
Shape.unlock(new)
|
||||
new._offset = self._offset.copy()
|
||||
new._vertices = self._vertices.copy()
|
||||
new._annotations = copy.deepcopy(self._annotations)
|
||||
new.set_locked(self.locked)
|
||||
return new
|
||||
|
||||
def __eq__(self, other: Any) -> bool:
|
||||
return (
|
||||
type(self) is type(other)
|
||||
and numpy.array_equal(self.offset, other.offset)
|
||||
and numpy.array_equal(self.vertices, other.vertices)
|
||||
and self.repetition == other.repetition
|
||||
and annotations_eq(self.annotations, other.annotations)
|
||||
)
|
||||
|
||||
def __lt__(self, other: Shape) -> bool:
|
||||
if type(self) is not type(other):
|
||||
if repr(type(self)) != repr(type(other)):
|
||||
return repr(type(self)) < repr(type(other))
|
||||
return id(type(self)) < id(type(other))
|
||||
other = cast(Polygon, other)
|
||||
if not numpy.array_equal(self.vertices, other.vertices):
|
||||
min_len = min(self.vertices.shape[0], other.vertices.shape[0])
|
||||
eq_mask = self.vertices[:min_len] != other.vertices[:min_len]
|
||||
eq_lt = self.vertices[:min_len] < other.vertices[:min_len]
|
||||
eq_lt_masked = eq_lt[eq_mask]
|
||||
if eq_lt_masked.size > 0:
|
||||
return eq_lt_masked.flat[0]
|
||||
return self.vertices.shape[0] < other.vertices.shape[0]
|
||||
if not numpy.array_equal(self.offset, other.offset):
|
||||
return tuple(self.offset) < tuple(other.offset)
|
||||
if self.repetition != other.repetition:
|
||||
return rep2key(self.repetition) < rep2key(other.repetition)
|
||||
return annotations_lt(self.annotations, other.annotations)
|
||||
|
||||
@staticmethod
|
||||
def square(
|
||||
side_length: float,
|
||||
*,
|
||||
rotation: float = 0.0,
|
||||
offset: ArrayLike = (0.0, 0.0),
|
||||
repetition: Repetition | None = None,
|
||||
layer: layer_t = 0,
|
||||
dose: float = 1.0,
|
||||
repetition: Optional[Repetition] = None,
|
||||
) -> 'Polygon':
|
||||
"""
|
||||
Draw a square given side_length, centered on the origin.
|
||||
@ -159,6 +135,8 @@ class Polygon(Shape):
|
||||
side_length: Length of one side
|
||||
rotation: Rotation counterclockwise, in radians
|
||||
offset: Offset, default `(0, 0)`
|
||||
layer: Layer, default `0`
|
||||
dose: Dose, default `1.0`
|
||||
repetition: `Repetition` object, default `None`
|
||||
|
||||
Returns:
|
||||
@ -169,7 +147,8 @@ class Polygon(Shape):
|
||||
[+1, +1],
|
||||
[+1, -1]], dtype=float)
|
||||
vertices = 0.5 * side_length * norm_square
|
||||
poly = Polygon(vertices, offset=offset, repetition=repetition)
|
||||
poly = Polygon(vertices, offset=offset, layer=layer, dose=dose,
|
||||
repetition=repetition)
|
||||
poly.rotate(rotation)
|
||||
return poly
|
||||
|
||||
@ -180,7 +159,9 @@ class Polygon(Shape):
|
||||
*,
|
||||
rotation: float = 0,
|
||||
offset: ArrayLike = (0.0, 0.0),
|
||||
repetition: Repetition | None = None,
|
||||
layer: layer_t = 0,
|
||||
dose: float = 1.0,
|
||||
repetition: Optional[Repetition] = None,
|
||||
) -> 'Polygon':
|
||||
"""
|
||||
Draw a rectangle with side lengths lx and ly, centered on the origin.
|
||||
@ -190,6 +171,8 @@ class Polygon(Shape):
|
||||
ly: Length along y (before rotation)
|
||||
rotation: Rotation counterclockwise, in radians
|
||||
offset: Offset, default `(0, 0)`
|
||||
layer: Layer, default `0`
|
||||
dose: Dose, default `1.0`
|
||||
repetition: `Repetition` object, default `None`
|
||||
|
||||
Returns:
|
||||
@ -199,22 +182,25 @@ class Polygon(Shape):
|
||||
[-lx, +ly],
|
||||
[+lx, +ly],
|
||||
[+lx, -ly]], dtype=float)
|
||||
poly = Polygon(vertices, offset=offset, repetition=repetition)
|
||||
poly = Polygon(vertices, offset=offset, layer=layer, dose=dose,
|
||||
repetition=repetition)
|
||||
poly.rotate(rotation)
|
||||
return poly
|
||||
|
||||
@staticmethod
|
||||
def rect(
|
||||
*,
|
||||
xmin: float | None = None,
|
||||
xctr: float | None = None,
|
||||
xmax: float | None = None,
|
||||
lx: float | None = None,
|
||||
ymin: float | None = None,
|
||||
yctr: float | None = None,
|
||||
ymax: float | None = None,
|
||||
ly: float | None = None,
|
||||
repetition: Repetition | None = None,
|
||||
xmin: Optional[float] = None,
|
||||
xctr: Optional[float] = None,
|
||||
xmax: Optional[float] = None,
|
||||
lx: Optional[float] = None,
|
||||
ymin: Optional[float] = None,
|
||||
yctr: Optional[float] = None,
|
||||
ymax: Optional[float] = None,
|
||||
ly: Optional[float] = None,
|
||||
layer: layer_t = 0,
|
||||
dose: float = 1.0,
|
||||
repetition: Optional[Repetition] = None,
|
||||
) -> 'Polygon':
|
||||
"""
|
||||
Draw a rectangle by specifying side/center positions.
|
||||
@ -231,6 +217,8 @@ class Polygon(Shape):
|
||||
yctr: Center y coordinate
|
||||
ymax: Maximum y coordinate
|
||||
ly: Length along y direction
|
||||
layer: Layer, default `0`
|
||||
dose: Dose, default `1.0`
|
||||
repetition: `Repetition` object, default `None`
|
||||
|
||||
Returns:
|
||||
@ -238,76 +226,79 @@ class Polygon(Shape):
|
||||
"""
|
||||
if lx is None:
|
||||
if xctr is None:
|
||||
assert xmin is not None
|
||||
assert xmax is not None
|
||||
assert(xmin is not None)
|
||||
assert(xmax is not None)
|
||||
xctr = 0.5 * (xmax + xmin)
|
||||
lx = xmax - xmin
|
||||
elif xmax is None:
|
||||
assert xmin is not None
|
||||
assert xctr is not None
|
||||
assert(xmin is not None)
|
||||
assert(xctr is not None)
|
||||
lx = 2 * (xctr - xmin)
|
||||
elif xmin is None:
|
||||
assert xctr is not None
|
||||
assert xmax is not None
|
||||
assert(xctr is not None)
|
||||
assert(xmax is not None)
|
||||
lx = 2 * (xmax - xctr)
|
||||
else:
|
||||
raise PatternError('Two of xmin, xctr, xmax, lx must be None!')
|
||||
else: # noqa: PLR5501
|
||||
else:
|
||||
if xctr is not None:
|
||||
pass
|
||||
elif xmax is None:
|
||||
assert xmin is not None
|
||||
assert lx is not None
|
||||
assert(xmin is not None)
|
||||
assert(lx is not None)
|
||||
xctr = xmin + 0.5 * lx
|
||||
elif xmin is None:
|
||||
assert xmax is not None
|
||||
assert lx is not None
|
||||
assert(xmax is not None)
|
||||
assert(lx is not None)
|
||||
xctr = xmax - 0.5 * lx
|
||||
else:
|
||||
raise PatternError('Two of xmin, xctr, xmax, lx must be None!')
|
||||
|
||||
if ly is None:
|
||||
if yctr is None:
|
||||
assert ymin is not None
|
||||
assert ymax is not None
|
||||
assert(ymin is not None)
|
||||
assert(ymax is not None)
|
||||
yctr = 0.5 * (ymax + ymin)
|
||||
ly = ymax - ymin
|
||||
elif ymax is None:
|
||||
assert ymin is not None
|
||||
assert yctr is not None
|
||||
assert(ymin is not None)
|
||||
assert(yctr is not None)
|
||||
ly = 2 * (yctr - ymin)
|
||||
elif ymin is None:
|
||||
assert yctr is not None
|
||||
assert ymax is not None
|
||||
assert(yctr is not None)
|
||||
assert(ymax is not None)
|
||||
ly = 2 * (ymax - yctr)
|
||||
else:
|
||||
raise PatternError('Two of ymin, yctr, ymax, ly must be None!')
|
||||
else: # noqa: PLR5501
|
||||
else:
|
||||
if yctr is not None:
|
||||
pass
|
||||
elif ymax is None:
|
||||
assert ymin is not None
|
||||
assert ly is not None
|
||||
assert(ymin is not None)
|
||||
assert(ly is not None)
|
||||
yctr = ymin + 0.5 * ly
|
||||
elif ymin is None:
|
||||
assert ly is not None
|
||||
assert ymax is not None
|
||||
assert(ly is not None)
|
||||
assert(ymax is not None)
|
||||
yctr = ymax - 0.5 * ly
|
||||
else:
|
||||
raise PatternError('Two of ymin, yctr, ymax, ly must be None!')
|
||||
|
||||
poly = Polygon.rectangle(lx, ly, offset=(xctr, yctr), repetition=repetition)
|
||||
poly = Polygon.rectangle(lx, ly, offset=(xctr, yctr),
|
||||
layer=layer, dose=dose, repetition=repetition)
|
||||
return poly
|
||||
|
||||
@staticmethod
|
||||
def octagon(
|
||||
*,
|
||||
side_length: float | None = None,
|
||||
inner_radius: float | None = None,
|
||||
side_length: Optional[float] = None,
|
||||
inner_radius: Optional[float] = None,
|
||||
regular: bool = True,
|
||||
center: ArrayLike = (0.0, 0.0),
|
||||
rotation: float = 0.0,
|
||||
repetition: Repetition | None = None,
|
||||
layer: layer_t = 0,
|
||||
dose: float = 1.0,
|
||||
repetition: Optional[Repetition] = None,
|
||||
) -> 'Polygon':
|
||||
"""
|
||||
Draw an octagon given one of (side length, inradius, circumradius).
|
||||
@ -325,12 +316,17 @@ class Polygon(Shape):
|
||||
rotation: Rotation counterclockwise, in radians.
|
||||
`0` results in four axis-aligned sides (the long sides of the
|
||||
irregular octagon).
|
||||
layer: Layer, default `0`
|
||||
dose: Dose, default `1.0`
|
||||
repetition: `Repetition` object, default `None`
|
||||
|
||||
Returns:
|
||||
A Polygon object containing the requested octagon
|
||||
"""
|
||||
s = (1 + numpy.sqrt(2)) if regular else 2
|
||||
if regular:
|
||||
s = 1 + numpy.sqrt(2)
|
||||
else:
|
||||
s = 2
|
||||
|
||||
norm_oct = numpy.array([
|
||||
[-1, -s],
|
||||
@ -348,18 +344,19 @@ class Polygon(Shape):
|
||||
side_length = 2 * inner_radius / s
|
||||
|
||||
vertices = 0.5 * side_length * norm_oct
|
||||
poly = Polygon(vertices, offset=center, repetition=repetition)
|
||||
poly = Polygon(vertices, offset=center, layer=layer, dose=dose, repetition=repetition)
|
||||
poly.rotate(rotation)
|
||||
return poly
|
||||
|
||||
|
||||
def to_polygons(
|
||||
self,
|
||||
num_vertices: int | None = None, # unused # noqa: ARG002
|
||||
max_arclen: float | None = None, # unused # noqa: ARG002
|
||||
) -> list['Polygon']:
|
||||
poly_num_points: int = None, # unused
|
||||
poly_max_arclen: float = None, # unused
|
||||
) -> List['Polygon']:
|
||||
return [copy.deepcopy(self)]
|
||||
|
||||
def get_bounds_single(self) -> NDArray[numpy.float64]: # TODO note shape get_bounds doesn't include repetition
|
||||
def get_bounds(self) -> NDArray[numpy.float64]:
|
||||
return numpy.vstack((self.offset + numpy.min(self.vertices, axis=0),
|
||||
self.offset + numpy.max(self.vertices, axis=0)))
|
||||
|
||||
@ -368,7 +365,7 @@ class Polygon(Shape):
|
||||
self.vertices = numpy.dot(rotation_matrix_2d(theta), self.vertices.T).T
|
||||
return self
|
||||
|
||||
def mirror(self, axis: int = 0) -> 'Polygon':
|
||||
def mirror(self, axis: int) -> 'Polygon':
|
||||
self.vertices[:, axis - 1] *= -1
|
||||
return self
|
||||
|
||||
@ -379,9 +376,8 @@ class Polygon(Shape):
|
||||
def normalized_form(self, norm_value: float) -> normalized_shape_tuple:
|
||||
# Note: this function is going to be pretty slow for many-vertexed polygons, relative to
|
||||
# other shapes
|
||||
meanv = self.vertices.mean(axis=0)
|
||||
zeroed_vertices = self.vertices - meanv
|
||||
offset = meanv + self.offset
|
||||
offset = self.vertices.mean(axis=0) + self.offset
|
||||
zeroed_vertices = self.vertices - offset
|
||||
|
||||
scale = zeroed_vertices.std()
|
||||
normed_vertices = zeroed_vertices / scale
|
||||
@ -395,14 +391,14 @@ class Polygon(Shape):
|
||||
x_min = rotated_vertices[:, 0].argmin()
|
||||
if not is_scalar(x_min):
|
||||
y_min = rotated_vertices[x_min, 1].argmin()
|
||||
x_min = cast(Sequence, x_min)[y_min]
|
||||
x_min = x_min[y_min]
|
||||
reordered_vertices = numpy.roll(rotated_vertices, -x_min, axis=0)
|
||||
|
||||
# TODO: normalize mirroring?
|
||||
|
||||
return ((type(self), reordered_vertices.data.tobytes()),
|
||||
(offset, scale / norm_value, rotation, False),
|
||||
lambda: Polygon(reordered_vertices * norm_value))
|
||||
return ((type(self), reordered_vertices.data.tobytes(), self.layer),
|
||||
(offset, scale / norm_value, rotation, False, self.dose),
|
||||
lambda: Polygon(reordered_vertices * norm_value, layer=self.layer))
|
||||
|
||||
def clean_vertices(self) -> 'Polygon':
|
||||
"""
|
||||
@ -415,25 +411,37 @@ class Polygon(Shape):
|
||||
return self
|
||||
|
||||
def remove_duplicate_vertices(self) -> 'Polygon':
|
||||
"""
|
||||
'''
|
||||
Removes all consecutive duplicate (repeated) vertices.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
'''
|
||||
self.vertices = remove_duplicate_vertices(self.vertices, closed_path=True)
|
||||
return self
|
||||
|
||||
def remove_colinear_vertices(self) -> 'Polygon':
|
||||
"""
|
||||
'''
|
||||
Removes consecutive co-linear vertices.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
'''
|
||||
self.vertices = remove_colinear_vertices(self.vertices, closed_path=True)
|
||||
return self
|
||||
|
||||
def lock(self) -> 'Polygon':
|
||||
self.vertices.flags.writeable = False
|
||||
Shape.lock(self)
|
||||
return self
|
||||
|
||||
def unlock(self) -> 'Polygon':
|
||||
Shape.unlock(self)
|
||||
self.vertices.flags.writeable = True
|
||||
return self
|
||||
|
||||
def __repr__(self) -> str:
|
||||
centroid = self.offset + self.vertices.mean(axis=0)
|
||||
return f'<Polygon centroid {centroid} v{len(self.vertices)}>'
|
||||
dose = f' d{self.dose:g}' if self.dose != 1 else ''
|
||||
locked = ' L' if self.locked else ''
|
||||
return f'<Polygon l{self.layer} centroid {centroid} v{len(self.vertices)}{dose}{locked}>'
|
||||
|
@ -1,62 +1,57 @@
|
||||
from typing import TYPE_CHECKING, Any
|
||||
from collections.abc import Callable
|
||||
from typing import List, Tuple, Callable, TypeVar, Optional, TYPE_CHECKING
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
import numpy
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
|
||||
from ..traits import (
|
||||
Rotatable, Mirrorable, Copyable, Scalable,
|
||||
PositionableImpl, PivotableImpl, RepeatableImpl, AnnotatableImpl,
|
||||
)
|
||||
from ..traits import (PositionableImpl, LayerableImpl, DoseableImpl,
|
||||
Rotatable, Mirrorable, Copyable, Scalable,
|
||||
PivotableImpl, LockableImpl, RepeatableImpl,
|
||||
AnnotatableImpl)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from . import Polygon
|
||||
|
||||
|
||||
# Type definitions
|
||||
normalized_shape_tuple = tuple[
|
||||
tuple,
|
||||
tuple[NDArray[numpy.float64], float, float, bool],
|
||||
Callable[[], 'Shape'],
|
||||
]
|
||||
normalized_shape_tuple = Tuple[Tuple,
|
||||
Tuple[NDArray[numpy.float64], float, float, bool, float],
|
||||
Callable[[], 'Shape']]
|
||||
|
||||
# ## Module-wide defaults
|
||||
# Default number of points per polygon for shapes
|
||||
DEFAULT_POLY_NUM_VERTICES = 24
|
||||
DEFAULT_POLY_NUM_POINTS = 24
|
||||
|
||||
|
||||
class Shape(PositionableImpl, Rotatable, Mirrorable, Copyable, Scalable,
|
||||
PivotableImpl, RepeatableImpl, AnnotatableImpl, metaclass=ABCMeta):
|
||||
T = TypeVar('T', bound='Shape')
|
||||
|
||||
|
||||
class Shape(PositionableImpl, LayerableImpl, DoseableImpl, Rotatable, Mirrorable, Copyable, Scalable,
|
||||
PivotableImpl, RepeatableImpl, LockableImpl, AnnotatableImpl, metaclass=ABCMeta):
|
||||
"""
|
||||
Class specifying functions common to all shapes.
|
||||
Abstract class specifying functions common to all shapes.
|
||||
"""
|
||||
__slots__ = () # Children should use AutoSlots or set slots themselves
|
||||
__slots__ = () # Children should use AutoSlots
|
||||
|
||||
#def __copy__(self) -> Self:
|
||||
# cls = self.__class__
|
||||
# new = cls.__new__(cls)
|
||||
# for name in self.__slots__: # type: str
|
||||
# object.__setattr__(new, name, getattr(self, name))
|
||||
# return new
|
||||
identifier: Tuple
|
||||
""" An arbitrary identifier for the shape, usually empty but used by `Pattern.flatten()` """
|
||||
|
||||
#
|
||||
# Methods (abstract)
|
||||
#
|
||||
@abstractmethod
|
||||
def __eq__(self, other: Any) -> bool:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def __lt__(self, other: 'Shape') -> bool:
|
||||
pass
|
||||
def __copy__(self) -> 'Shape':
|
||||
cls = self.__class__
|
||||
new = cls.__new__(cls)
|
||||
for name in self.__slots__: # type: str
|
||||
object.__setattr__(new, name, getattr(self, name))
|
||||
return new
|
||||
|
||||
'''
|
||||
--- Abstract methods
|
||||
'''
|
||||
@abstractmethod
|
||||
def to_polygons(
|
||||
self,
|
||||
num_vertices: int | None = None,
|
||||
max_arclen: float | None = None,
|
||||
) -> list['Polygon']:
|
||||
num_vertices: Optional[int] = None,
|
||||
max_arclen: Optional[float] = None,
|
||||
) -> List['Polygon']:
|
||||
"""
|
||||
Returns a list of polygons which approximate the shape.
|
||||
|
||||
@ -73,9 +68,9 @@ class Shape(PositionableImpl, Rotatable, Mirrorable, Copyable, Scalable,
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def normalized_form(self, norm_value: int) -> normalized_shape_tuple:
|
||||
def normalized_form(self: T, norm_value: int) -> normalized_shape_tuple:
|
||||
"""
|
||||
Writes the shape in a standardized notation, with offset, scale, and rotation
|
||||
Writes the shape in a standardized notation, with offset, scale, rotation, and dose
|
||||
information separated out from the remaining values.
|
||||
|
||||
Args:
|
||||
@ -90,20 +85,20 @@ class Shape(PositionableImpl, Rotatable, Mirrorable, Copyable, Scalable,
|
||||
`(intrinsic, extrinsic, constructor)`. These are further broken down as:
|
||||
`intrinsic`: A tuple of basic types containing all information about the instance that
|
||||
is not contained in 'extrinsic'. Usually, `intrinsic[0] == type(self)`.
|
||||
`extrinsic`: `([x_offset, y_offset], scale, rotation, mirror_across_x_axis)`
|
||||
`extrinsic`: `([x_offset, y_offset], scale, rotation, mirror_across_x_axis, dose)`
|
||||
`constructor`: A callable (no arguments) which returns an instance of `type(self)` with
|
||||
internal state equivalent to `intrinsic`.
|
||||
"""
|
||||
pass
|
||||
|
||||
#
|
||||
# Non-abstract methods
|
||||
#
|
||||
'''
|
||||
---- Non-abstract methods
|
||||
'''
|
||||
def manhattanize_fast(
|
||||
self,
|
||||
grid_x: ArrayLike,
|
||||
grid_y: ArrayLike,
|
||||
) -> list['Polygon']:
|
||||
) -> List['Polygon']:
|
||||
"""
|
||||
Returns a list of polygons with grid-aligned ("Manhattan") edges approximating the shape.
|
||||
|
||||
@ -127,7 +122,7 @@ class Shape(PositionableImpl, Rotatable, Mirrorable, Copyable, Scalable,
|
||||
|
||||
polygon_contours = []
|
||||
for polygon in self.to_polygons():
|
||||
bounds = polygon.get_bounds_single()
|
||||
bounds = polygon.get_bounds()
|
||||
if bounds is None:
|
||||
continue
|
||||
|
||||
@ -135,7 +130,7 @@ class Shape(PositionableImpl, Rotatable, Mirrorable, Copyable, Scalable,
|
||||
|
||||
vertex_lists = []
|
||||
p_verts = polygon.vertices + polygon.offset
|
||||
for v, v_next in zip(p_verts, numpy.roll(p_verts, -1, axis=0), strict=True):
|
||||
for v, v_next in zip(p_verts, numpy.roll(p_verts, -1, axis=0)):
|
||||
dv = v_next - v
|
||||
|
||||
# Find x-index bounds for the line # TODO: fix this and err_xmin/xmax for grids smaller than the line / shape
|
||||
@ -165,7 +160,7 @@ class Shape(PositionableImpl, Rotatable, Mirrorable, Copyable, Scalable,
|
||||
|
||||
m = dv[1] / dv[0]
|
||||
|
||||
def get_grid_inds(xes: ArrayLike, m: float = m, v: NDArray = v) -> NDArray[numpy.float64]:
|
||||
def get_grid_inds(xes: ArrayLike) -> NDArray[numpy.float64]:
|
||||
ys = m * (xes - v[0]) + v[1]
|
||||
|
||||
# (inds - 1) is the index of the y-grid line below the edge's intersection with the x-grid
|
||||
@ -180,14 +175,14 @@ class Shape(PositionableImpl, Rotatable, Mirrorable, Copyable, Scalable,
|
||||
return inds
|
||||
|
||||
# Find the y indices on all x gridlines
|
||||
xs = gx[int(gxi_min):int(gxi_max)]
|
||||
xs = gx[gxi_min:gxi_max]
|
||||
inds = get_grid_inds(xs)
|
||||
|
||||
# Find y-intersections for x-midpoints
|
||||
xs2 = (xs[:-1] + xs[1:]) / 2
|
||||
inds2 = get_grid_inds(xs2)
|
||||
|
||||
xinds = numpy.rint(numpy.arange(gxi_min, gxi_max - 0.99, 1 / 3)).astype(numpy.int64)
|
||||
xinds = numpy.rint(numpy.arange(gxi_min, gxi_max - 0.99, 1 / 3), dtype=numpy.int64, casting='unsafe')
|
||||
|
||||
# interleave the results
|
||||
yinds = xinds.copy()
|
||||
@ -202,7 +197,12 @@ class Shape(PositionableImpl, Rotatable, Mirrorable, Copyable, Scalable,
|
||||
vertex_lists.append(vlist)
|
||||
polygon_contours.append(numpy.vstack(vertex_lists))
|
||||
|
||||
manhattan_polygons = [Polygon(vertices=contour) for contour in polygon_contours]
|
||||
manhattan_polygons = []
|
||||
for contour in polygon_contours:
|
||||
manhattan_polygons.append(Polygon(
|
||||
vertices=contour,
|
||||
layer=self.layer,
|
||||
dose=self.dose))
|
||||
|
||||
return manhattan_polygons
|
||||
|
||||
@ -210,7 +210,7 @@ class Shape(PositionableImpl, Rotatable, Mirrorable, Copyable, Scalable,
|
||||
self,
|
||||
grid_x: ArrayLike,
|
||||
grid_y: ArrayLike,
|
||||
) -> list['Polygon']:
|
||||
) -> List['Polygon']:
|
||||
"""
|
||||
Returns a list of polygons with grid-aligned ("Manhattan") edges approximating the shape.
|
||||
|
||||
@ -259,19 +259,18 @@ class Shape(PositionableImpl, Rotatable, Mirrorable, Copyable, Scalable,
|
||||
polygon_contours = []
|
||||
for polygon in self.to_polygons():
|
||||
# Get rid of unused gridlines (anything not within 2 lines of the polygon bounds)
|
||||
bounds = polygon.get_bounds_single()
|
||||
bounds = polygon.get_bounds()
|
||||
if bounds is None:
|
||||
continue
|
||||
|
||||
mins, maxs = bounds
|
||||
keep_x = numpy.logical_and(grx > mins[0], grx < maxs[0])
|
||||
keep_y = numpy.logical_and(gry > mins[1], gry < maxs[1])
|
||||
# Flood left & rightwards by 2 cells
|
||||
for kk in (keep_x, keep_y):
|
||||
for ss in (1, 2):
|
||||
kk[ss:] += kk[:-ss]
|
||||
kk[:-ss] += kk[ss:]
|
||||
kk[:] = kk > 0
|
||||
for k in (keep_x, keep_y):
|
||||
for s in (1, 2):
|
||||
k[s:] += k[:-s]
|
||||
k[:-s] += k[s:]
|
||||
k = k > 0
|
||||
|
||||
gx = grx[keep_x]
|
||||
gy = gry[keep_y]
|
||||
@ -294,10 +293,23 @@ class Shape(PositionableImpl, Rotatable, Mirrorable, Copyable, Scalable,
|
||||
for contour in contours:
|
||||
# /2 deals with supersampling
|
||||
# +.5 deals with the fact that our 0-edge becomes -.5 in the super-sampled contour output
|
||||
snapped_contour = numpy.rint((contour + .5) / 2).astype(numpy.int64)
|
||||
snapped_contour = numpy.rint((contour + .5) / 2, dtype=numpy.int64, casting='unsafe')
|
||||
vertices = numpy.hstack((grx[snapped_contour[:, None, 0] + offset_i[0]],
|
||||
gry[snapped_contour[:, None, 1] + offset_i[1]]))
|
||||
|
||||
manhattan_polygons.append(Polygon(vertices=vertices))
|
||||
manhattan_polygons.append(Polygon(
|
||||
vertices=vertices,
|
||||
layer=self.layer,
|
||||
dose=self.dose))
|
||||
|
||||
return manhattan_polygons
|
||||
|
||||
def lock(self: T) -> T:
|
||||
PositionableImpl._lock(self)
|
||||
LockableImpl.lock(self)
|
||||
return self
|
||||
|
||||
def unlock(self: T) -> T:
|
||||
LockableImpl.unlock(self)
|
||||
PositionableImpl._unlock(self)
|
||||
return self
|
||||
|
@ -1,37 +1,33 @@
|
||||
from typing import Self, Any, cast
|
||||
from typing import List, Tuple, Dict, Sequence, Optional, Any
|
||||
import copy
|
||||
import functools
|
||||
|
||||
import numpy
|
||||
from numpy import pi, nan
|
||||
from numpy import pi, inf
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
|
||||
from . import Shape, Polygon, normalized_shape_tuple
|
||||
from ..error import PatternError
|
||||
from .. import PatternError
|
||||
from ..repetition import Repetition
|
||||
from ..traits import RotatableImpl
|
||||
from ..utils import is_scalar, get_bit, annotations_t, annotations_lt, annotations_eq, rep2key
|
||||
from ..utils import is_scalar, get_bit, normalize_mirror, layer_t, AutoSlots
|
||||
from ..utils import annotations_t
|
||||
from ..traits import LockableImpl
|
||||
|
||||
# Loaded on use:
|
||||
# from freetype import Face
|
||||
# from matplotlib.path import Path
|
||||
|
||||
|
||||
@functools.total_ordering
|
||||
class Text(RotatableImpl, Shape):
|
||||
class Text(RotatableImpl, Shape, metaclass=AutoSlots):
|
||||
"""
|
||||
Text (to be printed e.g. as a set of polygons).
|
||||
This is distinct from non-printed Label objects.
|
||||
"""
|
||||
__slots__ = (
|
||||
'_string', '_height', '_mirrored', 'font_path',
|
||||
# Inherited
|
||||
'_offset', '_repetition', '_annotations', '_rotation',
|
||||
)
|
||||
__slots__ = ('_string', '_height', '_mirrored', 'font_path')
|
||||
|
||||
_string: str
|
||||
_height: float
|
||||
_mirrored: bool
|
||||
_mirrored: NDArray[numpy.bool_]
|
||||
font_path: str
|
||||
|
||||
# vertices property
|
||||
@ -54,13 +50,16 @@ class Text(RotatableImpl, Shape):
|
||||
raise PatternError('Height must be a scalar')
|
||||
self._height = val
|
||||
|
||||
# Mirrored property
|
||||
@property
|
||||
def mirrored(self) -> bool: # mypy#3004, should be bool
|
||||
def mirrored(self) -> Any: #TODO mypy#3004 NDArray[numpy.bool_]:
|
||||
return self._mirrored
|
||||
|
||||
@mirrored.setter
|
||||
def mirrored(self, val: bool) -> None:
|
||||
self._mirrored = bool(val)
|
||||
def mirrored(self, val: Sequence[bool]) -> None:
|
||||
if is_scalar(val):
|
||||
raise PatternError('Mirrored must be a 2-element list of booleans')
|
||||
self._mirrored = numpy.array(val, dtype=bool, copy=True)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@ -70,71 +69,56 @@ class Text(RotatableImpl, Shape):
|
||||
*,
|
||||
offset: ArrayLike = (0.0, 0.0),
|
||||
rotation: float = 0.0,
|
||||
repetition: Repetition | None = None,
|
||||
annotations: annotations_t | None = None,
|
||||
mirrored: ArrayLike = (False, False),
|
||||
layer: layer_t = 0,
|
||||
dose: float = 1.0,
|
||||
repetition: Optional[Repetition] = None,
|
||||
annotations: Optional[annotations_t] = None,
|
||||
locked: bool = False,
|
||||
raw: bool = False,
|
||||
) -> None:
|
||||
LockableImpl.unlock(self)
|
||||
self.identifier = ()
|
||||
if raw:
|
||||
assert isinstance(offset, numpy.ndarray)
|
||||
assert(isinstance(offset, numpy.ndarray))
|
||||
assert(isinstance(mirrored, numpy.ndarray))
|
||||
self._offset = offset
|
||||
self._layer = layer
|
||||
self._dose = dose
|
||||
self._string = string
|
||||
self._height = height
|
||||
self._rotation = rotation
|
||||
self._mirrored = mirrored
|
||||
self._repetition = repetition
|
||||
self._annotations = annotations if annotations is not None else {}
|
||||
else:
|
||||
self.offset = offset
|
||||
self.layer = layer
|
||||
self.dose = dose
|
||||
self.string = string
|
||||
self.height = height
|
||||
self.rotation = rotation
|
||||
self.mirrored = mirrored
|
||||
self.repetition = repetition
|
||||
self.annotations = annotations if annotations is not None else {}
|
||||
self.font_path = font_path
|
||||
self.set_locked(locked)
|
||||
|
||||
def __deepcopy__(self, memo: dict | None = None) -> Self:
|
||||
def __deepcopy__(self, memo: Dict = None) -> 'Text':
|
||||
memo = {} if memo is None else memo
|
||||
new = copy.copy(self)
|
||||
Shape.unlock(new)
|
||||
new._offset = self._offset.copy()
|
||||
new._mirrored = copy.deepcopy(self._mirrored, memo)
|
||||
new._annotations = copy.deepcopy(self._annotations)
|
||||
new.set_locked(self.locked)
|
||||
return new
|
||||
|
||||
def __eq__(self, other: Any) -> bool:
|
||||
return (
|
||||
type(self) is type(other)
|
||||
and numpy.array_equal(self.offset, other.offset)
|
||||
and self.string == other.string
|
||||
and self.height == other.height
|
||||
and self.font_path == other.font_path
|
||||
and self.rotation == other.rotation
|
||||
and self.repetition == other.repetition
|
||||
and annotations_eq(self.annotations, other.annotations)
|
||||
)
|
||||
|
||||
def __lt__(self, other: Shape) -> bool:
|
||||
if type(self) is not type(other):
|
||||
if repr(type(self)) != repr(type(other)):
|
||||
return repr(type(self)) < repr(type(other))
|
||||
return id(type(self)) < id(type(other))
|
||||
other = cast(Text, other)
|
||||
if not self.height == other.height:
|
||||
return self.height < other.height
|
||||
if not self.string == other.string:
|
||||
return self.string < other.string
|
||||
if not self.font_path == other.font_path:
|
||||
return self.font_path < other.font_path
|
||||
if not numpy.array_equal(self.offset, other.offset):
|
||||
return tuple(self.offset) < tuple(other.offset)
|
||||
if self.rotation != other.rotation:
|
||||
return self.rotation < other.rotation
|
||||
if self.repetition != other.repetition:
|
||||
return rep2key(self.repetition) < rep2key(other.repetition)
|
||||
return annotations_lt(self.annotations, other.annotations)
|
||||
|
||||
def to_polygons(
|
||||
self,
|
||||
num_vertices: int | None = None, # unused # noqa: ARG002
|
||||
max_arclen: float | None = None, # unused # noqa: ARG002
|
||||
) -> list[Polygon]:
|
||||
poly_num_points: Optional[int] = None, # unused
|
||||
poly_max_arclen: Optional[float] = None, # unused
|
||||
) -> List[Polygon]:
|
||||
all_polygons = []
|
||||
total_advance = 0.0
|
||||
for char in self.string:
|
||||
@ -142,9 +126,8 @@ class Text(RotatableImpl, Shape):
|
||||
|
||||
# Move these polygons to the right of the previous letter
|
||||
for xys in raw_polys:
|
||||
poly = Polygon(xys)
|
||||
if self.mirrored:
|
||||
poly.mirror()
|
||||
poly = Polygon(xys, dose=self.dose, layer=self.layer)
|
||||
poly.mirror2d(self.mirrored)
|
||||
poly.scale_by(self.height)
|
||||
poly.offset = self.offset + [total_advance, 0]
|
||||
poly.rotate_around(self.offset, self.rotation)
|
||||
@ -155,53 +138,45 @@ class Text(RotatableImpl, Shape):
|
||||
|
||||
return all_polygons
|
||||
|
||||
def mirror(self, axis: int = 0) -> Self:
|
||||
self.mirrored = not self.mirrored
|
||||
if axis == 1:
|
||||
self.rotation += pi
|
||||
def mirror(self, axis: int) -> 'Text':
|
||||
self.mirrored[axis] = not self.mirrored[axis]
|
||||
return self
|
||||
|
||||
def scale_by(self, c: float) -> Self:
|
||||
def scale_by(self, c: float) -> 'Text':
|
||||
self.height *= c
|
||||
return self
|
||||
|
||||
def normalized_form(self, norm_value: float) -> normalized_shape_tuple:
|
||||
rotation = self.rotation % (2 * pi)
|
||||
return ((type(self), self.string, self.font_path),
|
||||
(self.offset, self.height / norm_value, rotation, bool(self.mirrored)),
|
||||
lambda: Text(
|
||||
string=self.string,
|
||||
height=self.height * norm_value,
|
||||
font_path=self.font_path,
|
||||
rotation=rotation,
|
||||
).mirror2d(across_x=self.mirrored),
|
||||
)
|
||||
mirror_x, rotation = normalize_mirror(self.mirrored)
|
||||
rotation += self.rotation
|
||||
rotation %= 2 * pi
|
||||
return ((type(self), self.string, self.font_path, self.layer),
|
||||
(self.offset, self.height / norm_value, rotation, mirror_x, self.dose),
|
||||
lambda: Text(string=self.string,
|
||||
height=self.height * norm_value,
|
||||
font_path=self.font_path,
|
||||
rotation=rotation,
|
||||
mirrored=(mirror_x, False),
|
||||
layer=self.layer))
|
||||
|
||||
def get_bounds_single(self) -> NDArray[numpy.float64]:
|
||||
def get_bounds(self) -> NDArray[numpy.float64]:
|
||||
# rotation makes this a huge pain when using slot.advance and glyph.bbox(), so
|
||||
# just convert to polygons instead
|
||||
bounds = numpy.array([[+inf, +inf], [-inf, -inf]])
|
||||
polys = self.to_polygons()
|
||||
pbounds = numpy.full((len(polys), 2, 2), nan)
|
||||
for pp, poly in enumerate(polys):
|
||||
pbounds[pp] = poly.get_bounds_nonempty()
|
||||
bounds = numpy.vstack((
|
||||
numpy.min(pbounds[: 0, :], axis=0),
|
||||
numpy.max(pbounds[: 1, :], axis=0),
|
||||
))
|
||||
for poly in polys:
|
||||
poly_bounds = poly.get_bounds()
|
||||
bounds[0, :] = numpy.minimum(bounds[0, :], poly_bounds[0, :])
|
||||
bounds[1, :] = numpy.maximum(bounds[1, :], poly_bounds[1, :])
|
||||
|
||||
return bounds
|
||||
|
||||
def __repr__(self) -> str:
|
||||
rotation = f' r°{numpy.rad2deg(self.rotation):g}' if self.rotation != 0 else ''
|
||||
mirrored = ' m{:d}' if self.mirrored else ''
|
||||
return f'<TextShape "{self.string}" o{self.offset} h{self.height:g}{rotation}{mirrored}>'
|
||||
|
||||
|
||||
def get_char_as_polygons(
|
||||
font_path: str,
|
||||
char: str,
|
||||
resolution: float = 48 * 64,
|
||||
) -> tuple[list[list[list[float]]], float]:
|
||||
) -> Tuple[List[List[List[float]]], float]:
|
||||
from freetype import Face # type: ignore
|
||||
from matplotlib.path import Path # type: ignore
|
||||
|
||||
@ -221,7 +196,7 @@ def get_char_as_polygons(
|
||||
'advance' distance (distance from the start of this glyph to the start of the next one)
|
||||
"""
|
||||
if len(char) != 1:
|
||||
raise PatternError('get_char_as_polygons called with non-char')
|
||||
raise Exception('get_char_as_polygons called with non-char')
|
||||
|
||||
face = Face(font_path)
|
||||
face.set_char_size(resolution)
|
||||
@ -230,8 +205,7 @@ def get_char_as_polygons(
|
||||
outline = slot.outline
|
||||
|
||||
start = 0
|
||||
all_verts_list = []
|
||||
all_codes = []
|
||||
all_verts_list, all_codes = [], []
|
||||
for end in outline.contours:
|
||||
points = outline.points[start:end + 1]
|
||||
points.append(points[0])
|
||||
@ -239,7 +213,7 @@ def get_char_as_polygons(
|
||||
tags = outline.tags[start:end + 1]
|
||||
tags.append(tags[0])
|
||||
|
||||
segments: list[list[list[float]]] = []
|
||||
segments: List[List[List[float]]] = []
|
||||
for j, point in enumerate(points):
|
||||
# If we already have a segment, add this point to it
|
||||
if j > 0:
|
||||
@ -284,3 +258,20 @@ def get_char_as_polygons(
|
||||
polygons = path.to_polygons()
|
||||
|
||||
return polygons, advance
|
||||
|
||||
def lock(self) -> 'Text':
|
||||
self.mirrored.flags.writeable = False
|
||||
Shape.lock(self)
|
||||
return self
|
||||
|
||||
def unlock(self) -> 'Text':
|
||||
Shape.unlock(self)
|
||||
self.mirrored.flags.writeable = True
|
||||
return self
|
||||
|
||||
def __repr__(self) -> str:
|
||||
rotation = f' r°{self.rotation*180/pi:g}' if self.rotation != 0 else ''
|
||||
dose = f' d{self.dose:g}' if self.dose != 1 else ''
|
||||
locked = ' L' if self.locked else ''
|
||||
mirrored = ' m{:d}{:d}'.format(*self.mirrored) if self.mirrored.any() else ''
|
||||
return f'<TextShape "{self.string}" l{self.layer} o{self.offset} h{self.height:g}{rotation}{mirrored}{dose}{locked}>'
|
||||
|
248
masque/subpattern.py
Normal file
248
masque/subpattern.py
Normal file
@ -0,0 +1,248 @@
|
||||
"""
|
||||
SubPattern provides basic support for nesting Pattern objects within each other, by adding
|
||||
offset, rotation, scaling, and other such properties to the reference.
|
||||
"""
|
||||
#TODO more top-level documentation
|
||||
|
||||
from typing import Dict, Tuple, Optional, Sequence, TYPE_CHECKING, Any, TypeVar
|
||||
import copy
|
||||
|
||||
import numpy
|
||||
from numpy import pi
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
|
||||
from .error import PatternError
|
||||
from .utils import is_scalar, AutoSlots, annotations_t
|
||||
from .repetition import Repetition
|
||||
from .traits import (PositionableImpl, DoseableImpl, RotatableImpl, ScalableImpl,
|
||||
Mirrorable, PivotableImpl, Copyable, LockableImpl, RepeatableImpl,
|
||||
AnnotatableImpl)
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from . import Pattern
|
||||
|
||||
|
||||
S = TypeVar('S', bound='SubPattern')
|
||||
|
||||
|
||||
class SubPattern(PositionableImpl, DoseableImpl, RotatableImpl, ScalableImpl, Mirrorable,
|
||||
PivotableImpl, Copyable, RepeatableImpl, LockableImpl, AnnotatableImpl,
|
||||
metaclass=AutoSlots):
|
||||
"""
|
||||
SubPattern provides basic support for nesting Pattern objects within each other, by adding
|
||||
offset, rotation, scaling, and associated methods.
|
||||
"""
|
||||
__slots__ = ('_pattern',
|
||||
'_mirrored',
|
||||
'identifier',
|
||||
)
|
||||
|
||||
_pattern: Optional['Pattern']
|
||||
""" The `Pattern` being instanced """
|
||||
|
||||
_mirrored: NDArray[numpy.bool_]
|
||||
""" Whether to mirror the instance across the x and/or y axes. """
|
||||
|
||||
identifier: Tuple[Any, ...]
|
||||
""" Arbitrary identifier, used internally by some `masque` functions. """
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
pattern: Optional['Pattern'],
|
||||
*,
|
||||
offset: ArrayLike = (0.0, 0.0),
|
||||
rotation: float = 0.0,
|
||||
mirrored: Optional[Sequence[bool]] = None,
|
||||
dose: float = 1.0,
|
||||
scale: float = 1.0,
|
||||
repetition: Optional[Repetition] = None,
|
||||
annotations: Optional[annotations_t] = None,
|
||||
locked: bool = False,
|
||||
identifier: Tuple[Any, ...] = (),
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
pattern: Pattern to reference.
|
||||
offset: (x, y) offset applied to the referenced pattern. Not affected by rotation etc.
|
||||
rotation: Rotation (radians, counterclockwise) relative to the referenced pattern's (0, 0).
|
||||
mirrored: Whether to mirror the referenced pattern across its x and y axes.
|
||||
dose: Scaling factor applied to the dose.
|
||||
scale: Scaling factor applied to the pattern's geometry.
|
||||
repetition: TODO
|
||||
locked: Whether the `SubPattern` is locked after initialization.
|
||||
identifier: Arbitrary tuple, used internally by some `masque` functions.
|
||||
"""
|
||||
LockableImpl.unlock(self)
|
||||
self.identifier = identifier
|
||||
self.pattern = pattern
|
||||
self.offset = offset
|
||||
self.rotation = rotation
|
||||
self.dose = dose
|
||||
self.scale = scale
|
||||
if mirrored is None:
|
||||
mirrored = (False, False)
|
||||
self.mirrored = mirrored
|
||||
self.repetition = repetition
|
||||
self.annotations = annotations if annotations is not None else {}
|
||||
self.set_locked(locked)
|
||||
|
||||
def __copy__(self) -> 'SubPattern':
|
||||
new = SubPattern(pattern=self.pattern,
|
||||
offset=self.offset.copy(),
|
||||
rotation=self.rotation,
|
||||
dose=self.dose,
|
||||
scale=self.scale,
|
||||
mirrored=self.mirrored.copy(),
|
||||
repetition=copy.deepcopy(self.repetition),
|
||||
annotations=copy.deepcopy(self.annotations),
|
||||
locked=self.locked)
|
||||
return new
|
||||
|
||||
def __deepcopy__(self, memo: Dict = None) -> 'SubPattern':
|
||||
memo = {} if memo is None else memo
|
||||
new = copy.copy(self)
|
||||
LockableImpl.unlock(new)
|
||||
new.pattern = copy.deepcopy(self.pattern, memo)
|
||||
new.repetition = copy.deepcopy(self.repetition, memo)
|
||||
new.annotations = copy.deepcopy(self.annotations, memo)
|
||||
new.set_locked(self.locked)
|
||||
return new
|
||||
|
||||
# pattern property
|
||||
@property
|
||||
def pattern(self) -> Optional['Pattern']:
|
||||
return self._pattern
|
||||
|
||||
@pattern.setter
|
||||
def pattern(self, val: Optional['Pattern']) -> None:
|
||||
from .pattern import Pattern
|
||||
if val is not None and not isinstance(val, Pattern):
|
||||
raise PatternError(f'Provided pattern {val} is not a Pattern object or None!')
|
||||
self._pattern = val
|
||||
|
||||
# Mirrored property
|
||||
@property
|
||||
def mirrored(self) -> Any: #TODO mypy#3004 NDArray[numpy.bool_]:
|
||||
return self._mirrored
|
||||
|
||||
@mirrored.setter
|
||||
def mirrored(self, val: ArrayLike) -> None:
|
||||
if is_scalar(val):
|
||||
raise PatternError('Mirrored must be a 2-element list of booleans')
|
||||
self._mirrored = numpy.array(val, dtype=bool, copy=True)
|
||||
|
||||
def as_pattern(self) -> 'Pattern':
|
||||
"""
|
||||
Returns:
|
||||
A copy of self.pattern which has been scaled, rotated, etc. according to this
|
||||
`SubPattern`'s properties.
|
||||
"""
|
||||
assert(self.pattern is not None)
|
||||
pattern = self.pattern.deepcopy().deepunlock()
|
||||
if self.scale != 1:
|
||||
pattern.scale_by(self.scale)
|
||||
if numpy.any(self.mirrored):
|
||||
pattern.mirror2d(self.mirrored)
|
||||
if self.rotation % (2 * pi) != 0:
|
||||
pattern.rotate_around((0.0, 0.0), self.rotation)
|
||||
if numpy.any(self.offset):
|
||||
pattern.translate_elements(self.offset)
|
||||
if self.dose != 1:
|
||||
pattern.scale_element_doses(self.dose)
|
||||
|
||||
if self.repetition is not None:
|
||||
combined = type(pattern)(name='__repetition__')
|
||||
for dd in self.repetition.displacements:
|
||||
temp_pat = pattern.deepcopy()
|
||||
temp_pat.translate_elements(dd)
|
||||
combined.append(temp_pat)
|
||||
pattern = combined
|
||||
|
||||
return pattern
|
||||
|
||||
def rotate(self: S, rotation: float) -> S:
|
||||
self.rotation += rotation
|
||||
if self.repetition is not None:
|
||||
self.repetition.rotate(rotation)
|
||||
return self
|
||||
|
||||
def mirror(self: S, axis: int) -> S:
|
||||
self.mirrored[axis] = not self.mirrored[axis]
|
||||
self.rotation *= -1
|
||||
if self.repetition is not None:
|
||||
self.repetition.mirror(axis)
|
||||
return self
|
||||
|
||||
def get_bounds(self) -> Optional[NDArray[numpy.float64]]:
|
||||
"""
|
||||
Return a `numpy.ndarray` containing `[[x_min, y_min], [x_max, y_max]]`, corresponding to the
|
||||
extent of the `SubPattern` in each dimension.
|
||||
Returns `None` if the contained `Pattern` is empty.
|
||||
|
||||
Returns:
|
||||
`[[x_min, y_min], [x_max, y_max]]` or `None`
|
||||
"""
|
||||
if self.pattern is None:
|
||||
return None
|
||||
return self.as_pattern().get_bounds()
|
||||
|
||||
def lock(self: S) -> S:
|
||||
"""
|
||||
Lock the SubPattern, disallowing changes
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
self.mirrored.flags.writeable = False
|
||||
PositionableImpl._lock(self)
|
||||
LockableImpl.lock(self)
|
||||
return self
|
||||
|
||||
def unlock(self: S) -> S:
|
||||
"""
|
||||
Unlock the SubPattern
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
LockableImpl.unlock(self)
|
||||
PositionableImpl._unlock(self)
|
||||
self.mirrored.flags.writeable = True
|
||||
return self
|
||||
|
||||
def deeplock(self: S) -> S:
|
||||
"""
|
||||
Recursively lock the SubPattern and its contained pattern
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
assert(self.pattern is not None)
|
||||
self.lock()
|
||||
self.pattern.deeplock()
|
||||
return self
|
||||
|
||||
def deepunlock(self: S) -> S:
|
||||
"""
|
||||
Recursively unlock the SubPattern and its contained pattern
|
||||
|
||||
This is dangerous unless you have just performed a deepcopy, since
|
||||
the subpattern and its components may be used in more than one once!
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
assert(self.pattern is not None)
|
||||
self.unlock()
|
||||
self.pattern.deepunlock()
|
||||
return self
|
||||
|
||||
def __repr__(self) -> str:
|
||||
name = self.pattern.name if self.pattern is not None else None
|
||||
rotation = f' r{self.rotation*180/pi:g}' if self.rotation != 0 else ''
|
||||
scale = f' d{self.scale:g}' if self.scale != 1 else ''
|
||||
mirrored = ' m{:d}{:d}'.format(*self.mirrored) if self.mirrored.any() else ''
|
||||
dose = f' d{self.dose:g}' if self.dose != 1 else ''
|
||||
locked = ' L' if self.locked else ''
|
||||
return f'<SubPattern "{name}" at {self.offset}{rotation}{scale}{mirrored}{dose}{locked}>'
|
@ -1,34 +1,13 @@
|
||||
"""
|
||||
Traits (mixins) and default implementations
|
||||
|
||||
Traits and mixins should set `__slots__ = ()` to enable use of `__slots__` in subclasses.
|
||||
"""
|
||||
from .positionable import (
|
||||
Positionable as Positionable,
|
||||
PositionableImpl as PositionableImpl,
|
||||
Bounded as Bounded,
|
||||
)
|
||||
from .layerable import (
|
||||
Layerable as Layerable,
|
||||
LayerableImpl as LayerableImpl,
|
||||
)
|
||||
from .rotatable import (
|
||||
Rotatable as Rotatable,
|
||||
RotatableImpl as RotatableImpl,
|
||||
Pivotable as Pivotable,
|
||||
PivotableImpl as PivotableImpl,
|
||||
)
|
||||
from .repeatable import (
|
||||
Repeatable as Repeatable,
|
||||
RepeatableImpl as RepeatableImpl,
|
||||
)
|
||||
from .scalable import (
|
||||
Scalable as Scalable,
|
||||
ScalableImpl as ScalableImpl,
|
||||
)
|
||||
from .mirrorable import Mirrorable as Mirrorable
|
||||
from .copyable import Copyable as Copyable
|
||||
from .annotatable import (
|
||||
Annotatable as Annotatable,
|
||||
AnnotatableImpl as AnnotatableImpl,
|
||||
)
|
||||
from .positionable import Positionable, PositionableImpl
|
||||
from .layerable import Layerable, LayerableImpl
|
||||
from .doseable import Doseable, DoseableImpl
|
||||
from .rotatable import Rotatable, RotatableImpl, Pivotable, PivotableImpl
|
||||
from .repeatable import Repeatable, RepeatableImpl
|
||||
from .scalable import Scalable, ScalableImpl
|
||||
from .mirrorable import Mirrorable
|
||||
from .copyable import Copyable
|
||||
from .lockable import Lockable, LockableImpl
|
||||
from .annotatable import Annotatable, AnnotatableImpl
|
||||
|
@ -1,3 +1,4 @@
|
||||
from typing import TypeVar
|
||||
#from types import MappingProxyType
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
@ -5,19 +6,20 @@ from ..utils import annotations_t
|
||||
from ..error import MasqueError
|
||||
|
||||
|
||||
_empty_slots = () # Workaround to get mypy to ignore intentionally empty slots for superclass
|
||||
T = TypeVar('T', bound='Annotatable')
|
||||
I = TypeVar('I', bound='AnnotatableImpl')
|
||||
|
||||
|
||||
class Annotatable(metaclass=ABCMeta):
|
||||
"""
|
||||
Trait class for all annotatable entities
|
||||
Abstract class for all annotatable entities
|
||||
Annotations correspond to GDS/OASIS "properties"
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
#
|
||||
# Properties
|
||||
#
|
||||
'''
|
||||
---- Properties
|
||||
'''
|
||||
@property
|
||||
@abstractmethod
|
||||
def annotations(self) -> annotations_t:
|
||||
@ -31,20 +33,23 @@ class AnnotatableImpl(Annotatable, metaclass=ABCMeta):
|
||||
"""
|
||||
Simple implementation of `Annotatable`.
|
||||
"""
|
||||
__slots__ = _empty_slots
|
||||
__slots__ = ()
|
||||
|
||||
_annotations: annotations_t
|
||||
""" Dictionary storing annotation name/value pairs """
|
||||
|
||||
#
|
||||
# Non-abstract properties
|
||||
#
|
||||
'''
|
||||
---- Non-abstract properties
|
||||
'''
|
||||
@property
|
||||
def annotations(self) -> annotations_t:
|
||||
return self._annotations
|
||||
# # TODO: Find a way to make sure the subclass implements Lockable without dealing with diamond inheritance or this extra hasattr
|
||||
# if hasattr(self, 'is_locked') and self.is_locked():
|
||||
# return MappingProxyType(self._annotations)
|
||||
|
||||
@annotations.setter
|
||||
def annotations(self, annotations: annotations_t) -> None:
|
||||
def annotations(self, annotations: annotations_t):
|
||||
if not isinstance(annotations, dict):
|
||||
raise MasqueError(f'annotations expected dict, got {type(annotations)}')
|
||||
self._annotations = annotations
|
||||
|
@ -1,17 +1,21 @@
|
||||
from typing import Self
|
||||
from typing import TypeVar
|
||||
from abc import ABCMeta
|
||||
import copy
|
||||
|
||||
|
||||
class Copyable:
|
||||
T = TypeVar('T', bound='Copyable')
|
||||
|
||||
|
||||
class Copyable(metaclass=ABCMeta):
|
||||
"""
|
||||
Trait class which adds .copy() and .deepcopy()
|
||||
Abstract class which adds .copy() and .deepcopy()
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
#
|
||||
# Non-abstract methods
|
||||
#
|
||||
def copy(self) -> Self:
|
||||
'''
|
||||
---- Non-abstract methods
|
||||
'''
|
||||
def copy(self: T) -> T:
|
||||
"""
|
||||
Return a shallow copy of the object.
|
||||
|
||||
@ -20,7 +24,7 @@ class Copyable:
|
||||
"""
|
||||
return copy.copy(self)
|
||||
|
||||
def deepcopy(self) -> Self:
|
||||
def deepcopy(self: T) -> T:
|
||||
"""
|
||||
Return a deep copy of the object.
|
||||
|
||||
|
76
masque/traits/doseable.py
Normal file
76
masque/traits/doseable.py
Normal file
@ -0,0 +1,76 @@
|
||||
from typing import TypeVar
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
from ..error import MasqueError
|
||||
|
||||
|
||||
T = TypeVar('T', bound='Doseable')
|
||||
I = TypeVar('I', bound='DoseableImpl')
|
||||
|
||||
|
||||
class Doseable(metaclass=ABCMeta):
|
||||
"""
|
||||
Abstract class for all doseable entities
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
'''
|
||||
---- Properties
|
||||
'''
|
||||
@property
|
||||
@abstractmethod
|
||||
def dose(self) -> float:
|
||||
"""
|
||||
Dose (float >= 0)
|
||||
"""
|
||||
pass
|
||||
|
||||
# @dose.setter
|
||||
# @abstractmethod
|
||||
# def dose(self, val: float):
|
||||
# pass
|
||||
|
||||
'''
|
||||
---- Methods
|
||||
'''
|
||||
def set_dose(self: T, dose: float) -> T:
|
||||
"""
|
||||
Set the dose
|
||||
|
||||
Args:
|
||||
dose: new value for dose
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class DoseableImpl(Doseable, metaclass=ABCMeta):
|
||||
"""
|
||||
Simple implementation of Doseable
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
_dose: float
|
||||
""" Dose """
|
||||
|
||||
'''
|
||||
---- Non-abstract properties
|
||||
'''
|
||||
@property
|
||||
def dose(self) -> float:
|
||||
return self._dose
|
||||
|
||||
@dose.setter
|
||||
def dose(self, val: float):
|
||||
if not val >= 0:
|
||||
raise MasqueError('Dose must be non-negative')
|
||||
self._dose = val
|
||||
|
||||
'''
|
||||
---- Non-abstract methods
|
||||
'''
|
||||
def set_dose(self: I, dose: float) -> I:
|
||||
self.dose = dose
|
||||
return self
|
@ -1,21 +1,21 @@
|
||||
from typing import Self
|
||||
from typing import TypeVar
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
from ..utils import layer_t
|
||||
|
||||
|
||||
_empty_slots = () # Workaround to get mypy to ignore intentionally empty slots for superclass
|
||||
T = TypeVar('T', bound='Layerable')
|
||||
I = TypeVar('I', bound='LayerableImpl')
|
||||
|
||||
|
||||
class Layerable(metaclass=ABCMeta):
|
||||
"""
|
||||
Trait class for all layerable entities
|
||||
Abstract class for all layerable entities
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
#
|
||||
# Properties
|
||||
#
|
||||
'''
|
||||
---- Properties
|
||||
'''
|
||||
@property
|
||||
@abstractmethod
|
||||
def layer(self) -> layer_t:
|
||||
@ -29,11 +29,10 @@ class Layerable(metaclass=ABCMeta):
|
||||
# def layer(self, val: layer_t):
|
||||
# pass
|
||||
|
||||
#
|
||||
# Methods
|
||||
#
|
||||
@abstractmethod
|
||||
def set_layer(self, layer: layer_t) -> Self:
|
||||
'''
|
||||
---- Methods
|
||||
'''
|
||||
def set_layer(self: T, layer: layer_t) -> T:
|
||||
"""
|
||||
Set the layer
|
||||
|
||||
@ -50,25 +49,25 @@ class LayerableImpl(Layerable, metaclass=ABCMeta):
|
||||
"""
|
||||
Simple implementation of Layerable
|
||||
"""
|
||||
__slots__ = _empty_slots
|
||||
__slots__ = ()
|
||||
|
||||
_layer: layer_t
|
||||
""" Layer number, pair, or name """
|
||||
|
||||
#
|
||||
# Non-abstract properties
|
||||
#
|
||||
'''
|
||||
---- Non-abstract properties
|
||||
'''
|
||||
@property
|
||||
def layer(self) -> layer_t:
|
||||
return self._layer
|
||||
|
||||
@layer.setter
|
||||
def layer(self, val: layer_t) -> None:
|
||||
def layer(self, val: layer_t):
|
||||
self._layer = val
|
||||
|
||||
#
|
||||
# Non-abstract methods
|
||||
#
|
||||
def set_layer(self, layer: layer_t) -> Self:
|
||||
'''
|
||||
---- Non-abstract methods
|
||||
'''
|
||||
def set_layer(self: I, layer: layer_t) -> I:
|
||||
self.layer = layer
|
||||
return self
|
||||
|
103
masque/traits/lockable.py
Normal file
103
masque/traits/lockable.py
Normal file
@ -0,0 +1,103 @@
|
||||
from typing import TypeVar, Dict, Tuple, Any
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
from ..error import PatternLockedError
|
||||
|
||||
|
||||
T = TypeVar('T', bound='Lockable')
|
||||
I = TypeVar('I', bound='LockableImpl')
|
||||
|
||||
|
||||
class Lockable(metaclass=ABCMeta):
|
||||
"""
|
||||
Abstract class for all lockable entities
|
||||
"""
|
||||
__slots__ = () # type: Tuple[str, ...]
|
||||
|
||||
'''
|
||||
---- Methods
|
||||
'''
|
||||
@abstractmethod
|
||||
def lock(self: T) -> T:
|
||||
"""
|
||||
Lock the object, disallowing further changes
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def unlock(self: T) -> T:
|
||||
"""
|
||||
Unlock the object, reallowing changes
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def is_locked(self) -> bool:
|
||||
"""
|
||||
Returns:
|
||||
True if the object is locked
|
||||
"""
|
||||
pass
|
||||
|
||||
def set_locked(self: T, locked: bool) -> T:
|
||||
"""
|
||||
Locks or unlocks based on the argument.
|
||||
No action if already in the requested state.
|
||||
|
||||
Args:
|
||||
locked: State to set.
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
if locked != self.is_locked():
|
||||
if locked:
|
||||
self.lock()
|
||||
else:
|
||||
self.unlock()
|
||||
return self
|
||||
|
||||
|
||||
class LockableImpl(Lockable, metaclass=ABCMeta):
|
||||
"""
|
||||
Simple implementation of Lockable
|
||||
"""
|
||||
__slots__ = () # type: Tuple[str, ...]
|
||||
|
||||
locked: bool
|
||||
""" If `True`, disallows changes to the object """
|
||||
|
||||
'''
|
||||
---- Non-abstract methods
|
||||
'''
|
||||
def __setattr__(self, name, value):
|
||||
if self.locked and name != 'locked':
|
||||
raise PatternLockedError()
|
||||
object.__setattr__(self, name, value)
|
||||
|
||||
def __getstate__(self) -> Dict[str, Any]:
|
||||
if hasattr(self, '__slots__'):
|
||||
return {key: getattr(self, key) for key in self.__slots__}
|
||||
else:
|
||||
return self.__dict__
|
||||
|
||||
def __setstate__(self, state: Dict[str, Any]) -> None:
|
||||
for k, v in state.items():
|
||||
object.__setattr__(self, k, v)
|
||||
|
||||
def lock(self: I) -> I:
|
||||
object.__setattr__(self, 'locked', True)
|
||||
return self
|
||||
|
||||
def unlock(self: I) -> I:
|
||||
object.__setattr__(self, 'locked', False)
|
||||
return self
|
||||
|
||||
def is_locked(self) -> bool:
|
||||
return self.locked
|
@ -1,15 +1,22 @@
|
||||
from typing import Self
|
||||
from typing import TypeVar, Tuple
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
|
||||
T = TypeVar('T', bound='Mirrorable')
|
||||
#I = TypeVar('I', bound='MirrorableImpl')
|
||||
|
||||
|
||||
class Mirrorable(metaclass=ABCMeta):
|
||||
"""
|
||||
Trait class for all mirrorable entities
|
||||
Abstract class for all mirrorable entities
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
'''
|
||||
---- Abstract methods
|
||||
'''
|
||||
@abstractmethod
|
||||
def mirror(self, axis: int = 0) -> Self:
|
||||
def mirror(self: T, axis: int) -> T:
|
||||
"""
|
||||
Mirror the entity across an axis.
|
||||
|
||||
@ -21,7 +28,7 @@ class Mirrorable(metaclass=ABCMeta):
|
||||
"""
|
||||
pass
|
||||
|
||||
def mirror2d(self, across_x: bool = False, across_y: bool = False) -> Self:
|
||||
def mirror2d(self: T, axes: Tuple[bool, bool]) -> T:
|
||||
"""
|
||||
Optionally mirror the entity across both axes
|
||||
|
||||
@ -31,9 +38,9 @@ class Mirrorable(metaclass=ABCMeta):
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
if across_x:
|
||||
if axes[0]:
|
||||
self.mirror(0)
|
||||
if across_y:
|
||||
if axes[1]:
|
||||
self.mirror(1)
|
||||
return self
|
||||
|
||||
@ -44,24 +51,24 @@ class Mirrorable(metaclass=ABCMeta):
|
||||
# """
|
||||
# __slots__ = ()
|
||||
#
|
||||
# _mirrored: NDArray[numpy.bool]
|
||||
# _mirrored: numpy.ndarray # ndarray[bool]
|
||||
# """ Whether to mirror the instance across the x and/or y axes. """
|
||||
#
|
||||
# #
|
||||
# # Properties
|
||||
# #
|
||||
# '''
|
||||
# ---- Properties
|
||||
# '''
|
||||
# # Mirrored property
|
||||
# @property
|
||||
# def mirrored(self) -> NDArray[numpy.bool]:
|
||||
# def mirrored(self) -> numpy.ndarray: # ndarray[bool]
|
||||
# """ Whether to mirror across the [x, y] axes, respectively """
|
||||
# return self._mirrored
|
||||
#
|
||||
# @mirrored.setter
|
||||
# def mirrored(self, val: Sequence[bool]) -> None:
|
||||
# def mirrored(self, val: Sequence[bool]):
|
||||
# if is_scalar(val):
|
||||
# raise MasqueError('Mirrored must be a 2-element list of booleans')
|
||||
# self._mirrored = numpy.array(val, dtype=bool)
|
||||
# self._mirrored = numpy.array(val, dtype=bool, copy=True)
|
||||
#
|
||||
# #
|
||||
# # Methods
|
||||
# #
|
||||
# '''
|
||||
# ---- Methods
|
||||
# '''
|
||||
|
@ -1,4 +1,6 @@
|
||||
from typing import Self, Any
|
||||
# TODO top-level comment about how traits should set __slots__ = (), and how to use AutoSlots
|
||||
|
||||
from typing import TypeVar, Any, Optional
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
import numpy
|
||||
@ -7,18 +9,19 @@ from numpy.typing import NDArray, ArrayLike
|
||||
from ..error import MasqueError
|
||||
|
||||
|
||||
_empty_slots = () # Workaround to get mypy to ignore intentionally empty slots for superclass
|
||||
T = TypeVar('T', bound='Positionable')
|
||||
I = TypeVar('I', bound='PositionableImpl')
|
||||
|
||||
|
||||
class Positionable(metaclass=ABCMeta):
|
||||
"""
|
||||
Trait class for all positionable entities
|
||||
Abstract class for all positionable entities
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
#
|
||||
# Properties
|
||||
#
|
||||
'''
|
||||
---- Abstract properties
|
||||
'''
|
||||
@property
|
||||
@abstractmethod
|
||||
def offset(self) -> NDArray[numpy.float64]:
|
||||
@ -27,13 +30,13 @@ class Positionable(metaclass=ABCMeta):
|
||||
"""
|
||||
pass
|
||||
|
||||
@offset.setter
|
||||
@abstractmethod
|
||||
def offset(self, val: ArrayLike) -> None:
|
||||
pass
|
||||
# @offset.setter
|
||||
# @abstractmethod
|
||||
# def offset(self, val: ArrayLike):
|
||||
# pass
|
||||
|
||||
@abstractmethod
|
||||
def set_offset(self, offset: ArrayLike) -> Self:
|
||||
def set_offset(self: T, offset: ArrayLike) -> T:
|
||||
"""
|
||||
Set the offset
|
||||
|
||||
@ -46,7 +49,7 @@ class Positionable(metaclass=ABCMeta):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def translate(self, offset: ArrayLike) -> Self:
|
||||
def translate(self: T, offset: ArrayLike) -> T:
|
||||
"""
|
||||
Translate the entity by the given offset
|
||||
|
||||
@ -58,22 +61,41 @@ class Positionable(metaclass=ABCMeta):
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_bounds(self) -> Optional[NDArray[numpy.float64]]:
|
||||
"""
|
||||
Returns `[[x_min, y_min], [x_max, y_max]]` which specify a minimal bounding box for the entity.
|
||||
Returns `None` for an empty entity.
|
||||
"""
|
||||
pass
|
||||
|
||||
def get_bounds_nonempty(self) -> NDArray[numpy.float64]:
|
||||
"""
|
||||
Returns `[[x_min, y_min], [x_max, y_max]]` which specify a minimal bounding box for the entity.
|
||||
Asserts that the entity is non-empty (i.e., `get_bounds()` does not return None).
|
||||
|
||||
This is handy for destructuring like `xy_min, xy_max = entity.get_bounds_nonempty()`
|
||||
"""
|
||||
bounds = self.get_bounds()
|
||||
assert(bounds is not None)
|
||||
return bounds
|
||||
|
||||
|
||||
class PositionableImpl(Positionable, metaclass=ABCMeta):
|
||||
"""
|
||||
Simple implementation of Positionable
|
||||
"""
|
||||
__slots__ = _empty_slots
|
||||
__slots__ = ()
|
||||
|
||||
_offset: NDArray[numpy.float64]
|
||||
""" `[x_offset, y_offset]` """
|
||||
|
||||
#
|
||||
# Properties
|
||||
#
|
||||
'''
|
||||
---- Properties
|
||||
'''
|
||||
# offset property
|
||||
@property
|
||||
def offset(self) -> Any: # mypy#3004 NDArray[numpy.float64]:
|
||||
def offset(self) -> Any: #TODO mypy#3003 NDArray[numpy.float64]:
|
||||
"""
|
||||
[x, y] offset
|
||||
"""
|
||||
@ -81,42 +103,40 @@ class PositionableImpl(Positionable, metaclass=ABCMeta):
|
||||
|
||||
@offset.setter
|
||||
def offset(self, val: ArrayLike) -> None:
|
||||
val = numpy.array(val, dtype=float)
|
||||
if not isinstance(val, numpy.ndarray) or val.dtype != numpy.float64:
|
||||
val = numpy.array(val, dtype=float)
|
||||
|
||||
if val.size != 2:
|
||||
raise MasqueError('Offset must be convertible to size-2 ndarray')
|
||||
self._offset = val.flatten()
|
||||
|
||||
#
|
||||
# Methods
|
||||
#
|
||||
def set_offset(self, offset: ArrayLike) -> Self:
|
||||
'''
|
||||
---- Methods
|
||||
'''
|
||||
def set_offset(self: I, offset: ArrayLike) -> I:
|
||||
self.offset = offset
|
||||
return self
|
||||
|
||||
def translate(self, offset: ArrayLike) -> Self:
|
||||
def translate(self: I, offset: ArrayLike) -> I:
|
||||
self._offset += offset # type: ignore # NDArray += ArrayLike should be fine??
|
||||
return self
|
||||
|
||||
|
||||
class Bounded(metaclass=ABCMeta):
|
||||
@abstractmethod
|
||||
def get_bounds(self, *args, **kwargs) -> NDArray[numpy.float64] | None:
|
||||
def _lock(self: I) -> I:
|
||||
"""
|
||||
Returns `[[x_min, y_min], [x_max, y_max]]` which specify a minimal bounding box for the entity.
|
||||
Returns `None` for an empty entity.
|
||||
Lock the entity, disallowing further changes
|
||||
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
pass
|
||||
self._offset.flags.writeable = False
|
||||
return self
|
||||
|
||||
def get_bounds_nonempty(self, *args, **kwargs) -> NDArray[numpy.float64]:
|
||||
def _unlock(self: I) -> I:
|
||||
"""
|
||||
Returns `[[x_min, y_min], [x_max, y_max]]` which specify a minimal bounding box for the entity.
|
||||
Asserts that the entity is non-empty (i.e., `get_bounds()` does not return None).
|
||||
Unlock the entity
|
||||
|
||||
This is handy for destructuring like `xy_min, xy_max = entity.get_bounds_nonempty()`
|
||||
Returns:
|
||||
self
|
||||
"""
|
||||
bounds = self.get_bounds(*args, **kwargs)
|
||||
assert bounds is not None
|
||||
return bounds
|
||||
|
||||
|
||||
self._offset.flags.writeable = True
|
||||
return self
|
||||
|
@ -1,32 +1,29 @@
|
||||
from typing import Self, TYPE_CHECKING
|
||||
from typing import TypeVar, Optional, TYPE_CHECKING
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
import numpy
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from ..error import MasqueError
|
||||
from .positionable import Bounded
|
||||
|
||||
|
||||
_empty_slots = () # Workaround to get mypy to ignore intentionally empty slots for superclass
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..repetition import Repetition
|
||||
|
||||
|
||||
T = TypeVar('T', bound='Repeatable')
|
||||
I = TypeVar('I', bound='RepeatableImpl')
|
||||
|
||||
|
||||
class Repeatable(metaclass=ABCMeta):
|
||||
"""
|
||||
Trait class for all repeatable entities
|
||||
Abstract class for all repeatable entities
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
#
|
||||
# Properties
|
||||
#
|
||||
'''
|
||||
---- Properties
|
||||
'''
|
||||
@property
|
||||
@abstractmethod
|
||||
def repetition(self) -> 'Repetition | None':
|
||||
def repetition(self) -> Optional['Repetition']:
|
||||
"""
|
||||
Repetition object, or None (single instance only)
|
||||
"""
|
||||
@ -34,14 +31,14 @@ class Repeatable(metaclass=ABCMeta):
|
||||
|
||||
# @repetition.setter
|
||||
# @abstractmethod
|
||||
# def repetition(self, repetition: 'Repetition | None') -> None:
|
||||
# def repetition(self, repetition: Optional['Repetition']):
|
||||
# pass
|
||||
|
||||
#
|
||||
# Methods
|
||||
#
|
||||
'''
|
||||
---- Methods
|
||||
'''
|
||||
@abstractmethod
|
||||
def set_repetition(self, repetition: 'Repetition | None') -> Self:
|
||||
def set_repetition(self: T, repetition: Optional['Repetition']) -> T:
|
||||
"""
|
||||
Set the repetition
|
||||
|
||||
@ -54,57 +51,32 @@ class Repeatable(metaclass=ABCMeta):
|
||||
pass
|
||||
|
||||
|
||||
class RepeatableImpl(Repeatable, Bounded, metaclass=ABCMeta):
|
||||
class RepeatableImpl(Repeatable, metaclass=ABCMeta):
|
||||
"""
|
||||
Simple implementation of `Repeatable` and extension of `Bounded` to include repetition bounds.
|
||||
Simple implementation of `Repeatable`
|
||||
"""
|
||||
__slots__ = _empty_slots
|
||||
__slots__ = ()
|
||||
|
||||
_repetition: 'Repetition | None'
|
||||
_repetition: Optional['Repetition']
|
||||
""" Repetition object, or None (single instance only) """
|
||||
|
||||
@abstractmethod
|
||||
def get_bounds_single(self, *args, **kwargs) -> NDArray[numpy.float64] | None:
|
||||
pass
|
||||
|
||||
#
|
||||
# Non-abstract properties
|
||||
#
|
||||
'''
|
||||
---- Non-abstract properties
|
||||
'''
|
||||
@property
|
||||
def repetition(self) -> 'Repetition | None':
|
||||
def repetition(self) -> Optional['Repetition']:
|
||||
return self._repetition
|
||||
|
||||
@repetition.setter
|
||||
def repetition(self, repetition: 'Repetition | None') -> None:
|
||||
def repetition(self, repetition: Optional['Repetition']):
|
||||
from ..repetition import Repetition
|
||||
if repetition is not None and not isinstance(repetition, Repetition):
|
||||
raise MasqueError(f'{repetition} is not a valid Repetition object!')
|
||||
self._repetition = repetition
|
||||
|
||||
#
|
||||
# Non-abstract methods
|
||||
#
|
||||
def set_repetition(self, repetition: 'Repetition | None') -> Self:
|
||||
'''
|
||||
---- Non-abstract methods
|
||||
'''
|
||||
def set_repetition(self: I, repetition: Optional['Repetition']) -> I:
|
||||
self.repetition = repetition
|
||||
return self
|
||||
|
||||
def get_bounds_single_nonempty(self, *args, **kwargs) -> NDArray[numpy.float64]:
|
||||
"""
|
||||
Returns `[[x_min, y_min], [x_max, y_max]]` which specify a minimal bounding box for the entity.
|
||||
Asserts that the entity is non-empty (i.e., `get_bounds()` does not return None).
|
||||
|
||||
This is handy for destructuring like `xy_min, xy_max = entity.get_bounds_nonempty()`
|
||||
"""
|
||||
bounds = self.get_bounds_single(*args, **kwargs)
|
||||
assert bounds is not None
|
||||
return bounds
|
||||
|
||||
def get_bounds(self, *args, **kwargs) -> NDArray[numpy.float64] | None:
|
||||
bounds = self.get_bounds_single(*args, **kwargs)
|
||||
|
||||
if bounds is not None and self.repetition is not None:
|
||||
rep_bounds = self.repetition.get_bounds()
|
||||
if rep_bounds is None:
|
||||
return None
|
||||
bounds += rep_bounds
|
||||
return bounds
|
||||
|
@ -1,29 +1,31 @@
|
||||
from typing import Self, cast, Any
|
||||
from typing import TypeVar
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
import numpy
|
||||
from numpy import pi
|
||||
from numpy.typing import ArrayLike
|
||||
from numpy.typing import ArrayLike, NDArray
|
||||
|
||||
from .positionable import Positionable
|
||||
#from .positionable import Positionable
|
||||
from ..error import MasqueError
|
||||
from ..utils import rotation_matrix_2d
|
||||
from ..utils import is_scalar, rotation_matrix_2d
|
||||
|
||||
|
||||
_empty_slots = () # Workaround to get mypy to ignore intentionally empty slots for superclass
|
||||
T = TypeVar('T', bound='Rotatable')
|
||||
I = TypeVar('I', bound='RotatableImpl')
|
||||
P = TypeVar('P', bound='Pivotable')
|
||||
J = TypeVar('J', bound='PivotableImpl')
|
||||
|
||||
|
||||
class Rotatable(metaclass=ABCMeta):
|
||||
"""
|
||||
Trait class for all rotatable entities
|
||||
Abstract class for all rotatable entities
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
#
|
||||
# Methods
|
||||
#
|
||||
'''
|
||||
---- Abstract methods
|
||||
'''
|
||||
@abstractmethod
|
||||
def rotate(self, val: float) -> Self:
|
||||
def rotate(self: T, val: float) -> T:
|
||||
"""
|
||||
Rotate the shape around its origin (0, 0), ignoring its offset.
|
||||
|
||||
@ -40,33 +42,33 @@ class RotatableImpl(Rotatable, metaclass=ABCMeta):
|
||||
"""
|
||||
Simple implementation of `Rotatable`
|
||||
"""
|
||||
__slots__ = _empty_slots
|
||||
__slots__ = ()
|
||||
|
||||
_rotation: float
|
||||
""" rotation for the object, radians counterclockwise """
|
||||
|
||||
#
|
||||
# Properties
|
||||
#
|
||||
'''
|
||||
---- Properties
|
||||
'''
|
||||
@property
|
||||
def rotation(self) -> float:
|
||||
""" Rotation, radians counterclockwise """
|
||||
return self._rotation
|
||||
|
||||
@rotation.setter
|
||||
def rotation(self, val: float) -> None:
|
||||
def rotation(self, val: float):
|
||||
if not numpy.size(val) == 1:
|
||||
raise MasqueError('Rotation must be a scalar')
|
||||
self._rotation = val % (2 * pi)
|
||||
|
||||
#
|
||||
# Methods
|
||||
#
|
||||
def rotate(self, rotation: float) -> Self:
|
||||
'''
|
||||
---- Methods
|
||||
'''
|
||||
def rotate(self: I, rotation: float) -> I:
|
||||
self.rotation += rotation
|
||||
return self
|
||||
|
||||
def set_rotation(self, rotation: float) -> Self:
|
||||
def set_rotation(self: I, rotation: float) -> I:
|
||||
"""
|
||||
Set the rotation to a value
|
||||
|
||||
@ -82,13 +84,13 @@ class RotatableImpl(Rotatable, metaclass=ABCMeta):
|
||||
|
||||
class Pivotable(metaclass=ABCMeta):
|
||||
"""
|
||||
Trait class for entites which can be rotated around a point.
|
||||
Abstract class for entites which can be rotated around a point.
|
||||
This requires that they are `Positionable` but not necessarily `Rotatable` themselves.
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
@abstractmethod
|
||||
def rotate_around(self, pivot: ArrayLike, rotation: float) -> Self:
|
||||
def rotate_around(self: P, pivot: ArrayLike, rotation: float) -> P:
|
||||
"""
|
||||
Rotate the object around a point.
|
||||
|
||||
@ -108,14 +110,11 @@ class PivotableImpl(Pivotable, metaclass=ABCMeta):
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
offset: Any # TODO see if we can get around defining `offset` in PivotableImpl
|
||||
""" `[x_offset, y_offset]` """
|
||||
|
||||
def rotate_around(self, pivot: ArrayLike, rotation: float) -> Self:
|
||||
pivot = numpy.asarray(pivot, dtype=float)
|
||||
cast(Positionable, self).translate(-pivot)
|
||||
cast(Rotatable, self).rotate(rotation)
|
||||
self.offset = numpy.dot(rotation_matrix_2d(rotation), self.offset) # type: ignore # mypy#3004
|
||||
cast(Positionable, self).translate(+pivot)
|
||||
def rotate_around(self: J, pivot: ArrayLike, rotation: float) -> J:
|
||||
pivot = numpy.array(pivot, dtype=float)
|
||||
self.translate(-pivot)
|
||||
self.rotate(rotation)
|
||||
self.offset = numpy.dot(rotation_matrix_2d(rotation), self.offset) #type: ignore #TODO: mypy#3004
|
||||
self.translate(+pivot)
|
||||
return self
|
||||
|
||||
|
@ -1,24 +1,25 @@
|
||||
from typing import Self
|
||||
from typing import TypeVar
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
from ..error import MasqueError
|
||||
from ..utils import is_scalar
|
||||
|
||||
|
||||
_empty_slots = () # Workaround to get mypy to ignore intentionally empty slots for superclass
|
||||
T = TypeVar('T', bound='Scalable')
|
||||
I = TypeVar('I', bound='ScalableImpl')
|
||||
|
||||
|
||||
class Scalable(metaclass=ABCMeta):
|
||||
"""
|
||||
Trait class for all scalable entities
|
||||
Abstract class for all scalable entities
|
||||
"""
|
||||
__slots__ = ()
|
||||
|
||||
#
|
||||
# Methods
|
||||
#
|
||||
'''
|
||||
---- Abstract methods
|
||||
'''
|
||||
@abstractmethod
|
||||
def scale_by(self, c: float) -> Self:
|
||||
def scale_by(self: T, c: float) -> T:
|
||||
"""
|
||||
Scale the entity by a factor
|
||||
|
||||
@ -35,34 +36,34 @@ class ScalableImpl(Scalable, metaclass=ABCMeta):
|
||||
"""
|
||||
Simple implementation of Scalable
|
||||
"""
|
||||
__slots__ = _empty_slots
|
||||
__slots__ = ()
|
||||
|
||||
_scale: float
|
||||
""" scale factor for the entity """
|
||||
|
||||
#
|
||||
# Properties
|
||||
#
|
||||
'''
|
||||
---- Properties
|
||||
'''
|
||||
@property
|
||||
def scale(self) -> float:
|
||||
return self._scale
|
||||
|
||||
@scale.setter
|
||||
def scale(self, val: float) -> None:
|
||||
def scale(self, val: float):
|
||||
if not is_scalar(val):
|
||||
raise MasqueError('Scale must be a scalar')
|
||||
if not val > 0:
|
||||
raise MasqueError('Scale must be positive')
|
||||
self._scale = val
|
||||
|
||||
#
|
||||
# Methods
|
||||
#
|
||||
def scale_by(self, c: float) -> Self:
|
||||
'''
|
||||
---- Methods
|
||||
'''
|
||||
def scale_by(self: I, c: float) -> I:
|
||||
self.scale *= c
|
||||
return self
|
||||
|
||||
def set_scale(self, scale: float) -> Self:
|
||||
def set_scale(self: I, scale: float) -> I:
|
||||
"""
|
||||
Set the sclae to a value
|
||||
|
||||
|
165
masque/utils.py
Normal file
165
masque/utils.py
Normal file
@ -0,0 +1,165 @@
|
||||
"""
|
||||
Various helper functions
|
||||
"""
|
||||
from typing import Any, Union, Tuple, Sequence, Dict, List
|
||||
from abc import ABCMeta
|
||||
|
||||
import numpy
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
|
||||
|
||||
# Type definitions
|
||||
layer_t = Union[int, Tuple[int, int], str]
|
||||
annotations_t = Dict[str, List[Union[int, float, str]]]
|
||||
|
||||
|
||||
def is_scalar(var: Any) -> bool:
|
||||
"""
|
||||
Alias for 'not hasattr(var, "__len__")'
|
||||
|
||||
Args:
|
||||
var: Checks if `var` has a length.
|
||||
"""
|
||||
return not hasattr(var, "__len__")
|
||||
|
||||
|
||||
def get_bit(bit_string: Any, bit_id: int) -> bool:
|
||||
"""
|
||||
Interprets bit number `bit_id` from the right (lsb) of `bit_string` as a boolean
|
||||
|
||||
Args:
|
||||
bit_string: Bit string to test
|
||||
bit_id: Bit number, 0-indexed from the right (lsb)
|
||||
|
||||
Returns:
|
||||
Boolean value of the requested bit
|
||||
"""
|
||||
return bit_string & (1 << bit_id) != 0
|
||||
|
||||
|
||||
def set_bit(bit_string: Any, bit_id: int, value: bool) -> Any:
|
||||
"""
|
||||
Returns `bit_string`, with bit number `bit_id` set to boolean `value`.
|
||||
|
||||
Args:
|
||||
bit_string: Bit string to alter
|
||||
bit_id: Bit number, 0-indexed from right (lsb)
|
||||
value: Boolean value to set bit to
|
||||
|
||||
Returns:
|
||||
Altered `bit_string`
|
||||
"""
|
||||
mask = (1 << bit_id)
|
||||
bit_string &= ~mask
|
||||
if value:
|
||||
bit_string |= mask
|
||||
return bit_string
|
||||
|
||||
|
||||
def rotation_matrix_2d(theta: float) -> NDArray[numpy.float64]:
|
||||
"""
|
||||
2D rotation matrix for rotating counterclockwise around the origin.
|
||||
|
||||
Args:
|
||||
theta: Angle to rotate, in radians
|
||||
|
||||
Returns:
|
||||
rotation matrix
|
||||
"""
|
||||
return numpy.array([[numpy.cos(theta), -numpy.sin(theta)],
|
||||
[numpy.sin(theta), +numpy.cos(theta)]])
|
||||
|
||||
|
||||
def normalize_mirror(mirrored: Sequence[bool]) -> Tuple[bool, float]:
|
||||
"""
|
||||
Converts 0-2 mirror operations `(mirror_across_x_axis, mirror_across_y_axis)`
|
||||
into 0-1 mirror operations and a rotation
|
||||
|
||||
Args:
|
||||
mirrored: `(mirror_across_x_axis, mirror_across_y_axis)`
|
||||
|
||||
Returns:
|
||||
`mirror_across_x_axis` (bool) and
|
||||
`angle_to_rotate` in radians
|
||||
"""
|
||||
|
||||
mirrored_x, mirrored_y = mirrored
|
||||
mirror_x = (mirrored_x != mirrored_y) # XOR
|
||||
angle = numpy.pi if mirrored_y else 0
|
||||
return mirror_x, angle
|
||||
|
||||
|
||||
def remove_duplicate_vertices(vertices: ArrayLike, closed_path: bool = True) -> NDArray[numpy.float64]:
|
||||
"""
|
||||
Given a list of vertices, remove any consecutive duplicates.
|
||||
|
||||
Args:
|
||||
vertices: `[[x0, y0], [x1, y1], ...]`
|
||||
closed_path: If True, `vertices` is interpreted as an implicity-closed path
|
||||
(i.e. the last vertex will be removed if it is the same as the first)
|
||||
|
||||
Returns:
|
||||
`vertices` with no consecutive duplicates.
|
||||
"""
|
||||
vertices = numpy.array(vertices)
|
||||
duplicates = (vertices == numpy.roll(vertices, 1, axis=0)).all(axis=1)
|
||||
if not closed_path:
|
||||
duplicates[0] = False
|
||||
return vertices[~duplicates]
|
||||
|
||||
|
||||
def remove_colinear_vertices(vertices: ArrayLike, closed_path: bool = True) -> NDArray[numpy.float64]:
|
||||
"""
|
||||
Given a list of vertices, remove any superflous vertices (i.e.
|
||||
those which lie along the line formed by their neighbors)
|
||||
|
||||
Args:
|
||||
vertices: Nx2 ndarray of vertices
|
||||
closed_path: If `True`, the vertices are assumed to represent an implicitly
|
||||
closed path. If `False`, the path is assumed to be open. Default `True`.
|
||||
|
||||
Returns:
|
||||
`vertices` with colinear (superflous) vertices removed.
|
||||
"""
|
||||
vertices = remove_duplicate_vertices(vertices)
|
||||
|
||||
# Check for dx0/dy0 == dx1/dy1
|
||||
|
||||
dv = numpy.roll(vertices, -1, axis=0) - vertices # [y1-y0, y2-y1, ...]
|
||||
dxdy = dv * numpy.roll(dv, 1, axis=0)[:, ::-1] # [[dx0*(dy_-1), (dx_-1)*dy0], dx1*dy0, dy1*dx0]]
|
||||
|
||||
dxdy_diff = numpy.abs(numpy.diff(dxdy, axis=1))[:, 0]
|
||||
err_mult = 2 * numpy.abs(dxdy).sum(axis=1) + 1e-40
|
||||
|
||||
slopes_equal = (dxdy_diff / err_mult) < 1e-15
|
||||
if not closed_path:
|
||||
slopes_equal[[0, -1]] = False
|
||||
|
||||
return vertices[~slopes_equal]
|
||||
|
||||
|
||||
class AutoSlots(ABCMeta):
|
||||
"""
|
||||
Metaclass for automatically generating __slots__ based on superclass type annotations.
|
||||
|
||||
Superclasses must set `__slots__ = ()` to make this work properly.
|
||||
|
||||
This is a workaround for the fact that non-empty `__slots__` can't be used
|
||||
with multiple inheritance. Since we only use multiple inheritance with abstract
|
||||
classes, they can have empty `__slots__` and their attribute type annotations
|
||||
can be used to generate a full `__slots__` for the concrete class.
|
||||
"""
|
||||
def __new__(cls, name, bases, dctn):
|
||||
parents = set()
|
||||
for base in bases:
|
||||
parents |= set(base.mro())
|
||||
|
||||
slots = tuple(dctn.get('__slots__', tuple()))
|
||||
for parent in parents:
|
||||
if not hasattr(parent, '__annotations__'):
|
||||
continue
|
||||
slots += tuple(getattr(parent, '__annotations__').keys())
|
||||
|
||||
dctn['__slots__'] = slots
|
||||
return super().__new__(cls, name, bases, dctn)
|
||||
|
@ -1,41 +1,15 @@
|
||||
"""
|
||||
Various helper functions, type definitions, etc.
|
||||
"""
|
||||
from .types import (
|
||||
layer_t as layer_t,
|
||||
annotations_t as annotations_t,
|
||||
SupportsBool as SupportsBool,
|
||||
)
|
||||
from .array import is_scalar as is_scalar
|
||||
from .autoslots import AutoSlots as AutoSlots
|
||||
from .deferreddict import DeferredDict as DeferredDict
|
||||
from .decorators import oneshot as oneshot
|
||||
from .types import layer_t, annotations_t
|
||||
|
||||
from .bitwise import (
|
||||
get_bit as get_bit,
|
||||
set_bit as set_bit,
|
||||
)
|
||||
from .array import is_scalar
|
||||
from .autoslots import AutoSlots
|
||||
|
||||
from .bitwise import get_bit, set_bit
|
||||
from .vertices import (
|
||||
remove_duplicate_vertices as remove_duplicate_vertices,
|
||||
remove_colinear_vertices as remove_colinear_vertices,
|
||||
poly_contains_points as poly_contains_points,
|
||||
)
|
||||
from .transform import (
|
||||
rotation_matrix_2d as rotation_matrix_2d,
|
||||
normalize_mirror as normalize_mirror,
|
||||
rotate_offsets_around as rotate_offsets_around,
|
||||
apply_transforms as apply_transforms,
|
||||
)
|
||||
from .comparisons import (
|
||||
annotation2key as annotation2key,
|
||||
annotations_lt as annotations_lt,
|
||||
annotations_eq as annotations_eq,
|
||||
layer2key as layer2key,
|
||||
ports_lt as ports_lt,
|
||||
ports_eq as ports_eq,
|
||||
rep2key as rep2key,
|
||||
remove_duplicate_vertices, remove_colinear_vertices, poly_contains_points
|
||||
)
|
||||
from .transform import rotation_matrix_2d, normalize_mirror
|
||||
|
||||
from . import ports2data as ports2data
|
||||
|
||||
from . import pack2d as pack2d
|
||||
#from . import pack2d
|
||||
|
@ -12,16 +12,16 @@ class AutoSlots(ABCMeta):
|
||||
classes, they can have empty `__slots__` and their attribute type annotations
|
||||
can be used to generate a full `__slots__` for the concrete class.
|
||||
"""
|
||||
def __new__(cls, name, bases, dctn): # noqa: ANN001,ANN204
|
||||
def __new__(cls, name, bases, dctn):
|
||||
parents = set()
|
||||
for base in bases:
|
||||
parents |= set(base.mro())
|
||||
|
||||
slots = tuple(dctn.get('__slots__', ()))
|
||||
slots = tuple(dctn.get('__slots__', tuple()))
|
||||
for parent in parents:
|
||||
if not hasattr(parent, '__annotations__'):
|
||||
continue
|
||||
slots += tuple(parent.__annotations__.keys())
|
||||
slots += tuple(getattr(parent, '__annotations__').keys())
|
||||
|
||||
dctn['__slots__'] = slots
|
||||
return super().__new__(cls, name, bases, dctn)
|
||||
|
@ -1,106 +0,0 @@
|
||||
from typing import Any
|
||||
|
||||
from .types import annotations_t, layer_t
|
||||
from ..ports import Port
|
||||
from ..repetition import Repetition
|
||||
|
||||
|
||||
def annotation2key(aaa: int | float | str) -> tuple[bool, Any]:
|
||||
return (isinstance(aaa, str), aaa)
|
||||
|
||||
|
||||
def annotations_lt(aa: annotations_t, bb: annotations_t) -> bool:
|
||||
if aa is None:
|
||||
return bb is not None
|
||||
elif bb is None: # noqa: RET505
|
||||
return False
|
||||
|
||||
if len(aa) != len(bb):
|
||||
return len(aa) < len(bb)
|
||||
|
||||
keys_a = tuple(sorted(aa.keys()))
|
||||
keys_b = tuple(sorted(bb.keys()))
|
||||
if keys_a != keys_b:
|
||||
return keys_a < keys_b
|
||||
|
||||
for key in keys_a:
|
||||
va = aa[key]
|
||||
vb = bb[key]
|
||||
if len(va) != len(vb):
|
||||
return len(va) < len(vb)
|
||||
|
||||
for aaa, bbb in zip(va, vb, strict=True):
|
||||
if aaa != bbb:
|
||||
return annotation2key(aaa) < annotation2key(bbb)
|
||||
return False
|
||||
|
||||
|
||||
def annotations_eq(aa: annotations_t, bb: annotations_t) -> bool:
|
||||
if aa is None:
|
||||
return bb is None
|
||||
elif bb is None: # noqa: RET505
|
||||
return False
|
||||
|
||||
if len(aa) != len(bb):
|
||||
return False
|
||||
|
||||
keys_a = tuple(sorted(aa.keys()))
|
||||
keys_b = tuple(sorted(bb.keys()))
|
||||
if keys_a != keys_b:
|
||||
return keys_a < keys_b
|
||||
|
||||
for key in keys_a:
|
||||
va = aa[key]
|
||||
vb = bb[key]
|
||||
if len(va) != len(vb):
|
||||
return False
|
||||
|
||||
for aaa, bbb in zip(va, vb, strict=True):
|
||||
if aaa != bbb:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def layer2key(layer: layer_t) -> tuple[bool, bool, Any]:
|
||||
is_int = isinstance(layer, int)
|
||||
is_str = isinstance(layer, str)
|
||||
layer_tup = (layer) if (is_str or is_int) else layer
|
||||
tup = (
|
||||
is_str,
|
||||
not is_int,
|
||||
layer_tup,
|
||||
)
|
||||
return tup
|
||||
|
||||
|
||||
def rep2key(repetition: Repetition | None) -> tuple[bool, Repetition | None]:
|
||||
return (repetition is None, repetition)
|
||||
|
||||
|
||||
def ports_eq(aa: dict[str, Port], bb: dict[str, Port]) -> bool:
|
||||
if len(aa) != len(bb):
|
||||
return False
|
||||
|
||||
keys = sorted(aa.keys())
|
||||
if keys != sorted(bb.keys()):
|
||||
return False
|
||||
|
||||
return all(aa[kk] == bb[kk] for kk in keys)
|
||||
|
||||
|
||||
def ports_lt(aa: dict[str, Port], bb: dict[str, Port]) -> bool:
|
||||
if len(aa) != len(bb):
|
||||
return len(aa) < len(bb)
|
||||
|
||||
aa_keys = tuple(sorted(aa.keys()))
|
||||
bb_keys = tuple(sorted(bb.keys()))
|
||||
if aa_keys != bb_keys:
|
||||
return aa_keys < bb_keys
|
||||
|
||||
for key in aa_keys:
|
||||
pa = aa[key]
|
||||
pb = bb[key]
|
||||
if pa != pb:
|
||||
return pa < pb
|
||||
return False
|
@ -1,21 +0,0 @@
|
||||
from collections.abc import Callable
|
||||
from functools import wraps
|
||||
|
||||
from ..error import OneShotError
|
||||
|
||||
|
||||
def oneshot(func: Callable) -> Callable:
|
||||
"""
|
||||
Raises a OneShotError if the decorated function is called more than once
|
||||
"""
|
||||
expired = False
|
||||
|
||||
@wraps(func)
|
||||
def wrapper(*args, **kwargs): # noqa: ANN202
|
||||
nonlocal expired
|
||||
if expired:
|
||||
raise OneShotError(func.__name__)
|
||||
expired = True
|
||||
return func(*args, **kwargs)
|
||||
|
||||
return wrapper
|
@ -1,13 +1,37 @@
|
||||
"""
|
||||
2D bin-packing
|
||||
"""
|
||||
from collections.abc import Sequence, Mapping, Callable
|
||||
from typing import Tuple, List, Set, Sequence, Callable
|
||||
|
||||
import numpy
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
|
||||
from ..error import MasqueError
|
||||
from ..pattern import Pattern
|
||||
from ..subpattern import SubPattern
|
||||
|
||||
|
||||
def pack_patterns(patterns: Sequence[Pattern],
|
||||
regions: numpy.ndarray,
|
||||
spacing: Tuple[float, float],
|
||||
presort: bool = True,
|
||||
allow_rejects: bool = True,
|
||||
packer: Callable = maxrects_bssf,
|
||||
) -> Tuple[Pattern, List[Pattern]]:
|
||||
half_spacing = numpy.array(spacing) / 2
|
||||
|
||||
bounds = [pp.get_bounds() for pp in patterns]
|
||||
sizes = [bb[1] - bb[0] + spacing if bb is not None else spacing for bb in bounds]
|
||||
offsets = [half_spacing - bb[0] if bb is not None else (0, 0) for bb in bounds]
|
||||
|
||||
locations, reject_inds = packer(sizes, regions, presort=presort, allow_rejects=allow_rejects)
|
||||
|
||||
pat = Pattern()
|
||||
pat.subpatterns = [SubPattern(pp, offset=oo + loc)
|
||||
for pp, oo, loc in zip(patterns, offsets, locations)]
|
||||
|
||||
rejects = [patterns[ii] for ii in reject_inds]
|
||||
return pat, rejects
|
||||
|
||||
|
||||
def maxrects_bssf(
|
||||
@ -15,36 +39,18 @@ def maxrects_bssf(
|
||||
containers: ArrayLike,
|
||||
presort: bool = True,
|
||||
allow_rejects: bool = True,
|
||||
) -> tuple[NDArray[numpy.float64], set[int]]:
|
||||
) -> Tuple[NDArray[numpy.float64], Set[int]]:
|
||||
"""
|
||||
Pack rectangles `rects` into regions `containers` using the "maximal rectangles best short side fit"
|
||||
algorithm (maxrects_bssf) from "A thousand ways to pack the bin", Jukka Jylanki, 2010.
|
||||
|
||||
This algorithm gives the best results, but is asymptotically slower than `guillotine_bssf_sas`.
|
||||
|
||||
Args:
|
||||
rects: Nx2 array of rectangle sizes `[[x_size0, y_size0], ...]`.
|
||||
containers: Mx4 array of regions into which `rects` will be placed, specified using their
|
||||
corner coordinates ` [[x_min0, y_min0, x_max0, y_max0], ...]`.
|
||||
presort: If `True` (default), largest-shortest-side rectangles will be placed
|
||||
first. Otherwise, they will be placed in the order provided.
|
||||
allow_rejects: If `False`, `MasqueError` will be raised if any rectangle cannot be placed.
|
||||
|
||||
Returns:
|
||||
`[[x_min0, y_min0], ...]` placement locations for `rects`, with the same ordering.
|
||||
The second argument is a set of indicies of `rects` entries which were rejected; their
|
||||
corresponding placement locations should be ignored.
|
||||
|
||||
Raises:
|
||||
MasqueError if `allow_rejects` is `True` but some `rects` could not be placed.
|
||||
sizes should be Nx2
|
||||
regions should be Mx4 (xmin, ymin, xmax, ymax)
|
||||
"""
|
||||
regions = numpy.asarray(containers, dtype=float)
|
||||
rect_sizes = numpy.asarray(rects, dtype=float)
|
||||
regions = numpy.array(containers, copy=False, dtype=float)
|
||||
rect_sizes = numpy.array(rects, copy=False, dtype=float)
|
||||
rect_locs = numpy.zeros_like(rect_sizes)
|
||||
rejected_inds = set()
|
||||
|
||||
if presort:
|
||||
rotated_sizes = numpy.sort(rect_sizes, axis=1) # shortest side first
|
||||
rotated_sizes = numpy.sort(rect_sizes, axis=0) # shortest side first
|
||||
rect_order = numpy.lexsort(rotated_sizes.T)[::-1] # Descending shortest side
|
||||
rect_sizes = rect_sizes[rect_order]
|
||||
|
||||
@ -62,15 +68,15 @@ def maxrects_bssf(
|
||||
|
||||
''' Place the rect '''
|
||||
# Best short-side fit (bssf) to pick a region
|
||||
region_sizes = regions[:, 2:] - regions[:, :2]
|
||||
bssf_scores = (region_sizes - rect_size).min(axis=1).astype(float)
|
||||
bssf_scores = ((regions[:, 2:] - regions[:, :2]) - rect_size).min(axis=1).astype(float)
|
||||
bssf_scores[bssf_scores < 0] = numpy.inf # doesn't fit!
|
||||
rr = bssf_scores.argmin()
|
||||
if numpy.isinf(bssf_scores[rr]):
|
||||
if allow_rejects:
|
||||
rejected_inds.add(rect_ind)
|
||||
continue
|
||||
raise MasqueError(f'Failed to find a suitable location for rectangle {rect_ind}')
|
||||
else:
|
||||
raise MasqueError(f'Failed to find a suitable location for rectangle {rect_ind}')
|
||||
|
||||
# Read out location
|
||||
loc = regions[rr, :2]
|
||||
@ -98,146 +104,62 @@ def maxrects_bssf(
|
||||
r_top[:, 1] = loc[1] + rect_size[1]
|
||||
|
||||
regions = numpy.vstack((regions[~intersects], r_lft, r_bot, r_rgt, r_top))
|
||||
|
||||
if presort:
|
||||
unsort_order = rect_order.argsort()
|
||||
rect_locs = rect_locs[unsort_order]
|
||||
rejected_inds = set(unsort_order[list(rejected_inds)])
|
||||
|
||||
return rect_locs, rejected_inds
|
||||
|
||||
|
||||
def guillotine_bssf_sas(
|
||||
rects: ArrayLike,
|
||||
containers: ArrayLike,
|
||||
presort: bool = True,
|
||||
allow_rejects: bool = True,
|
||||
) -> tuple[NDArray[numpy.float64], set[int]]:
|
||||
def guillotine_bssf_sas(rect_sizes: numpy.ndarray,
|
||||
regions: numpy.ndarray,
|
||||
presort: bool = True,
|
||||
allow_rejects: bool = True,
|
||||
) -> Tuple[numpy.ndarray, Set[int]]:
|
||||
"""
|
||||
Pack rectangles `rects` into regions `containers` using the "guillotine best short side fit with
|
||||
shorter axis split rule" algorithm (guillotine-BSSF-SAS) from "A thousand ways to pack the bin",
|
||||
Jukka Jylanki, 2010.
|
||||
|
||||
This algorithm gives the worse results than `maxrects_bssf`, but is asymptotically faster.
|
||||
|
||||
# TODO consider adding rectangle-merge?
|
||||
# TODO guillotine could use some additional testing
|
||||
|
||||
Args:
|
||||
rects: Nx2 array of rectangle sizes `[[x_size0, y_size0], ...]`.
|
||||
containers: Mx4 array of regions into which `rects` will be placed, specified using their
|
||||
corner coordinates ` [[x_min0, y_min0, x_max0, y_max0], ...]`.
|
||||
presort: If `True` (default), largest-shortest-side rectangles will be placed
|
||||
first. Otherwise, they will be placed in the order provided.
|
||||
allow_rejects: If `False`, `MasqueError` will be raised if any rectangle cannot be placed.
|
||||
|
||||
Returns:
|
||||
`[[x_min0, y_min0], ...]` placement locations for `rects`, with the same ordering.
|
||||
The second argument is a set of indicies of `rects` entries which were rejected; their
|
||||
corresponding placement locations should be ignored.
|
||||
|
||||
Raises:
|
||||
MasqueError if `allow_rejects` is `True` but some `rects` could not be placed.
|
||||
sizes should be Nx2
|
||||
regions should be Mx4 (xmin, ymin, xmax, ymax)
|
||||
#TODO: test me!
|
||||
# TODO add rectangle-merge?
|
||||
"""
|
||||
regions = numpy.asarray(containers, dtype=float)
|
||||
rect_sizes = numpy.asarray(rects, dtype=float)
|
||||
rect_sizes = numpy.array(rect_sizes)
|
||||
rect_locs = numpy.zeros_like(rect_sizes)
|
||||
rejected_inds = set()
|
||||
|
||||
if presort:
|
||||
rotated_sizes = numpy.sort(rect_sizes, axis=1) # shortest side first
|
||||
rotated_sizes = numpy.sort(rect_sizes, axis=0) # shortest side first
|
||||
rect_order = numpy.lexsort(rotated_sizes.T)[::-1] # Descending shortest side
|
||||
rect_sizes = rect_sizes[rect_order]
|
||||
|
||||
for rect_ind, rect_size in enumerate(rect_sizes):
|
||||
''' Place the rect '''
|
||||
# Best short-side fit (bssf) to pick a region
|
||||
region_sizes = regions[:, 2:] - regions[:, :2]
|
||||
bssf_scores = (region_sizes - rect_size).min(axis=1).astype(float)
|
||||
bssf_scores = ((regions[:, 2:] - regions[:, :2]) - rect_size).min(axis=1).astype(float)
|
||||
bssf_scores[bssf_scores < 0] = numpy.inf # doesn't fit!
|
||||
rr = bssf_scores.argmin()
|
||||
if numpy.isinf(bssf_scores[rr]):
|
||||
if allow_rejects:
|
||||
rejected_inds.add(rect_ind)
|
||||
continue
|
||||
raise MasqueError(f'Failed to find a suitable location for rectangle {rect_ind}')
|
||||
else:
|
||||
raise MasqueError(f'Failed to find a suitable location for rectangle {rect_ind}')
|
||||
|
||||
# Read out location
|
||||
loc = regions[rr, :2]
|
||||
rect_locs[rect_ind] = loc
|
||||
|
||||
region_size = region_sizes[rr]
|
||||
region_size = regions[rr, 2:] - loc
|
||||
split_horiz = region_size[0] < region_size[1]
|
||||
|
||||
new_region0 = regions[rr].copy()
|
||||
new_region1 = new_region0.copy()
|
||||
split_vertex = loc + rect_size
|
||||
split_vert = loc + rect_size
|
||||
if split_horiz:
|
||||
new_region0[2] = split_vertex[0]
|
||||
new_region0[1] = split_vertex[1]
|
||||
new_region1[0] = split_vertex[0]
|
||||
new_region0[2] = split_vert[0]
|
||||
new_region0[1] = split_vert[1]
|
||||
new_region1[0] = split_vert[0]
|
||||
else:
|
||||
new_region0[3] = split_vertex[1]
|
||||
new_region0[0] = split_vertex[0]
|
||||
new_region1[1] = split_vertex[1]
|
||||
new_region0[3] = split_vert[1]
|
||||
new_region0[0] = split_vert[0]
|
||||
new_region1[1] = split_vert[1]
|
||||
|
||||
regions = numpy.vstack((regions[:rr], regions[rr + 1:],
|
||||
new_region0, new_region1))
|
||||
|
||||
if presort:
|
||||
unsort_order = rect_order.argsort()
|
||||
rect_locs = rect_locs[unsort_order]
|
||||
rejected_inds = set(unsort_order[list(rejected_inds)])
|
||||
|
||||
return rect_locs, rejected_inds
|
||||
|
||||
|
||||
def pack_patterns(
|
||||
library: Mapping[str, Pattern],
|
||||
patterns: Sequence[str],
|
||||
containers: ArrayLike,
|
||||
spacing: tuple[float, float],
|
||||
presort: bool = True,
|
||||
allow_rejects: bool = True,
|
||||
packer: Callable = maxrects_bssf,
|
||||
) -> tuple[Pattern, list[str]]:
|
||||
"""
|
||||
Pick placement locations for `patterns` inside the regions specified by `containers`.
|
||||
No rotations are performed.
|
||||
|
||||
Args:
|
||||
library: Library from which `Pattern` objects will be drawn.
|
||||
patterns: Sequence of pattern names which are to be placed.
|
||||
containers: Mx4 array of regions into which `patterns` will be placed, specified using their
|
||||
corner coordinates ` [[x_min0, y_min0, x_max0, y_max0], ...]`.
|
||||
spacing: (x, y) spacing between adjacent patterns. Patterns are effectively expanded outwards
|
||||
by `spacing / 2` prior to placement, so this also affects pattern position relative to
|
||||
container edges.
|
||||
presort: If `True` (default), largest-shortest-side rectangles will be placed
|
||||
first. Otherwise, they will be placed in the order provided.
|
||||
allow_rejects: If `False`, `MasqueError` will be raised if any rectangle cannot be placed.
|
||||
packer: Bin-packing method; see the other functions in this module (namely `maxrects_bssf`
|
||||
and `guillotine_bssf_sas`).
|
||||
|
||||
Returns:
|
||||
A `Pattern` containing one `Ref` for each entry in `patterns`.
|
||||
A list of "rejected" pattern names, for which a valid placement location could not be found.
|
||||
|
||||
Raises:
|
||||
MasqueError if `allow_rejects` is `True` but some `rects` could not be placed.
|
||||
"""
|
||||
|
||||
half_spacing = numpy.asarray(spacing, dtype=float) / 2
|
||||
|
||||
bounds = [library[pp].get_bounds() for pp in patterns]
|
||||
sizes = [bb[1] - bb[0] + spacing if bb is not None else spacing for bb in bounds]
|
||||
offsets = [half_spacing - bb[0] if bb is not None else (0, 0) for bb in bounds]
|
||||
|
||||
locations, reject_inds = packer(sizes, containers, presort=presort, allow_rejects=allow_rejects)
|
||||
|
||||
pat = Pattern()
|
||||
for pp, oo, loc in zip(patterns, offsets, locations, strict=True):
|
||||
pat.ref(pp, offset=oo + loc)
|
||||
|
||||
rejects = [patterns[ii] for ii in reject_inds]
|
||||
return pat, rejects
|
||||
|
@ -1,178 +0,0 @@
|
||||
"""
|
||||
Functions for writing port data into Pattern geometry/annotations/labels (`ports_to_data`)
|
||||
and retrieving it (`data_to_ports`).
|
||||
|
||||
These use the format 'name:ptype angle_deg' written into labels, which are placed at
|
||||
the port locations. This particular approach is just a sensible default; feel free to
|
||||
to write equivalent functions for your own format or alternate storage methods.
|
||||
"""
|
||||
from collections.abc import Sequence, Mapping
|
||||
import logging
|
||||
from itertools import chain
|
||||
|
||||
import numpy
|
||||
|
||||
from ..pattern import Pattern
|
||||
from ..utils import layer_t
|
||||
from ..ports import Port
|
||||
from ..error import PatternError
|
||||
from ..library import ILibraryView, LibraryView
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def ports_to_data(pattern: Pattern, layer: layer_t) -> Pattern:
|
||||
"""
|
||||
Place a text label at each port location, specifying the port data in the format
|
||||
'name:ptype angle_deg'
|
||||
|
||||
This can be used to debug port locations or to automatically generate ports
|
||||
when reading in a GDS file.
|
||||
|
||||
NOTE that `pattern` is modified by this function
|
||||
|
||||
Args:
|
||||
pattern: The pattern which is to have its ports labeled. MODIFIED in-place.
|
||||
layer: The layer on which the labels will be placed.
|
||||
|
||||
Returns:
|
||||
`pattern`
|
||||
"""
|
||||
for name, port in pattern.ports.items():
|
||||
if port.rotation is None:
|
||||
angle_deg = numpy.inf
|
||||
else:
|
||||
angle_deg = numpy.rad2deg(port.rotation)
|
||||
pattern.label(layer=layer, string=f'{name}:{port.ptype} {angle_deg:g}', offset=port.offset)
|
||||
return pattern
|
||||
|
||||
|
||||
def data_to_ports(
|
||||
layers: Sequence[layer_t],
|
||||
library: Mapping[str, Pattern],
|
||||
pattern: Pattern, # Pattern is good since we don't want to do library[name] to avoid infinite recursion.
|
||||
# LazyLibrary protects against library[ref.target] causing a circular lookup.
|
||||
# For others, maybe check for cycles up front? TODO
|
||||
name: str | None = None, # Note: name optional, but arg order different from read(postprocess=)
|
||||
max_depth: int = 0,
|
||||
skip_subcells: bool = True,
|
||||
# TODO missing ok?
|
||||
) -> Pattern:
|
||||
"""
|
||||
# TODO fixup documentation in ports2data
|
||||
# TODO move to utils.file?
|
||||
Examine `pattern` for labels specifying port info, and use that info
|
||||
to fill out its `ports` attribute.
|
||||
|
||||
Labels are assumed to be placed at the port locations, and have the format
|
||||
'name:ptype angle_deg'
|
||||
|
||||
Args:
|
||||
layers: Search for labels on all the given layers.
|
||||
pattern: Pattern object to scan for labels.
|
||||
max_depth: Maximum hierarcy depth to search. Default 999_999.
|
||||
Reduce this to 0 to avoid ever searching subcells.
|
||||
skip_subcells: If port labels are found at a given hierarcy level,
|
||||
do not continue searching at deeper levels. This allows subcells
|
||||
to contain their own port info without interfering with supercells'
|
||||
port data.
|
||||
Default True.
|
||||
|
||||
Returns:
|
||||
The updated `pattern`. Port labels are not removed.
|
||||
"""
|
||||
if pattern.ports:
|
||||
logger.warning(f'Pattern {name if name else pattern} already had ports, skipping data_to_ports')
|
||||
return pattern
|
||||
|
||||
if not isinstance(library, ILibraryView):
|
||||
library = LibraryView(library)
|
||||
|
||||
data_to_ports_flat(layers, pattern, name)
|
||||
if (skip_subcells and pattern.ports) or max_depth == 0:
|
||||
return pattern
|
||||
|
||||
# Load ports for all subpatterns, and use any we find
|
||||
found_ports = False
|
||||
for target in pattern.refs:
|
||||
if target is None:
|
||||
continue
|
||||
pp = data_to_ports(
|
||||
layers=layers,
|
||||
library=library,
|
||||
pattern=library[target],
|
||||
name=target,
|
||||
max_depth=max_depth - 1,
|
||||
skip_subcells=skip_subcells,
|
||||
)
|
||||
found_ports |= bool(pp.ports)
|
||||
|
||||
if not found_ports:
|
||||
return pattern
|
||||
|
||||
for target, refs in pattern.refs.items():
|
||||
if target is None:
|
||||
continue
|
||||
if not refs:
|
||||
continue
|
||||
|
||||
for ref in refs:
|
||||
aa = library.abstract(target)
|
||||
if not aa.ports:
|
||||
break
|
||||
|
||||
aa.apply_ref_transform(ref)
|
||||
pattern.check_ports(other_names=aa.ports.keys())
|
||||
pattern.ports.update(aa.ports)
|
||||
return pattern
|
||||
|
||||
|
||||
def data_to_ports_flat(
|
||||
layers: Sequence[layer_t],
|
||||
pattern: Pattern,
|
||||
cell_name: str | None = None,
|
||||
) -> Pattern:
|
||||
"""
|
||||
Examine `pattern` for labels specifying port info, and use that info
|
||||
to fill out its `ports` attribute.
|
||||
|
||||
Labels are assumed to be placed at the port locations, and have the format
|
||||
'name:ptype angle_deg'
|
||||
|
||||
The pattern is assumed to be flat (have no `refs`) and have no pre-existing ports.
|
||||
|
||||
Args:
|
||||
layers: Search for labels on all the given layers.
|
||||
pattern: Pattern object to scan for labels.
|
||||
cell_name: optional, used for warning message only
|
||||
|
||||
Returns:
|
||||
The updated `pattern`. Port labels are not removed.
|
||||
"""
|
||||
labels = list(chain.from_iterable(pattern.labels[layer] for layer in layers))
|
||||
if not labels:
|
||||
return pattern
|
||||
|
||||
pstr = cell_name if cell_name is not None else repr(pattern)
|
||||
if pattern.ports:
|
||||
raise PatternError(f'Pattern "{pstr}" has pre-existing ports!')
|
||||
|
||||
local_ports = {}
|
||||
for label in labels:
|
||||
name, property_string = label.string.split(':')
|
||||
properties = property_string.split(' ')
|
||||
ptype = properties[0]
|
||||
angle_deg = float(properties[1]) if len(ptype) else 0
|
||||
|
||||
xy = label.offset
|
||||
angle = numpy.deg2rad(angle_deg)
|
||||
|
||||
if name in local_ports:
|
||||
logger.warning(f'Duplicate port "{name}" in pattern "{pstr}"')
|
||||
|
||||
local_ports[name] = Port(offset=xy, rotation=angle, ptype=ptype)
|
||||
|
||||
pattern.ports.update(local_ports)
|
||||
return pattern
|
||||
|
@ -1,15 +1,12 @@
|
||||
"""
|
||||
Geometric transforms
|
||||
"""
|
||||
from collections.abc import Sequence
|
||||
from functools import lru_cache
|
||||
from typing import Sequence, Tuple
|
||||
|
||||
import numpy
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
from numpy import pi
|
||||
from numpy.typing import NDArray
|
||||
|
||||
|
||||
@lru_cache
|
||||
def rotation_matrix_2d(theta: float) -> NDArray[numpy.float64]:
|
||||
"""
|
||||
2D rotation matrix for rotating counterclockwise around the origin.
|
||||
@ -20,18 +17,11 @@ def rotation_matrix_2d(theta: float) -> NDArray[numpy.float64]:
|
||||
Returns:
|
||||
rotation matrix
|
||||
"""
|
||||
arr = numpy.array([[numpy.cos(theta), -numpy.sin(theta)],
|
||||
[numpy.sin(theta), +numpy.cos(theta)]])
|
||||
|
||||
# If this was a manhattan rotation, round to remove some inacuraccies in sin & cos
|
||||
if numpy.isclose(theta % (pi / 2), 0):
|
||||
arr = numpy.round(arr)
|
||||
|
||||
arr.flags.writeable = False
|
||||
return arr
|
||||
return numpy.array([[numpy.cos(theta), -numpy.sin(theta)],
|
||||
[numpy.sin(theta), +numpy.cos(theta)]])
|
||||
|
||||
|
||||
def normalize_mirror(mirrored: Sequence[bool]) -> tuple[bool, float]:
|
||||
def normalize_mirror(mirrored: Sequence[bool]) -> Tuple[bool, float]:
|
||||
"""
|
||||
Converts 0-2 mirror operations `(mirror_across_x_axis, mirror_across_y_axis)`
|
||||
into 0-1 mirror operations and a rotation
|
||||
@ -48,71 +38,3 @@ def normalize_mirror(mirrored: Sequence[bool]) -> tuple[bool, float]:
|
||||
mirror_x = (mirrored_x != mirrored_y) # XOR
|
||||
angle = numpy.pi if mirrored_y else 0
|
||||
return mirror_x, angle
|
||||
|
||||
|
||||
def rotate_offsets_around(
|
||||
offsets: NDArray[numpy.float64],
|
||||
pivot: NDArray[numpy.float64],
|
||||
angle: float,
|
||||
) -> NDArray[numpy.float64]:
|
||||
"""
|
||||
Rotates offsets around a pivot point.
|
||||
|
||||
Args:
|
||||
offsets: Nx2 array, rows are (x, y) offsets
|
||||
pivot: (x, y) location to rotate around
|
||||
angle: rotation angle in radians
|
||||
|
||||
Returns:
|
||||
Nx2 ndarray of (x, y) position after the rotation is applied.
|
||||
"""
|
||||
offsets -= pivot
|
||||
offsets[:] = (rotation_matrix_2d(angle) @ offsets.T).T
|
||||
offsets += pivot
|
||||
return offsets
|
||||
|
||||
|
||||
def apply_transforms(
|
||||
outer: ArrayLike,
|
||||
inner: ArrayLike,
|
||||
tensor: bool = False,
|
||||
) -> NDArray[numpy.float64]:
|
||||
"""
|
||||
Apply a set of transforms (`outer`) to a second set (`inner`).
|
||||
This is used to find the "absolute" transform for nested `Ref`s.
|
||||
|
||||
The two transforms should be of shape Ox4 and Ix4.
|
||||
Rows should be of the form `(x_offset, y_offset, rotation_ccw_rad, mirror_across_x)`.
|
||||
The output will be of the form (O*I)x4 (if `tensor=False`) or OxIx4 (`tensor=True`).
|
||||
|
||||
Args:
|
||||
outer: Transforms for the container refs. Shape Ox4.
|
||||
inner: Transforms for the contained refs. Shape Ix4.
|
||||
tensor: If `True`, an OxIx4 array is returned, with `result[oo, ii, :]` corresponding
|
||||
to the `oo`th `outer` transform applied to the `ii`th inner transform.
|
||||
If `False` (default), this is concatenated into `(O*I)x4` to allow simple
|
||||
chaining into additional `apply_transforms()` calls.
|
||||
|
||||
Returns:
|
||||
OxIx4 or (O*I)x4 array. Final dimension is
|
||||
`(total_x, total_y, total_rotation_ccw_rad, net_mirrored_x)`.
|
||||
"""
|
||||
outer = numpy.atleast_2d(outer).astype(float, copy=False)
|
||||
inner = numpy.atleast_2d(inner).astype(float, copy=False)
|
||||
|
||||
# If mirrored, flip y's
|
||||
xy_mir = numpy.tile(inner[:, :2], (outer.shape[0], 1, 1)) # dims are outer, inner, xyrm
|
||||
xy_mir[outer[:, 3].astype(bool), :, 1] *= -1
|
||||
|
||||
rot_mats = [rotation_matrix_2d(angle) for angle in outer[:, 2]]
|
||||
xy = numpy.einsum('ort,oit->oir', rot_mats, xy_mir)
|
||||
|
||||
tot = numpy.empty((outer.shape[0], inner.shape[0], 4))
|
||||
tot[:, :, :2] = outer[:, None, :2] + xy
|
||||
tot[:, :, 2:] = outer[:, None, 2:] + inner[None, :, 2:] # sum rotations and mirrored
|
||||
tot[:, :, 2] %= 2 * pi # clamp rot
|
||||
tot[:, :, 3] %= 2 # clamp mirrored
|
||||
|
||||
if tensor:
|
||||
return tot
|
||||
return numpy.concatenate(tot)
|
||||
|
@ -1,13 +1,8 @@
|
||||
"""
|
||||
Type definitions
|
||||
"""
|
||||
from typing import Protocol
|
||||
from typing import Union, Tuple, Sequence, Dict, List
|
||||
|
||||
|
||||
layer_t = int | tuple[int, int] | str
|
||||
annotations_t = dict[str, list[int | float | str]]
|
||||
|
||||
|
||||
class SupportsBool(Protocol):
|
||||
def __bool__(self) -> bool:
|
||||
...
|
||||
layer_t = Union[int, Tuple[int, int], str]
|
||||
annotations_t = Dict[str, List[Union[int, float, str]]]
|
||||
|
@ -15,9 +15,9 @@ def remove_duplicate_vertices(vertices: ArrayLike, closed_path: bool = True) ->
|
||||
(i.e. the last vertex will be removed if it is the same as the first)
|
||||
|
||||
Returns:
|
||||
`vertices` with no consecutive duplicates. This may be a view into the original array.
|
||||
`vertices` with no consecutive duplicates.
|
||||
"""
|
||||
vertices = numpy.asarray(vertices)
|
||||
vertices = numpy.array(vertices)
|
||||
duplicates = (vertices == numpy.roll(vertices, 1, axis=0)).all(axis=1)
|
||||
if not closed_path:
|
||||
duplicates[0] = False
|
||||
@ -35,7 +35,7 @@ def remove_colinear_vertices(vertices: ArrayLike, closed_path: bool = True) -> N
|
||||
closed path. If `False`, the path is assumed to be open. Default `True`.
|
||||
|
||||
Returns:
|
||||
`vertices` with colinear (superflous) vertices removed. May be a view into the original array.
|
||||
`vertices` with colinear (superflous) vertices removed.
|
||||
"""
|
||||
vertices = remove_duplicate_vertices(vertices)
|
||||
|
||||
@ -73,17 +73,17 @@ def poly_contains_points(
|
||||
Returns:
|
||||
ndarray of booleans, [point0_is_in_shape, point1_is_in_shape, ...]
|
||||
"""
|
||||
points = numpy.asarray(points, dtype=float)
|
||||
vertices = numpy.asarray(vertices, dtype=float)
|
||||
points = numpy.array(points, copy=False)
|
||||
vertices = numpy.array(vertices, copy=False)
|
||||
|
||||
if points.size == 0:
|
||||
return numpy.zeros(0, dtype=numpy.int8)
|
||||
return numpy.zeros(0)
|
||||
|
||||
min_bounds = numpy.min(vertices, axis=0)[None, :]
|
||||
max_bounds = numpy.max(vertices, axis=0)[None, :]
|
||||
|
||||
trivially_outside = ((points < min_bounds).any(axis=1)
|
||||
| (points > max_bounds).any(axis=1)) # noqa: E128
|
||||
| (points > max_bounds).any(axis=1))
|
||||
|
||||
nontrivial = ~trivially_outside
|
||||
if trivially_outside.all():
|
||||
@ -101,10 +101,10 @@ def poly_contains_points(
|
||||
|
||||
dv = numpy.roll(verts, -1, axis=0) - verts
|
||||
is_left = (dv[:, 0] * (ntpts[..., 1] - verts[:, 1]) # >0 if left of dv, <0 if right, 0 if on the line
|
||||
- dv[:, 1] * (ntpts[..., 0] - verts[:, 0])) # noqa: E128
|
||||
- dv[:, 1] * (ntpts[..., 0] - verts[:, 0]))
|
||||
|
||||
winding_number = ((upward & (is_left > 0)).sum(axis=0)
|
||||
- (downward & (is_left < 0)).sum(axis=0)) # noqa: E128
|
||||
- (downward & (is_left < 0)).sum(axis=0))
|
||||
|
||||
nontrivial_inside = winding_number != 0 # filter nontrivial points based on winding number
|
||||
if include_boundary:
|
||||
@ -113,3 +113,5 @@ def poly_contains_points(
|
||||
inside = nontrivial.copy()
|
||||
inside[nontrivial] = nontrivial_inside
|
||||
return inside
|
||||
|
||||
|
||||
|
@ -39,11 +39,11 @@ classifiers = [
|
||||
"Topic :: Scientific/Engineering :: Electronic Design Automation (EDA)",
|
||||
"Topic :: Scientific/Engineering :: Visualization",
|
||||
]
|
||||
requires-python = ">=3.11"
|
||||
requires-python = ">=3.8"
|
||||
dynamic = ["version"]
|
||||
dependencies = [
|
||||
"numpy>=1.26",
|
||||
"klamath~=1.4",
|
||||
"numpy~=1.21",
|
||||
"klamath~=1.2",
|
||||
]
|
||||
|
||||
|
||||
@ -52,41 +52,9 @@ path = "masque/__init__.py"
|
||||
|
||||
[project.optional-dependencies]
|
||||
oasis = ["fatamorgana~=0.11"]
|
||||
dxf = ["ezdxf~=1.0.2"]
|
||||
dxf = ["ezdxf"]
|
||||
svg = ["svgwrite"]
|
||||
visualize = ["matplotlib"]
|
||||
text = ["matplotlib", "freetype-py"]
|
||||
|
||||
|
||||
[tool.ruff]
|
||||
exclude = [
|
||||
".git",
|
||||
"dist",
|
||||
]
|
||||
line-length = 145
|
||||
indent-width = 4
|
||||
lint.dummy-variable-rgx = "^(_+|(_+[a-zA-Z0-9_]*[a-zA-Z0-9]+?))$"
|
||||
lint.select = [
|
||||
"NPY", "E", "F", "W", "B", "ANN", "UP", "SLOT", "SIM", "LOG",
|
||||
"C4", "ISC", "PIE", "PT", "RET", "TCH", "PTH", "INT",
|
||||
"ARG", "PL", "R", "TRY",
|
||||
"G010", "G101", "G201", "G202",
|
||||
"Q002", "Q003", "Q004",
|
||||
]
|
||||
lint.ignore = [
|
||||
#"ANN001", # No annotation
|
||||
"ANN002", # *args
|
||||
"ANN003", # **kwargs
|
||||
"ANN401", # Any
|
||||
"ANN101", # self: Self
|
||||
"SIM108", # single-line if / else assignment
|
||||
"RET504", # x=y+z; return x
|
||||
"PIE790", # unnecessary pass
|
||||
"ISC003", # non-implicit string concatenation
|
||||
"C408", # dict(x=y) instead of {'x': y}
|
||||
"PLR09", # Too many xxx
|
||||
"PLR2004", # magic number
|
||||
"PLC0414", # import x as x
|
||||
"TRY003", # Long exception message
|
||||
]
|
||||
python-gdsii = ["python-gdsii"]
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user