WIP: make libraries and names first-class!

This commit is contained in:
jan 2022-07-07 11:27:29 -07:00
parent fff20b3da9
commit 42c3a2b1e1
34 changed files with 1785 additions and 1817 deletions

View File

@ -0,0 +1,28 @@
import numpy
from pyclipper import (
Pyclipper, PT_CLIP, PT_SUBJECT, CT_UNION, CT_INTERSECTION, PFT_NONZERO,
scale_to_clipper, scale_from_clipper,
)
p = Pyclipper()
p.AddPaths([
[(-10, -10), (-10, 10), (-9, 10), (-9, -10)],
[(-10, 10), (10, 10), (10, 9), (-10, 9)],
[(10, 10), (10, -10), (9, -10), (9, 10)],
[(10, -10), (-10, -10), (-10, -9), (10, -9)],
], PT_SUBJECT, closed=True)
p.Execute2?
p.Execute?
p.Execute(PT_UNION, PT_NONZERO, PT_NONZERO)
p.Execute(CT_UNION, PT_NONZERO, PT_NONZERO)
p.Execute(CT_UNION, PFT_NONZERO, PFT_NONZERO)
p = Pyclipper()
p.AddPaths([
[(-10, -10), (-10, 10), (-9, 10), (-9, -10)],
[(-10, 10), (10, 10), (10, 9), (-10, 9)],
[(10, 10), (10, -10), (9, -10), (9, 10)],
[(10, -10), (-10, -10), (-10, -9), (10, -9)],
], PT_SUBJECT, closed=True)
r = p.Execute2(CT_UNION, PFT_NONZERO, PFT_NONZERO)
r
r.Childs
%history -f nested_poly_test.py

298
examples/pcgen.py Normal file
View File

@ -0,0 +1,298 @@
"""
Routines for creating normalized 2D lattices and common photonic crystal
cavity designs.
"""
from typing import Sequence, Tuple
import numpy # type: ignore
def triangular_lattice(dims: Tuple[int, int],
asymmetric: bool = False,
origin: str = 'center',
) -> numpy.ndarray:
"""
Return an ndarray of `[[x0, y0], [x1, y1], ...]` denoting lattice sites for
a triangular lattice in 2D.
Args:
dims: Number of lattice sites in the [x, y] directions.
asymmetric: If true, each row will contain the same number of
x-coord lattice sites. If false, every other row will be
one site shorter (to make the structure symmetric).
origin: If 'corner', the least-(x,y) lattice site is placed at (0, 0)
If 'center', the center of the lattice (not necessarily a
lattice site) is placed at (0, 0).
Returns:
`[[x0, y0], [x1, 1], ...]` denoting lattice sites.
"""
sx, sy = numpy.meshgrid(numpy.arange(dims[0], dtype=float),
numpy.arange(dims[1], dtype=float), indexing='ij')
sx[sy % 2 == 1] += 0.5
sy *= numpy.sqrt(3) / 2
if not asymmetric:
which = sx != sx.max()
sx = sx[which]
sy = sy[which]
xy = numpy.column_stack((sx.flat, sy.flat))
if origin == 'center':
xy -= (xy.max(axis=0) - xy.min(axis=0)) / 2
elif origin == 'corner':
pass
else:
raise Exception(f'Invalid value for `origin`: {origin}')
return xy[xy[:, 0].argsort(), :]
def square_lattice(dims: Tuple[int, int]) -> numpy.ndarray:
"""
Return an ndarray of `[[x0, y0], [x1, y1], ...]` denoting lattice sites for
a square lattice in 2D. The lattice will be centered around (0, 0).
Args:
dims: Number of lattice sites in the [x, y] directions.
Returns:
`[[x0, y0], [x1, 1], ...]` denoting lattice sites.
"""
xs, ys = numpy.meshgrid(range(dims[0]), range(dims[1]), 'xy')
xs -= dims[0]/2
ys -= dims[1]/2
xy = numpy.vstack((xs.flatten(), ys.flatten())).T
return xy[xy[:, 0].argsort(), ]
# ### Photonic crystal functions ###
def nanobeam_holes(a_defect: float,
num_defect_holes: int,
num_mirror_holes: int
) -> numpy.ndarray:
"""
Returns a list of `[[x0, r0], [x1, r1], ...]` of nanobeam hole positions and radii.
Creates a region in which the lattice constant and radius are progressively
(linearly) altered over num_defect_holes holes until they reach the value
specified by a_defect, then symmetrically returned to a lattice constant and
radius of 1, which is repeated num_mirror_holes times on each side.
Args:
a_defect: Minimum lattice constant for the defect, as a fraction of the
mirror lattice constant (ie., for no defect, a_defect = 1).
num_defect_holes: How many holes form the defect (per-side)
num_mirror_holes: How many holes form the mirror (per-side)
Returns:
Ndarray `[[x0, r0], [x1, r1], ...]` of nanobeam hole positions and radii.
"""
a_values = numpy.linspace(a_defect, 1, num_defect_holes, endpoint=False)
xs = a_values.cumsum() - (a_values[0] / 2) # Later mirroring makes center distance 2x as long
mirror_xs = numpy.arange(1, num_mirror_holes + 1, dtype=float) + xs[-1]
mirror_rs = numpy.ones_like(mirror_xs)
return numpy.vstack((numpy.hstack((-mirror_xs[::-1], -xs[::-1], xs, mirror_xs)),
numpy.hstack((mirror_rs[::-1], a_values[::-1], a_values, mirror_rs)))).T
def waveguide(length: int, num_mirror: int) -> numpy.ndarray:
"""
Line defect waveguide in a triangular lattice.
Args:
length: waveguide length (number of holes in x direction)
num_mirror: Mirror length (number of holes per side; total size is
`2 * n + 1` holes.
Returns:
`[[x0, y0], [x1, y1], ...]` for all the holes
"""
p = triangular_lattice([length, 2 * num_mirror + 1])
p_wg = p[p[:, 1] != 0, :]
return p_wg
def wgbend(num_mirror: int) -> numpy.ndarray:
"""
Line defect waveguide bend in a triangular lattice.
Args:
num_mirror: Mirror length (number of holes per side; total size is
approximately `2 * n + 1`
Returns:
`[[x0, y0], [x1, y1], ...]` for all the holes
"""
p = triangular_lattice([2 * num_mirror, 2 * num_mirror + 1])
left_horiz = (p[:, 1] == 0) & (p[:, 0] <= 0)
p = p[~left_horiz, :]
right_diag = numpy.isclose(p[:, 1], p[:, 0] * numpy.sqrt(3)) & (p[:, 0] >= 0)
p = p[~right_diag, :]
return p
def y_splitter(num_mirror: int) -> numpy.ndarray:
"""
Line defect waveguide y-splitter in a triangular lattice.
Args:
num_mirror: Mirror length (number of holes per side; total size is
approximately `2 * n + 1` holes.
Returns:
`[[x0, y0], [x1, y1], ...]` for all the holes
"""
p = triangular_lattice([2 * num_mirror, 2 * num_mirror + 1])
left_horiz = (p[:, 1] == 0) & (p[:, 0] <= 0)
p = p[~left_horiz, :]
right_diag_up = numpy.isclose(p[:, 1], p[:, 0] * numpy.sqrt(3)) & (p[:, 0] >= 0)
p = p[~right_diag_up, :]
right_diag_dn = numpy.isclose(p[:, 1], -p[:, 0] * numpy.sqrt(3)) & (p[:, 0] >= 0)
p = p[~right_diag_dn, :]
return p
def ln_defect(mirror_dims: Tuple[int, int],
defect_length: int,
) -> numpy.ndarray:
"""
N-hole defect in a triangular lattice.
Args:
mirror_dims: [x, y] mirror lengths (number of holes). Total number of holes
is 2 * n + 1 in each direction.
defect_length: Length of defect. Should be an odd number.
Returns:
`[[x0, y0], [x1, y1], ...]` for all the holes
"""
if defect_length % 2 != 1:
raise Exception('defect_length must be odd!')
p = triangular_lattice([2 * d + 1 for d in mirror_dims])
half_length = numpy.floor(defect_length / 2)
hole_nums = numpy.arange(-half_length, half_length + 1)
holes_to_keep = numpy.in1d(p[:, 0], hole_nums, invert=True)
return p[numpy.logical_or(holes_to_keep, p[:, 1] != 0), ]
def ln_shift_defect(mirror_dims: Tuple[int, int],
defect_length: int,
shifts_a: Sequence[float] = (0.15, 0, 0.075),
shifts_r: Sequence[float] = (1, 1, 1)
) -> numpy.ndarray:
"""
N-hole defect with shifted holes (intended to give the mode a gaussian profile
in real- and k-space so as to improve both Q and confinement). Holes along the
defect line are shifted and altered according to the shifts_* parameters.
Args:
mirror_dims: [x, y] mirror lengths (number of holes). Total number of holes
is `2 * n + 1` in each direction.
defect_length: Length of defect. Should be an odd number.
shifts_a: Percentage of a to shift (1st, 2nd, 3rd,...) holes along the defect line
shifts_r: Factor to multiply the radius by. Should match length of shifts_a
Returns:
`[[x0, y0, r0], [x1, y1, r1], ...]` for all the holes
"""
if not hasattr(shifts_a, "__len__") and shifts_a is not None:
shifts_a = [shifts_a]
if not hasattr(shifts_r, "__len__") and shifts_r is not None:
shifts_r = [shifts_r]
xy = ln_defect(mirror_dims, defect_length)
# Add column for radius
xyr = numpy.hstack((xy, numpy.ones((xy.shape[0], 1))))
# Shift holes
# Expand shifts as necessary
n_shifted = max(len(shifts_a), len(shifts_r))
tmp_a = numpy.array(shifts_a)
shifts_a = numpy.ones((n_shifted, ))
shifts_a[:len(tmp_a)] = tmp_a
tmp_r = numpy.array(shifts_r)
shifts_r = numpy.ones((n_shifted, ))
shifts_r[:len(tmp_r)] = tmp_r
x_removed = numpy.floor(defect_length / 2)
for ind in range(n_shifted):
for sign in (-1, 1):
x_val = sign * (x_removed + ind + 1)
which = numpy.logical_and(xyr[:, 0] == x_val, xyr[:, 1] == 0)
xyr[which, ] = (x_val + numpy.sign(x_val) * shifts_a[ind], 0, shifts_r[ind])
return xyr
def r6_defect(mirror_dims: Tuple[int, int]) -> numpy.ndarray:
"""
R6 defect in a triangular lattice.
Args:
mirror_dims: [x, y] mirror lengths (number of holes). Total number of holes
is 2 * n + 1 in each direction.
Returns:
`[[x0, y0], [x1, y1], ...]` specifying hole centers.
"""
xy = triangular_lattice([2 * d + 1 for d in mirror_dims])
rem_holes_plus = numpy.array([[1, 0],
[0.5, +numpy.sqrt(3)/2],
[0.5, -numpy.sqrt(3)/2]])
rem_holes = numpy.vstack((rem_holes_plus, -rem_holes_plus))
for rem_xy in rem_holes:
xy = xy[(xy != rem_xy).any(axis=1), ]
return xy
def l3_shift_perturbed_defect(
mirror_dims: Tuple[int, int],
perturbed_radius: float = 1.1,
shifts_a: Sequence[float] = (),
shifts_r: Sequence[float] = ()
) -> numpy.ndarray:
"""
3-hole defect with perturbed hole sizes intended to form an upwards-directed
beam. Can also include shifted holes along the defect line, intended
to give the mode a more gaussian profile to improve Q.
Args:
mirror_dims: [x, y] mirror lengths (number of holes). Total number of holes
is 2 * n + 1 in each direction.
perturbed_radius: Amount to perturb the radius of the holes used for beam-forming
shifts_a: Percentage of a to shift (1st, 2nd, 3rd,...) holes along the defect line
shifts_r: Factor to multiply the radius by. Should match length of shifts_a
Returns:
`[[x0, y0, r0], [x1, y1, r1], ...]` for all the holes
"""
xyr = ln_shift_defect(mirror_dims, 3, shifts_a, shifts_r)
abs_x, abs_y = (numpy.fabs(xyr[:, i]) for i in (0, 1))
# Sorted unique xs and ys
# Ignore row y=0 because it might have shifted holes
xs = numpy.unique(abs_x[abs_x != 0])
ys = numpy.unique(abs_y)
# which holes should be perturbed? (xs[[3, 7]], ys[1]) and (xs[[2, 6]], ys[2])
perturbed_holes = ((xs[a], ys[b]) for a, b in ((3, 1), (7, 1), (2, 2), (6, 2)))
for row in xyr:
if numpy.fabs(row) in perturbed_holes:
row[2] = perturbed_radius
return xyr

178
examples/phc.py Normal file
View File

@ -0,0 +1,178 @@
from typing import Tuple, Sequence
import numpy # type: ignore
from numpy import pi
from masque import layer_t, Pattern, SubPattern, Label
from masque.shapes import Polygon, Circle
from masque.builder import Device, Port
from masque.library import Library, DeviceLibrary
from masque.file.klamath import writefile
import pcgen
HOLE_SCALE: float = 1000
''' Radius for the 'hole' cell. Should be significantly bigger than
1 (minimum database unit) in order to have enough precision to
reasonably represent a polygonized circle (for GDS)
'''
def hole(layer: layer_t,
radius: float = HOLE_SCALE * 0.35,
) -> Pattern:
"""
Generate a pattern containing a single circular hole.
Args:
layer: Layer to draw the circle on.
radius: Circle radius.
Returns:
Pattern, named `'hole'`
"""
pat = Pattern('hole', shapes=[
Circle(radius=radius, offset=(0, 0), layer=layer, dose=1.0)
])
return pat
def perturbed_l3(lattice_constant: float,
hole: Pattern,
trench_dose: float = 1.0,
trench_layer: layer_t = (1, 0),
shifts_a: Sequence[float] = (0.15, 0, 0.075),
shifts_r: Sequence[float] = (1.0, 1.0, 1.0),
xy_size: Tuple[int, int] = (10, 10),
perturbed_radius: float = 1.1,
trench_width: float = 1200,
) -> Device:
"""
Generate a `Device` representing a perturbed L3 cavity.
Args:
lattice_constant: Distance between nearest neighbor holes
hole: `Pattern` object containing a single hole
trench_dose: Dose for the trenches. Default 1.0. (Hole dose is 1.0.)
trench_layer: Layer for the trenches, default `(1, 0)`.
shifts_a: passed to `pcgen.l3_shift`; specifies lattice constant
(1 - multiplicative factor) for shifting holes adjacent to
the defect (same row). Default `(0.15, 0, 0.075)` for first,
second, third holes.
shifts_r: passed to `pcgen.l3_shift`; specifies radius for perturbing
holes adjacent to the defect (same row). Default 1.0 for all holes.
Provided sequence should have same length as `shifts_a`.
xy_size: `(x, y)` number of mirror periods in each direction; total size is
`2 * n + 1` holes in each direction. Default (10, 10).
perturbed_radius: radius of holes perturbed to form an upwards-driected beam
(multiplicative factor). Default 1.1.
trench width: Width of the undercut trenches. Default 1200.
Returns:
`Device` object representing the L3 design.
"""
xyr = pcgen.l3_shift_perturbed_defect(mirror_dims=xy_size,
perturbed_radius=perturbed_radius,
shifts_a=shifts_a,
shifts_r=shifts_r)
pat = Pattern(f'L3p-a{lattice_constant:g}rp{perturbed_radius:g}')
pat.subpatterns += [SubPattern(hole, offset=(lattice_constant * x,
lattice_constant * y), scale=r * lattice_constant / HOLE_SCALE)
for x, y, r in xyr]
min_xy, max_xy = pat.get_bounds()
trench_dx = max_xy[0] - min_xy[0]
pat.shapes += [
Polygon.rect(ymin=max_xy[1], xmin=min_xy[0], lx=trench_dx, ly=trench_width,
layer=trench_layer, dose=trench_dose),
Polygon.rect(ymax=min_xy[1], xmin=min_xy[0], lx=trench_dx, ly=trench_width,
layer=trench_layer, dose=trench_dose),
]
ports = {
'input': Port((-lattice_constant * xy_size[0], 0), rotation=0, ptype=1),
'output': Port((lattice_constant * xy_size[0], 0), rotation=pi, ptype=1),
}
return Device(pat, ports)
def waveguide(lattice_constant: float,
hole: Pattern,
length: int,
mirror_periods: int,
) -> Device:
xy = pcgen.waveguide(length=length + 2, num_mirror=mirror_periods)
pat = Pattern(f'_wg-a{lattice_constant:g}l{length}')
pat.subpatterns += [SubPattern(hole, offset=(lattice_constant * x,
lattice_constant * y), scale=lattice_constant / HOLE_SCALE)
for x, y in xy]
ports = {
'left': Port((-lattice_constant * length / 2, 0), rotation=0, ptype=1),
'right': Port((lattice_constant * length / 2, 0), rotation=pi, ptype=1),
}
return Device(pat, ports)
def bend(lattice_constant: float,
hole: Pattern,
mirror_periods: int,
) -> Device:
xy = pcgen.wgbend(num_mirror=mirror_periods)
pat_half = Pattern(f'_wgbend_half-a{lattice_constant:g}l{mirror_periods}')
pat_half.subpatterns += [SubPattern(hole, offset=(lattice_constant * x,
lattice_constant * y), scale=lattice_constant / HOLE_SCALE)
for x, y in xy]
pat = Pattern(f'_wgbend-a{lattice_constant:g}l{mirror_periods}')
pat.addsp(pat_half, offset=(0, 0), rotation=0, mirrored=(False, False))
pat.addsp(pat_half, offset=(0, 0), rotation=-2 * pi / 3, mirrored=(True, False))
ports = {
'left': Port((-lattice_constant * mirror_periods, 0), rotation=0, ptype=1),
'right': Port((lattice_constant * mirror_periods / 2,
lattice_constant * mirror_periods * numpy.sqrt(3) / 2), rotation=pi * 4 / 3, ptype=1),
}
return Device(pat, ports)
def label_ports(device: Device, layer: layer_t = (3, 0)) -> Device:
for name, port in device.ports.items():
angle_deg = numpy.rad2deg(port.rotation)
device.pattern.labels += [
Label(string=f'{name} (angle {angle_deg:g})', layer=layer, offset=port.offset)
]
return device
def main():
hole_layer = (1, 2)
a = 512
hole_pat = hole(layer=hole_layer)
wg0 = label_ports(waveguide(lattice_constant=a, hole=hole_pat, length=10, mirror_periods=5))
wg1 = label_ports(waveguide(lattice_constant=a, hole=hole_pat, length=5, mirror_periods=5))
bend0 = label_ports(bend(lattice_constant=a, hole=hole_pat, mirror_periods=5))
l3cav = label_ports(perturbed_l3(lattice_constant=a, hole=hole_pat, xy_size=(4, 10)))
dev = Device(name='my_bend', ports={})
dev.place(wg0, offset=(0, 0), port_map={'left': 'in', 'right': 'signal'})
dev.plug(wg0, {'signal': 'left'})
dev.plug(bend0, {'signal': 'left'})
dev.plug(wg1, {'signal': 'left'})
dev.plug(bend0, {'signal': 'right'})
dev.plug(wg0, {'signal': 'left'})
dev.plug(l3cav, {'signal': 'input'})
dev.plug(wg0, {'signal': 'left'})
writefile(dev.pattern, 'phc.gds', 1e-9, 1e-3)
dev.pattern.visualize()
if __name__ == '__main__':
main()

View File

@ -24,17 +24,17 @@
metaclass is used to auto-generate slots based on superclass type annotations. metaclass is used to auto-generate slots based on superclass type annotations.
- File I/O submodules are imported by `masque.file` to avoid creating hard dependencies on - File I/O submodules are imported by `masque.file` to avoid creating hard dependencies on
external file-format reader/writers external file-format reader/writers
- Pattern locking/unlocking is quite slow for large hierarchies.
""" """
from .error import PatternError, PatternLockedError from .error import PatternError
from .shapes import Shape from .shapes import Shape
from .label import Label from .label import Label
from .subpattern import SubPattern from .subpattern import SubPattern
from .pattern import Pattern from .pattern import Pattern
from .utils import layer_t, annotations_t from .utils import layer_t, annotations_t
from .library import Library, DeviceLibrary from .library import Library, PatternGenerator
from .builder import DeviceLibrary, LibDeviceLibrary, Device, Port
__author__ = 'Jan Petykiewicz' __author__ = 'Jan Petykiewicz'

View File

@ -1,3 +1,4 @@
from .devices import Port, Device from .devices import Port, Device
from .utils import ell from .utils import ell
from .tools import Tool from .tools import Tool
from .device_library import DeviceLibrary, LibDeviceLibrary

View File

@ -79,16 +79,6 @@ class DeviceLibrary:
def __repr__(self) -> str: def __repr__(self) -> str:
return '<DeviceLibrary with keys ' + repr(list(self.generators.keys())) + '>' return '<DeviceLibrary with keys ' + repr(list(self.generators.keys())) + '>'
def set_const(self, const: Device) -> None:
"""
Convenience function to avoid having to manually wrap
already-generated Device objects into callables.
Args:
const: Pre-generated device object
"""
self.generators[const.pattern.name] = lambda: const
def add( def add(
self: D, self: D,
other: D, other: D,
@ -175,7 +165,6 @@ class DeviceLibrary:
def build_dev() -> Device: def build_dev() -> Device:
dev = fn() dev = fn()
dev.pattern = dev2pat(dev) dev.pattern = dev2pat(dev)
dev.pattern.rename(prefix + name)
return dev return dev
self[prefix + name] = build_dev self[prefix + name] = build_dev
@ -200,8 +189,8 @@ class DeviceLibrary:
def build_wrapped_dev() -> Device: def build_wrapped_dev() -> Device:
old_dev = self[old_name] old_dev = self[old_name]
wrapper = Pattern(name=name) wrapper = Pattern()
wrapper.addsp(old_dev.pattern) wrapper.addsp(old_name)
return Device(wrapper, old_dev.ports) return Device(wrapper, old_dev.ports)
self[name] = build_wrapped_dev self[name] = build_wrapped_dev

View File

@ -125,7 +125,7 @@ class Device(Copyable, Mirrorable):
- `Device(pattern, ports={'A': port_a, 'C': port_c})` uses an existing - `Device(pattern, ports={'A': port_a, 'C': port_c})` uses an existing
pattern and defines some ports. pattern and defines some ports.
- `Device(name='my_dev_name', ports=None)` makes a new empty pattern with - `Device(ports=None)` makes a new empty pattern with
default ports ('A' and 'B', in opposite directions, at (0, 0)). default ports ('A' and 'B', in opposite directions, at (0, 0)).
- `my_device.build('my_layout')` makes a new pattern and instantiates - `my_device.build('my_layout')` makes a new pattern and instantiates
@ -182,7 +182,6 @@ class Device(Copyable, Mirrorable):
ports: Optional[Dict[str, Port]] = None, ports: Optional[Dict[str, Port]] = None,
*, *,
tools: Union[None, Tool, Dict[Optional[str], Tool]] = None, tools: Union[None, Tool, Dict[Optional[str], Tool]] = None,
name: Optional[str] = None,
) -> None: ) -> None:
""" """
If `ports` is `None`, two default ports ('A' and 'B') are created. If `ports` is `None`, two default ports ('A' and 'B') are created.
@ -190,14 +189,7 @@ class Device(Copyable, Mirrorable):
(attached devices will be placed to the left) and 'B' has rotation (attached devices will be placed to the left) and 'B' has rotation
pi (attached devices will be placed to the right). pi (attached devices will be placed to the right).
""" """
if pattern is not None: self.pattern = pattern or Pattern()
if name is not None:
raise DeviceError('Only one of `pattern` and `name` may be specified')
self.pattern = pattern
else:
if name is None:
raise DeviceError('Must specify either `pattern` or `name`')
self.pattern = Pattern(name=name)
if ports is None: if ports is None:
self.ports = { self.ports = {
@ -336,25 +328,22 @@ class Device(Copyable, Mirrorable):
return self return self
def build(self, name: str) -> 'Device': def build(self) -> 'Device':
""" """
Begin building a new device around an instance of the current device Begin building a new device around an instance of the current device
(rather than modifying the current device). (rather than modifying the current device).
Args:
name: A name for the new device
Returns: Returns:
The new `Device` object. The new `Device` object.
""" """
pat = Pattern(name) # TODO lib: this needs a name for self, rather than for the built thing
pat = Pattern()
pat.addsp(self.pattern) pat.addsp(self.pattern)
new = Device(pat, ports=self.ports, tools=self.tools) new = Device(pat, ports=self.ports, tools=self.tools)
return new return new
def as_interface( def as_interface(
self, self,
name: str,
in_prefix: str = 'in_', in_prefix: str = 'in_',
out_prefix: str = '', out_prefix: str = '',
port_map: Optional[Union[Dict[str, str], Sequence[str]]] = None port_map: Optional[Union[Dict[str, str], Sequence[str]]] = None
@ -380,7 +369,6 @@ class Device(Copyable, Mirrorable):
current device. current device.
Args: Args:
name: Name for the new device
in_prefix: Prepended to port names for newly-created ports with in_prefix: Prepended to port names for newly-created ports with
reversed directions compared to the current device. reversed directions compared to the current device.
out_prefix: Prepended to port names for ports which are directly out_prefix: Prepended to port names for ports which are directly
@ -424,12 +412,13 @@ class Device(Copyable, Mirrorable):
if duplicates: if duplicates:
raise DeviceError(f'Duplicate keys after prefixing, try a different prefix: {duplicates}') raise DeviceError(f'Duplicate keys after prefixing, try a different prefix: {duplicates}')
new = Device(name=name, ports={**ports_in, **ports_out}, tools=self.tools) new = Device(ports={**ports_in, **ports_out}, tools=self.tools)
return new return new
def plug( def plug(
self: D, self: D,
other: O, library: Mapping[str, 'Device'],
name: str,
map_in: Dict[str, str], map_in: Dict[str, str],
map_out: Optional[Dict[str, Optional[str]]] = None, map_out: Optional[Dict[str, Optional[str]]] = None,
*, *,
@ -438,27 +427,29 @@ class Device(Copyable, Mirrorable):
set_rotation: Optional[bool] = None, set_rotation: Optional[bool] = None,
) -> D: ) -> D:
""" """
Instantiate the device `other` into the current device, connecting Instantiate a device `library[name]` into the current device, connecting
the ports specified by `map_in` and renaming the unconnected the ports specified by `map_in` and renaming the unconnected
ports specified by `map_out`. ports specified by `map_out`.
Examples: Examples:
========= =========
- `my_device.plug(subdevice, {'A': 'C', 'B': 'B'}, map_out={'D': 'myport'})` - `my_device.plug(lib, 'subdevice', {'A': 'C', 'B': 'B'}, map_out={'D': 'myport'})`
instantiates `subdevice` into `my_device`, plugging ports 'A' and 'B' instantiates `lib['subdevice']` into `my_device`, plugging ports 'A' and 'B'
of `my_device` into ports 'C' and 'B' of `subdevice`. The connected ports of `my_device` into ports 'C' and 'B' of `subdevice`. The connected ports
are removed and any unconnected ports from `subdevice` are added to are removed and any unconnected ports from `subdevice` are added to
`my_device`. Port 'D' of `subdevice` (unconnected) is renamed to 'myport'. `my_device`. Port 'D' of `subdevice` (unconnected) is renamed to 'myport'.
- `my_device.plug(wire, {'myport': 'A'})` places port 'A' of `wire` at 'myport' - `my_device.plug(lib, 'wire', {'myport': 'A'})` places port 'A' of `lib['wire']`
of `my_device`. If `wire` has only two ports (e.g. 'A' and 'B'), no `map_out`, at 'myport' of `my_device`.
argument is provided, and the `inherit_name` argument is not explicitly If `'wire'` has only two ports (e.g. 'A' and 'B'), no `map_out` argument is
set to `False`, the unconnected port of `wire` is automatically renamed to provided, and the `inherit_name` argument is not explicitly set to `False`,
'myport'. This allows easy extension of existing ports without changing the unconnected port of `wire` is automatically renamed to 'myport'. This
their names or having to provide `map_out` each time `plug` is called. allows easy extension of existing ports without changing their names or
having to provide `map_out` each time `plug` is called.
Args: Args:
other: A device to instantiate into the current device. library: A `DeviceLibrary` containing the device to be instatiated.
name: The name of the device to be instantiated (from `library`).
map_in: Dict of `{'self_port': 'other_port'}` mappings, specifying map_in: Dict of `{'self_port': 'other_port'}` mappings, specifying
port connections between the two devices. port connections between the two devices.
map_out: Dict of `{'old_name': 'new_name'}` mappings, specifying map_out: Dict of `{'old_name': 'new_name'}` mappings, specifying
@ -513,13 +504,14 @@ class Device(Copyable, Mirrorable):
del self.ports[ki] del self.ports[ki]
map_out[vi] = None map_out[vi] = None
self.place(other, offset=translation, rotation=rotation, pivot=pivot, self.place(library, name, offset=translation, rotation=rotation, pivot=pivot,
mirrored=mirrored, port_map=map_out, skip_port_check=True) mirrored=mirrored, port_map=map_out, skip_port_check=True)
return self return self
def place( def place(
self: D, self: D,
other: O, library: Mapping[str, 'Device'],
name: str,
*, *,
offset: ArrayLike = (0, 0), offset: ArrayLike = (0, 0),
rotation: float = 0, rotation: float = 0,
@ -529,7 +521,7 @@ class Device(Copyable, Mirrorable):
skip_port_check: bool = False, skip_port_check: bool = False,
) -> D: ) -> D:
""" """
Instantiate the device `other` into the current device, adding its Instantiate the device `library[name]` into the current device, adding its
ports to those of the current device (but not connecting any ports). ports to those of the current device (but not connecting any ports).
Mirroring is applied before rotation; translation (`offset`) is applied last. Mirroring is applied before rotation; translation (`offset`) is applied last.
@ -543,16 +535,17 @@ class Device(Copyable, Mirrorable):
rather than the port name on the original `pad` device. rather than the port name on the original `pad` device.
Args: Args:
other: A device to instantiate into the current device. library: A `DeviceLibrary` containing the device to be instatiated.
offset: Offset at which to place `other`. Default (0, 0). name: The name of the device to be instantiated (from `library`).
rotation: Rotation applied to `other` before placement. Default 0. offset: Offset at which to place the instance. Default (0, 0).
rotation: Rotation applied to the instance before placement. Default 0.
pivot: Rotation is applied around this pivot point (default (0, 0)). pivot: Rotation is applied around this pivot point (default (0, 0)).
Rotation is applied prior to translation (`offset`). Rotation is applied prior to translation (`offset`).
mirrored: Whether `other` should be mirrored across the x and y axes. mirrored: Whether theinstance should be mirrored across the x and y axes.
Mirroring is applied before translation and rotation. Mirroring is applied before translation and rotation.
port_map: Dict of `{'old_name': 'new_name'}` mappings, specifying port_map: Dict of `{'old_name': 'new_name'}` mappings, specifying
new names for ports in `other`. New names can be `None`, which will new names for ports in the instantiated device. New names can be
delete those ports. `None`, which will delete those ports.
skip_port_check: Can be used to skip the internal call to `check_ports`, skip_port_check: Can be used to skip the internal call to `check_ports`,
in case it has already been performed elsewhere. in case it has already been performed elsewhere.
@ -561,7 +554,7 @@ class Device(Copyable, Mirrorable):
Raises: Raises:
`DeviceError` if any ports specified in `map_in` or `map_out` do not `DeviceError` if any ports specified in `map_in` or `map_out` do not
exist in `self.ports` or `other_names`. exist in `self.ports` or `library[name].ports`.
`DeviceError` if there are any duplicate names after `map_in` and `map_out` `DeviceError` if there are any duplicate names after `map_in` and `map_out`
are applied. are applied.
""" """
@ -572,6 +565,8 @@ class Device(Copyable, Mirrorable):
if port_map is None: if port_map is None:
port_map = {} port_map = {}
other = library[name]
if not skip_port_check: if not skip_port_check:
self.check_ports(other.ports.keys(), map_in=None, map_out=port_map) self.check_ports(other.ports.keys(), map_in=None, map_out=port_map)
@ -589,7 +584,7 @@ class Device(Copyable, Mirrorable):
p.translate(offset) p.translate(offset)
self.ports[name] = p self.ports[name] = p
sp = SubPattern(other.pattern, mirrored=mirrored) sp = SubPattern(name, mirrored=mirrored) #TODO figure out how this should work?!
sp.rotate_around(pivot, rotation) sp.rotate_around(pivot, rotation)
sp.translate(offset) sp.translate(offset)
self.pattern.subpatterns.append(sp) self.pattern.subpatterns.append(sp)
@ -748,19 +743,6 @@ class Device(Copyable, Mirrorable):
self._dead = True self._dead = True
return self return self
def rename(self: D, name: str) -> D:
"""
Renames the pattern and returns the device
Args:
name: The new name
Returns:
self
"""
self.pattern.name = name
return self
def __repr__(self) -> str: def __repr__(self) -> str:
s = f'<Device {self.pattern} [' s = f'<Device {self.pattern} ['
for name, port in self.ports.items(): for name, port in self.ports.items():
@ -831,7 +813,7 @@ class Device(Copyable, Mirrorable):
return self.path(portspec, ccw, length, tool_port_names=tool_port_names, **kwargs) return self.path(portspec, ccw, length, tool_port_names=tool_port_names, **kwargs)
def busL( def mpath(
self: D, self: D,
portspec: Union[str, Sequence[str]], portspec: Union[str, Sequence[str]],
ccw: Optional[bool], ccw: Optional[bool],
@ -839,7 +821,6 @@ class Device(Copyable, Mirrorable):
spacing: Optional[Union[float, ArrayLike]] = None, spacing: Optional[Union[float, ArrayLike]] = None,
set_rotation: Optional[float] = None, set_rotation: Optional[float] = None,
tool_port_names: Sequence[str] = ('A', 'B'), tool_port_names: Sequence[str] = ('A', 'B'),
container_name: str = '_busL',
force_container: bool = False, force_container: bool = False,
**kwargs, **kwargs,
) -> D: ) -> D:
@ -873,7 +854,7 @@ class Device(Copyable, Mirrorable):
port_name = tuple(portspec)[0] port_name = tuple(portspec)[0]
return self.path(port_name, ccw, extensions[port_name], tool_port_names=tool_port_names) return self.path(port_name, ccw, extensions[port_name], tool_port_names=tool_port_names)
else: else:
dev = Device(name='', ports=ports, tools=self.tools).as_interface(container_name) dev = Device(name='', ports=ports, tools=self.tools).as_interface()
for name, length in extensions.items(): for name, length in extensions.items():
dev.path(name, ccw, length, tool_port_names=tool_port_names) dev.path(name, ccw, length, tool_port_names=tool_port_names)
return self.plug(dev, {sp: 'in_' + sp for sp in ports.keys()}) # TODO safe to use 'in_'? return self.plug(dev, {sp: 'in_' + sp for sp in ports.keys()}) # TODO safe to use 'in_'?

View File

@ -11,13 +11,6 @@ class PatternError(MasqueError):
""" """
pass pass
class PatternLockedError(PatternError):
"""
Exception raised when trying to modify a locked pattern
"""
def __init__(self):
PatternError.__init__(self, 'Tried to modify a locked Pattern, subpattern, or shape')
class LibraryError(MasqueError): class LibraryError(MasqueError):
""" """

View File

@ -1,7 +1,7 @@
""" """
DXF file format readers and writers DXF file format readers and writers
""" """
from typing import List, Any, Dict, Tuple, Callable, Union, Sequence, Iterable from typing import List, Any, Dict, Tuple, Callable, Union, Sequence, Iterable, Mapping
import re import re
import io import io
import base64 import base64
@ -10,7 +10,7 @@ import logging
import pathlib import pathlib
import gzip import gzip
import numpy # type: ignore import numpy
import ezdxf # type: ignore import ezdxf # type: ignore
from .. import Pattern, SubPattern, PatternError, Label, Shape from .. import Pattern, SubPattern, PatternError, Label, Shape
@ -29,12 +29,13 @@ DEFAULT_LAYER = 'DEFAULT'
def write( def write(
pattern: Pattern, top_name: str,
library: Mapping[str, Pattern],
stream: io.TextIOBase, stream: io.TextIOBase,
*, *,
modify_originals: bool = False, modify_originals: bool = False,
dxf_version='AC1024', dxf_version='AC1024',
disambiguate_func: Callable[[Iterable[Pattern]], None] = None, disambiguate_func: Callable[[Iterable[str]], List[str]] = None,
) -> None: ) -> None:
""" """
Write a `Pattern` to a DXF file, by first calling `.polygonize()` to change the shapes Write a `Pattern` to a DXF file, by first calling `.polygonize()` to change the shapes
@ -60,10 +61,12 @@ def write(
array with rotated instances must be manhattan _after_ having a compensating rotation applied. array with rotated instances must be manhattan _after_ having a compensating rotation applied.
Args: Args:
patterns: A Pattern or list of patterns to write to the stream. top_name: Name of the top-level pattern to write.
library: A {name: Pattern} mapping of patterns. Only `top_name` and patterns referenced
by it are written.
stream: Stream object to write to. stream: Stream object to write to.
modify_original: If `True`, the original pattern is modified as part of the writing modify_original: If `True`, the original pattern is modified as part of the writing
process. Otherwise, a copy is made and `deepunlock()`-ed. process. Otherwise, a copy is made.
Default `False`. Default `False`.
disambiguate_func: Function which takes a list of patterns and alters them disambiguate_func: Function which takes a list of patterns and alters them
to make their names valid and unique. Default is `disambiguate_pattern_names`. to make their names valid and unique. Default is `disambiguate_pattern_names`.
@ -75,11 +78,14 @@ def write(
assert(disambiguate_func is not None) assert(disambiguate_func is not None)
if not modify_originals: if not modify_originals:
pattern = pattern.deepcopy().deepunlock() library = library.deepcopy()
# Get a dict of id(pattern) -> pattern pattern = library[top_name]
patterns_by_id = pattern.referenced_patterns_by_id()
disambiguate_func(patterns_by_id.values()) old_names = list(library.keys())
new_names = disambiguate_func(old_names)
renamed_lib = {new_name: library[old_name]
for old_name, new_name in zip(old_names, new_names)}
# Create library # Create library
lib = ezdxf.new(dxf_version, setup=True) lib = ezdxf.new(dxf_version, setup=True)
@ -89,9 +95,9 @@ def write(
_subpatterns_to_refs(msp, pattern.subpatterns) _subpatterns_to_refs(msp, pattern.subpatterns)
# Now create a block for each referenced pattern, and add in any shapes # Now create a block for each referenced pattern, and add in any shapes
for pat in patterns_by_id.values(): for name, pat in renamed_lib.items():
assert(pat is not None) assert(pat is not None)
block = lib.blocks.new(name=pat.name) block = lib.blocks.new(name=name)
_shapes_to_elements(block, pat.shapes) _shapes_to_elements(block, pat.shapes)
_labels_to_texts(block, pat.labels) _labels_to_texts(block, pat.labels)
@ -101,7 +107,8 @@ def write(
def writefile( def writefile(
pattern: Pattern, top_name: str,
library: Mapping[str, Pattern],
filename: Union[str, pathlib.Path], filename: Union[str, pathlib.Path],
*args, *args,
**kwargs, **kwargs,
@ -112,7 +119,9 @@ def writefile(
Will automatically compress the file if it has a .gz suffix. Will automatically compress the file if it has a .gz suffix.
Args: Args:
pattern: `Pattern` to save top_name: Name of the top-level pattern to write.
library: A {name: Pattern} mapping of patterns. Only `top_name` and patterns referenced
by it are written.
filename: Filename to save to. filename: Filename to save to.
*args: passed to `dxf.write` *args: passed to `dxf.write`
**kwargs: passed to `dxf.write` **kwargs: passed to `dxf.write`
@ -124,7 +133,7 @@ def writefile(
open_func = open open_func = open
with open_func(path, mode='wt') as stream: with open_func(path, mode='wt') as stream:
write(pattern, stream, *args, **kwargs) write(top_name, library, stream, *args, **kwargs)
def readfile( def readfile(
@ -156,7 +165,7 @@ def readfile(
def read( def read(
stream: io.TextIOBase, stream: io.TextIOBase,
clean_vertices: bool = True, clean_vertices: bool = True,
) -> Tuple[Pattern, Dict[str, Any]]: ) -> Tuple[Dict[str, Pattern], Dict[str, Any]]:
""" """
Read a dxf file and translate it into a dict of `Pattern` objects. DXF `Block`s are Read a dxf file and translate it into a dict of `Pattern` objects. DXF `Block`s are
translated into `Pattern` objects; `LWPolyline`s are translated into polygons, and `Insert`s translated into `Pattern` objects; `LWPolyline`s are translated into polygons, and `Insert`s
@ -176,26 +185,20 @@ def read(
lib = ezdxf.read(stream) lib = ezdxf.read(stream)
msp = lib.modelspace() msp = lib.modelspace()
pat = _read_block(msp, clean_vertices) npat = _read_block(msp, clean_vertices)
patterns = [pat] + [_read_block(bb, clean_vertices) for bb in lib.blocks if bb.name != '*Model_Space'] patterns_dict = dict([npat]
+ [_read_block(bb, clean_vertices) for bb in lib.blocks if bb.name != '*Model_Space'])
# Create a dict of {pattern.name: pattern, ...}, then fix up all subpattern.pattern entries
# according to the subpattern.identifier (which is deleted after use).
patterns_dict = dict(((p.name, p) for p in patterns))
for p in patterns_dict.values():
for sp in p.subpatterns:
sp.pattern = patterns_dict[sp.identifier[0]]
del sp.identifier
library_info = { library_info = {
'layers': [ll.dxfattribs() for ll in lib.layers] 'layers': [ll.dxfattribs() for ll in lib.layers]
} }
return pat, library_info return patterns_dict, library_info
def _read_block(block, clean_vertices: bool) -> Pattern: def _read_block(block, clean_vertices: bool) -> Tuple[str, Pattern]:
pat = Pattern(block.name) name = block.name
pat = Pattern()
for element in block: for element in block:
eltype = element.dxftype() eltype = element.dxftype()
if eltype in ('POLYLINE', 'LWPOLYLINE'): if eltype in ('POLYLINE', 'LWPOLYLINE'):
@ -258,12 +261,12 @@ def _read_block(block, clean_vertices: bool) -> Pattern:
offset = numpy.array(attr.get('insert', (0, 0, 0)))[:2] offset = numpy.array(attr.get('insert', (0, 0, 0)))[:2]
args = { args = {
'target': (attr.get('name', None),),
'offset': offset, 'offset': offset,
'scale': scale, 'scale': scale,
'mirrored': mirrored, 'mirrored': mirrored,
'rotation': rotation, 'rotation': rotation,
'pattern': None, 'pattern': None,
'identifier': (attr.get('name', None),),
} }
if 'column_count' in attr: if 'column_count' in attr:
@ -274,7 +277,7 @@ def _read_block(block, clean_vertices: bool) -> Pattern:
pat.subpatterns.append(SubPattern(**args)) pat.subpatterns.append(SubPattern(**args))
else: else:
logger.warning(f'Ignoring DXF element {element.dxftype()} (not implemented).') logger.warning(f'Ignoring DXF element {element.dxftype()} (not implemented).')
return pat return name, pat
def _subpatterns_to_refs( def _subpatterns_to_refs(
@ -282,9 +285,9 @@ def _subpatterns_to_refs(
subpatterns: List[SubPattern], subpatterns: List[SubPattern],
) -> None: ) -> None:
for subpat in subpatterns: for subpat in subpatterns:
if subpat.pattern is None: if subpat.target is None:
continue continue
encoded_name = subpat.pattern.name encoded_name = subpat.target
rotation = (subpat.rotation * 180 / numpy.pi) % 360 rotation = (subpat.rotation * 180 / numpy.pi) % 360
attribs = { attribs = {
@ -360,18 +363,24 @@ def _mlayer2dxf(layer: layer_t) -> str:
def disambiguate_pattern_names( def disambiguate_pattern_names(
patterns: Iterable[Pattern], names: Iterable[str],
max_name_length: int = 32, max_name_length: int = 32,
suffix_length: int = 6, suffix_length: int = 6,
dup_warn_filter: Callable[[str], bool] = None, # If returns False, don't warn about this name ) -> List[str]:
) -> None: """
used_names = [] Args:
for pat in patterns: names: List of pattern names to disambiguate
sanitized_name = re.compile(r'[^A-Za-z0-9_\?\$]').sub('_', pat.name) max_name_length: Names longer than this will be truncated
suffix_length: Names which get truncated are truncated by this many extra characters. This is to
leave room for a suffix if one is necessary.
"""
new_names = []
for name in names:
sanitized_name = re.compile(r'[^A-Za-z0-9_\?\$]').sub('_', name)
i = 0 i = 0
suffixed_name = sanitized_name suffixed_name = sanitized_name
while suffixed_name in used_names or suffixed_name == '': while suffixed_name in new_names or suffixed_name == '':
suffix = base64.b64encode(struct.pack('>Q', i), b'$?').decode('ASCII') suffix = base64.b64encode(struct.pack('>Q', i), b'$?').decode('ASCII')
suffixed_name = sanitized_name + '$' + suffix[:-1].lstrip('A') suffixed_name = sanitized_name + '$' + suffix[:-1].lstrip('A')
@ -380,17 +389,16 @@ def disambiguate_pattern_names(
if sanitized_name == '': if sanitized_name == '':
logger.warning(f'Empty pattern name saved as "{suffixed_name}"') logger.warning(f'Empty pattern name saved as "{suffixed_name}"')
elif suffixed_name != sanitized_name: elif suffixed_name != sanitized_name:
if dup_warn_filter is None or dup_warn_filter(pat.name): if dup_warn_filter is None or dup_warn_filter(name):
logger.warning(f'Pattern name "{pat.name}" ({sanitized_name}) appears multiple times;\n' logger.warning(f'Pattern name "{name}" ({sanitized_name}) appears multiple times;\n'
+ f' renaming to "{suffixed_name}"') + f' renaming to "{suffixed_name}"')
if len(suffixed_name) == 0: if len(suffixed_name) == 0:
# Should never happen since zero-length names are replaced # Should never happen since zero-length names are replaced
raise PatternError(f'Zero-length name after sanitize,\n originally "{pat.name}"') raise PatternError(f'Zero-length name after sanitize,\n originally "{name}"')
if len(suffixed_name) > max_name_length: if len(suffixed_name) > max_name_length:
raise PatternError(f'Pattern name "{suffixed_name!r}" length > {max_name_length} after encode,\n' raise PatternError(f'Pattern name "{suffixed_name!r}" length > {max_name_length} after encode,\n'
+ f' originally "{pat.name}"') + f' originally "{name}"')
pat.name = suffixed_name
used_names.append(suffixed_name)
new_names.append(suffixed_name)
return new_names

View File

@ -53,18 +53,22 @@ path_cap_map = {
} }
def rint_cast(val: ArrayLike) -> NDArray[numpy.int32]:
return numpy.rint(val, dtype=numpy.int32, casting='unsafe')
def write( def write(
patterns: Union[Pattern, Sequence[Pattern]], library: Mapping[str, Pattern],
stream: BinaryIO, stream: BinaryIO,
meters_per_unit: float, meters_per_unit: float,
logical_units_per_unit: float = 1, logical_units_per_unit: float = 1,
library_name: str = 'masque-klamath', library_name: str = 'masque-klamath',
*, *,
modify_originals: bool = False, modify_originals: bool = False,
disambiguate_func: Callable[[Iterable[Pattern]], None] = None, disambiguate_func: Callable[[Iterable[str]], List[str]] = None,
) -> None: ) -> None:
""" """
Convert a `Pattern` or list of patterns to a GDSII stream, and then mapping data as follows: Convert a library to a GDSII stream, mapping data as follows:
Pattern -> GDSII structure Pattern -> GDSII structure
SubPattern -> GDSII SREF or AREF SubPattern -> GDSII SREF or AREF
Path -> GSDII path Path -> GSDII path
@ -85,7 +89,7 @@ def write(
prior to calling this function. prior to calling this function.
Args: Args:
patterns: A Pattern or list of patterns to convert. library: A {name: Pattern} mapping of patterns to write.
meters_per_unit: Written into the GDSII file, meters per (database) length unit. meters_per_unit: Written into the GDSII file, meters per (database) length unit.
All distances are assumed to be an integer multiple of this unit, and are stored as such. All distances are assumed to be an integer multiple of this unit, and are stored as such.
logical_units_per_unit: Written into the GDSII file. Allows the GDSII to specify a logical_units_per_unit: Written into the GDSII file. Allows the GDSII to specify a
@ -94,52 +98,48 @@ def write(
library_name: Library name written into the GDSII file. library_name: Library name written into the GDSII file.
Default 'masque-klamath'. Default 'masque-klamath'.
modify_originals: If `True`, the original pattern is modified as part of the writing modify_originals: If `True`, the original pattern is modified as part of the writing
process. Otherwise, a copy is made and `deepunlock()`-ed. process. Otherwise, a copy is made.
Default `False`. Default `False`.
disambiguate_func: Function which takes a list of patterns and alters them disambiguate_func: Function which takes a list of pattern names and returns a list of names
to make their names valid and unique. Default is `disambiguate_pattern_names`, which altered to be valid and unique. Default is `disambiguate_pattern_names`, which
attempts to adhere to the GDSII standard as well as possible. attempts to adhere to the GDSII standard reasonably well.
WARNING: No additional error checking is performed on the results. WARNING: No additional error checking is performed on the results.
""" """
if isinstance(patterns, Pattern):
patterns = [patterns]
if disambiguate_func is None: if disambiguate_func is None:
disambiguate_func = disambiguate_pattern_names # type: ignore disambiguate_func = disambiguate_pattern_names
assert(disambiguate_func is not None) # placate mypy
if not modify_originals: if not modify_originals:
patterns = [p.deepunlock() for p in copy.deepcopy(patterns)] library = copy.deepcopy(library)
patterns = [p.wrap_repeated_shapes() for p in patterns] for p in library.values():
library.add(p.wrap_repeated_shapes())
old_names = list(library.keys())
new_names = disambiguate_func(old_names)
renamed_lib = {new_name: library[old_name]
for old_name, new_name in zip(old_names, new_names)}
# Create library # Create library
header = klamath.library.FileHeader(name=library_name.encode('ASCII'), header = klamath.library.FileHeader(
user_units_per_db_unit=logical_units_per_unit, name=library_name.encode('ASCII'),
meters_per_db_unit=meters_per_unit) user_units_per_db_unit=logical_units_per_unit,
meters_per_db_unit=meters_per_unit,
)
header.write(stream) header.write(stream)
# Get a dict of id(pattern) -> pattern
patterns_by_id = {id(pattern): pattern for pattern in patterns}
for pattern in patterns:
for i, p in pattern.referenced_patterns_by_id().items():
patterns_by_id[i] = p
disambiguate_func(patterns_by_id.values())
# Now create a structure for each pattern, and add in any Boundary and SREF elements # Now create a structure for each pattern, and add in any Boundary and SREF elements
for pat in patterns_by_id.values(): for name, pat in renamed_lib.items():
elements: List[klamath.elements.Element] = [] elements: List[klamath.elements.Element] = []
elements += _shapes_to_elements(pat.shapes) elements += _shapes_to_elements(pat.shapes)
elements += _labels_to_texts(pat.labels) elements += _labels_to_texts(pat.labels)
elements += _subpatterns_to_refs(pat.subpatterns) elements += _subpatterns_to_refs(pat.subpatterns)
klamath.library.write_struct(stream, name=pat.name.encode('ASCII'), elements=elements) klamath.library.write_struct(stream, name=name.encode('ASCII'), elements=elements)
records.ENDLIB.write(stream, None) records.ENDLIB.write(stream, None)
def writefile( def writefile(
patterns: Union[Sequence[Pattern], Pattern], library: Mapping[str, Pattern],
filename: Union[str, pathlib.Path], filename: Union[str, pathlib.Path],
*args, *args,
**kwargs, **kwargs,
@ -150,7 +150,7 @@ def writefile(
Will automatically compress the file if it has a .gz suffix. Will automatically compress the file if it has a .gz suffix.
Args: Args:
patterns: `Pattern` or list of patterns to save library: {name: Pattern} pairs to save.
filename: Filename to save to. filename: Filename to save to.
*args: passed to `write()` *args: passed to `write()`
**kwargs: passed to `write()` **kwargs: passed to `write()`
@ -216,22 +216,14 @@ def read(
""" """
library_info = _read_header(stream) library_info = _read_header(stream)
patterns = [] patterns_dict = {}
found_struct = records.BGNSTR.skip_past(stream) found_struct = records.BGNSTR.skip_past(stream)
while found_struct: while found_struct:
name = records.STRNAME.skip_and_read(stream) name = records.STRNAME.skip_and_read(stream)
pat = read_elements(stream, name=name.decode('ASCII'), raw_mode=raw_mode) pat = read_elements(stream, raw_mode=raw_mode)
patterns.append(pat) patterns_dict[name.decode('ASCII')] = pat
found_struct = records.BGNSTR.skip_past(stream) found_struct = records.BGNSTR.skip_past(stream)
# Create a dict of {pattern.name: pattern, ...}, then fix up all subpattern.pattern entries
# according to the subpattern.identifier (which is deleted after use).
patterns_dict = dict(((p.name, p) for p in patterns))
for p in patterns_dict.values():
for sp in p.subpatterns:
sp.pattern = patterns_dict[sp.identifier[0]]
del sp.identifier
return patterns_dict, library_info return patterns_dict, library_info
@ -250,7 +242,6 @@ def _read_header(stream: BinaryIO) -> Dict[str, Any]:
def read_elements( def read_elements(
stream: BinaryIO, stream: BinaryIO,
name: str,
raw_mode: bool = True, raw_mode: bool = True,
) -> Pattern: ) -> Pattern:
""" """
@ -265,7 +256,7 @@ def read_elements(
Returns: Returns:
A pattern containing the elements that were read. A pattern containing the elements that were read.
""" """
pat = Pattern(name) pat = Pattern()
elements = klamath.library.read_elements(stream) elements = klamath.library.read_elements(stream)
for element in elements: for element in elements:
@ -276,10 +267,12 @@ def read_elements(
path = _gpath_to_mpath(element, raw_mode) path = _gpath_to_mpath(element, raw_mode)
pat.shapes.append(path) pat.shapes.append(path)
elif isinstance(element, klamath.elements.Text): elif isinstance(element, klamath.elements.Text):
label = Label(offset=element.xy.astype(float), label = Label(
layer=element.layer, offset=element.xy.astype(float),
string=element.string.decode('ASCII'), layer=element.layer,
annotations=_properties_to_annotations(element.properties)) string=element.string.decode('ASCII'),
annotations=_properties_to_annotations(element.properties),
)
pat.labels.append(label) pat.labels.append(label)
elif isinstance(element, klamath.elements.Reference): elif isinstance(element, klamath.elements.Reference):
pat.subpatterns.append(_ref_to_subpat(element)) pat.subpatterns.append(_ref_to_subpat(element))
@ -304,8 +297,7 @@ def _mlayer2gds(mlayer: layer_t) -> Tuple[int, int]:
def _ref_to_subpat(ref: klamath.library.Reference) -> SubPattern: def _ref_to_subpat(ref: klamath.library.Reference) -> SubPattern:
""" """
Helper function to create a SubPattern from an SREF or AREF. Sets subpat.pattern to None Helper function to create a SubPattern from an SREF or AREF. Sets subpat.target to struct_name.
and sets the instance .identifier to (struct_name,).
""" """
xy = ref.xy.astype(float) xy = ref.xy.astype(float)
offset = xy[0] offset = xy[0]
@ -317,14 +309,15 @@ def _ref_to_subpat(ref: klamath.library.Reference) -> SubPattern:
repetition = Grid(a_vector=a_vector, b_vector=b_vector, repetition = Grid(a_vector=a_vector, b_vector=b_vector,
a_count=a_count, b_count=b_count) a_count=a_count, b_count=b_count)
subpat = SubPattern(pattern=None, subpat = SubPattern(
offset=offset, pattern=ref.struct_name.decode('ASCII'),
rotation=numpy.deg2rad(ref.angle_deg), offset=offset,
scale=ref.mag, rotation=numpy.deg2rad(ref.angle_deg),
mirrored=(ref.invert_y, False), scale=ref.mag,
annotations=_properties_to_annotations(ref.properties), mirrored=(ref.invert_y, False),
repetition=repetition) annotations=_properties_to_annotations(ref.properties),
subpat.identifier = (ref.struct_name.decode('ASCII'),) repetition=repetition,
)
return subpat return subpat
@ -334,34 +327,36 @@ def _gpath_to_mpath(gpath: klamath.library.Path, raw_mode: bool) -> Path:
else: else:
raise PatternError(f'Unrecognized path type: {gpath.path_type}') raise PatternError(f'Unrecognized path type: {gpath.path_type}')
mpath = Path(vertices=gpath.xy.astype(float), mpath = Path(
layer=gpath.layer, vertices=gpath.xy.astype(float),
width=gpath.width, layer=gpath.layer,
cap=cap, width=gpath.width,
offset=numpy.zeros(2), cap=cap,
annotations=_properties_to_annotations(gpath.properties), offset=numpy.zeros(2),
raw=raw_mode, annotations=_properties_to_annotations(gpath.properties),
) raw=raw_mode,
)
if cap == Path.Cap.SquareCustom: if cap == Path.Cap.SquareCustom:
mpath.cap_extensions = gpath.extension mpath.cap_extensions = gpath.extension
return mpath return mpath
def _boundary_to_polygon(boundary: klamath.library.Boundary, raw_mode: bool) -> Polygon: def _boundary_to_polygon(boundary: klamath.library.Boundary, raw_mode: bool) -> Polygon:
return Polygon(vertices=boundary.xy[:-1].astype(float), return Polygon(
layer=boundary.layer, vertices=boundary.xy[:-1].astype(float),
offset=numpy.zeros(2), layer=boundary.layer,
annotations=_properties_to_annotations(boundary.properties), offset=numpy.zeros(2),
raw=raw_mode, annotations=_properties_to_annotations(boundary.properties),
) raw=raw_mode,
)
def _subpatterns_to_refs(subpatterns: List[SubPattern]) -> List[klamath.library.Reference]: def _subpatterns_to_refs(subpatterns: List[SubPattern]) -> List[klamath.library.Reference]:
refs = [] refs = []
for subpat in subpatterns: for subpat in subpatterns:
if subpat.pattern is None: if subpat.target is None:
continue continue
encoded_name = subpat.pattern.name.encode('ASCII') encoded_name = subpat.target.encode('ASCII')
# Note: GDS mirrors first and rotates second # Note: GDS mirrors first and rotates second
mirror_across_x, extra_angle = normalize_mirror(subpat.mirrored) mirror_across_x, extra_angle = normalize_mirror(subpat.mirrored)
@ -377,32 +372,39 @@ def _subpatterns_to_refs(subpatterns: List[SubPattern]) -> List[klamath.library.
rep.a_vector * rep.a_count, rep.a_vector * rep.a_count,
b_vector * b_count, b_vector * b_count,
] ]
aref = klamath.library.Reference(struct_name=encoded_name, aref = klamath.library.Reference(
xy=numpy.round(xy).astype(int), struct_name=encoded_name,
colrow=(numpy.round(rep.a_count), numpy.round(rep.b_count)), xy=rint_cast(xy),
angle_deg=angle_deg, colrow=(numpy.rint(rep.a_count), numpy.rint(rep.b_count)),
invert_y=mirror_across_x, angle_deg=angle_deg,
mag=subpat.scale, invert_y=mirror_across_x,
properties=properties) mag=subpat.scale,
properties=properties,
)
refs.append(aref) refs.append(aref)
elif rep is None: elif rep is None:
ref = klamath.library.Reference(struct_name=encoded_name, ref = klamath.library.Reference(
xy=numpy.round([subpat.offset]).astype(int), struct_name=encoded_name,
colrow=None, xy=rint_cast([subpat.offset]),
angle_deg=angle_deg, colrow=None,
invert_y=mirror_across_x, angle_deg=angle_deg,
mag=subpat.scale, invert_y=mirror_across_x,
properties=properties) mag=subpat.scale,
properties=properties,
)
refs.append(ref) refs.append(ref)
else: else:
new_srefs = [klamath.library.Reference(struct_name=encoded_name, new_srefs = [
xy=numpy.round([subpat.offset + dd]).astype(int), klamath.library.Reference(
colrow=None, struct_name=encoded_name,
angle_deg=angle_deg, xy=rint_cast([subpat.offset + dd]),
invert_y=mirror_across_x, colrow=None,
mag=subpat.scale, angle_deg=angle_deg,
properties=properties) invert_y=mirror_across_x,
for dd in rep.displacements] mag=subpat.scale,
properties=properties,
)
for dd in rep.displacements]
refs += new_srefs refs += new_srefs
return refs return refs
@ -443,8 +445,8 @@ def _shapes_to_elements(
layer, data_type = _mlayer2gds(shape.layer) layer, data_type = _mlayer2gds(shape.layer)
properties = _annotations_to_properties(shape.annotations, 128) properties = _annotations_to_properties(shape.annotations, 128)
if isinstance(shape, Path) and not polygonize_paths: if isinstance(shape, Path) and not polygonize_paths:
xy = numpy.round(shape.vertices + shape.offset).astype(int) xy = rint_cast(shape.vertices + shape.offset)
width = numpy.round(shape.width).astype(int) width = rint_cast(shape.width)
path_type = next(k for k, v in path_cap_map.items() if v == shape.cap) # reverse lookup path_type = next(k for k, v in path_cap_map.items() if v == shape.cap) # reverse lookup
extension: Tuple[int, int] extension: Tuple[int, int]
@ -453,30 +455,36 @@ def _shapes_to_elements(
else: else:
extension = (0, 0) extension = (0, 0)
path = klamath.elements.Path(layer=(layer, data_type), path = klamath.elements.Path(
xy=xy, layer=(layer, data_type),
path_type=path_type, xy=xy,
width=width, path_type=path_type,
extension=extension, width=width,
properties=properties) extension=extension,
properties=properties,
)
elements.append(path) elements.append(path)
elif isinstance(shape, Polygon): elif isinstance(shape, Polygon):
polygon = shape polygon = shape
xy_closed = numpy.empty((polygon.vertices.shape[0] + 1, 2), dtype=numpy.int32) xy_closed = numpy.empty((polygon.vertices.shape[0] + 1, 2), dtype=numpy.int32)
numpy.rint(polygon.vertices + polygon.offset, out=xy_closed[:-1], casting='unsafe') numpy.rint(polygon.vertices + polygon.offset, out=xy_closed[:-1], casting='unsafe')
xy_closed[-1] = xy_closed[0] xy_closed[-1] = xy_closed[0]
boundary = klamath.elements.Boundary(layer=(layer, data_type), boundary = klamath.elements.Boundary(
xy=xy_closed, layer=(layer, data_type),
properties=properties) xy=xy_closed,
properties=properties,
)
elements.append(boundary) elements.append(boundary)
else: else:
for polygon in shape.to_polygons(): for polygon in shape.to_polygons():
xy_closed = numpy.empty((polygon.vertices.shape[0] + 1, 2), dtype=numpy.int32) xy_closed = numpy.empty((polygon.vertices.shape[0] + 1, 2), dtype=numpy.int32)
numpy.rint(polygon.vertices + polygon.offset, out=xy_closed[:-1], casting='unsafe') numpy.rint(polygon.vertices + polygon.offset, out=xy_closed[:-1], casting='unsafe')
xy_closed[-1] = xy_closed[0] xy_closed[-1] = xy_closed[0]
boundary = klamath.elements.Boundary(layer=(layer, data_type), boundary = klamath.elements.Boundary(
xy=xy_closed, layer=(layer, data_type),
properties=properties) xy=xy_closed,
properties=properties,
)
elements.append(boundary) elements.append(boundary)
return elements return elements
@ -486,46 +494,44 @@ def _labels_to_texts(labels: List[Label]) -> List[klamath.elements.Text]:
for label in labels: for label in labels:
properties = _annotations_to_properties(label.annotations, 128) properties = _annotations_to_properties(label.annotations, 128)
layer, text_type = _mlayer2gds(label.layer) layer, text_type = _mlayer2gds(label.layer)
xy = numpy.round([label.offset]).astype(int) xy = rint_cast([label.offset])
text = klamath.elements.Text(layer=(layer, text_type), text = klamath.elements.Text(
xy=xy, layer=(layer, text_type),
string=label.string.encode('ASCII'), xy=xy,
properties=properties, string=label.string.encode('ASCII'),
presentation=0, # TODO maybe set some of these? properties=properties,
angle_deg=0, presentation=0, # TODO maybe set some of these?
invert_y=False, angle_deg=0,
width=0, invert_y=False,
path_type=0, width=0,
mag=1) path_type=0,
mag=1,
)
texts.append(text) texts.append(text)
return texts return texts
def disambiguate_pattern_names( def disambiguate_pattern_names(
patterns: Sequence[Pattern], names: Iterable[str],
max_name_length: int = 32, max_name_length: int = 32,
suffix_length: int = 6, suffix_length: int = 6,
dup_warn_filter: Optional[Callable[[str], bool]] = None, ) -> List[str]:
) -> None:
""" """
Args: Args:
patterns: List of patterns to disambiguate names: List of pattern names to disambiguate
max_name_length: Names longer than this will be truncated max_name_length: Names longer than this will be truncated
suffix_length: Names which get truncated are truncated by this many extra characters. This is to suffix_length: Names which get truncated are truncated by this many extra characters. This is to
leave room for a suffix if one is necessary. leave room for a suffix if one is necessary.
dup_warn_filter: (optional) Function for suppressing warnings about cell names changing. Receives
the cell name and returns `False` if the warning should be suppressed and `True` if it should
be displayed. Default displays all warnings.
""" """
used_names = [] new_names = []
for pat in set(patterns): for name in names:
# Shorten names which already exceed max-length # Shorten names which already exceed max-length
if len(pat.name) > max_name_length: if len(name) > max_name_length:
shortened_name = pat.name[:max_name_length - suffix_length] shortened_name = name[:max_name_length - suffix_length]
logger.warning(f'Pattern name "{pat.name}" is too long ({len(pat.name)}/{max_name_length} chars),\n' logger.warning(f'Pattern name "{name}" is too long ({len(name)}/{max_name_length} chars),\n'
+ f' shortening to "{shortened_name}" before generating suffix') + f' shortening to "{shortened_name}" before generating suffix')
else: else:
shortened_name = pat.name shortened_name = name
# Remove invalid characters # Remove invalid characters
sanitized_name = re.compile(r'[^A-Za-z0-9_\?\$]').sub('_', shortened_name) sanitized_name = re.compile(r'[^A-Za-z0-9_\?\$]').sub('_', shortened_name)
@ -533,7 +539,7 @@ def disambiguate_pattern_names(
# Add a suffix that makes the name unique # Add a suffix that makes the name unique
i = 0 i = 0
suffixed_name = sanitized_name suffixed_name = sanitized_name
while suffixed_name in used_names or suffixed_name == '': while suffixed_name in new_names or suffixed_name == '':
suffix = base64.b64encode(struct.pack('>Q', i), b'$?').decode('ASCII') suffix = base64.b64encode(struct.pack('>Q', i), b'$?').decode('ASCII')
suffixed_name = sanitized_name + '$' + suffix[:-1].lstrip('A') suffixed_name = sanitized_name + '$' + suffix[:-1].lstrip('A')
@ -542,27 +548,25 @@ def disambiguate_pattern_names(
if sanitized_name == '': if sanitized_name == '':
logger.warning(f'Empty pattern name saved as "{suffixed_name}"') logger.warning(f'Empty pattern name saved as "{suffixed_name}"')
elif suffixed_name != sanitized_name: elif suffixed_name != sanitized_name:
if dup_warn_filter is None or dup_warn_filter(pat.name): if dup_warn_filter is None or dup_warn_filter(name):
logger.warning(f'Pattern name "{pat.name}" ({sanitized_name}) appears multiple times;\n' logger.warning(f'Pattern name "{name}" ({sanitized_name}) appears multiple times;\n'
+ f' renaming to "{suffixed_name}"') + f' renaming to "{suffixed_name}"')
# Encode into a byte-string and perform some final checks # Encode into a byte-string and perform some final checks
encoded_name = suffixed_name.encode('ASCII') encoded_name = suffixed_name.encode('ASCII')
if len(encoded_name) == 0: if len(encoded_name) == 0:
# Should never happen since zero-length names are replaced # Should never happen since zero-length names are replaced
raise PatternError(f'Zero-length name after sanitize+encode,\n originally "{pat.name}"') raise PatternError(f'Zero-length name after sanitize+encode,\n originally "{name}"')
if len(encoded_name) > max_name_length: if len(encoded_name) > max_name_length:
raise PatternError(f'Pattern name "{encoded_name!r}" length > {max_name_length} after encode,\n' raise PatternError(f'Pattern name "{encoded_name!r}" length > {max_name_length} after encode,\n'
+ f' originally "{pat.name}"') + f' originally "{name}"')
pat.name = suffixed_name new_names.append(suffixed_name)
used_names.append(suffixed_name) return new_names
def load_library( def load_library(
stream: BinaryIO, stream: BinaryIO,
tag: str,
is_secondary: Optional[Callable[[str], bool]] = None,
*, *,
full_load: bool = False, full_load: bool = False,
) -> Tuple[Library, Dict[str, Any]]: ) -> Tuple[Library, Dict[str, Any]]:
@ -574,28 +578,17 @@ def load_library(
Args: Args:
stream: Seekable stream. Position 0 should be the start of the file. stream: Seekable stream. Position 0 should be the start of the file.
The caller should leave the stream open while the library The caller should leave the stream open while the library
is still in use, since the library will need to access it is still in use, since the library will need to access it
in order to read the structure contents. in order to read the structure contents.
tag: Unique identifier that will be used to identify this data source
is_secondary: Function which takes a structure name and returns
True if the structure should only be used as a subcell
and not appear in the main Library interface.
Default always returns False.
full_load: If True, force all structures to be read immediately rather full_load: If True, force all structures to be read immediately rather
than as-needed. Since data is read sequentially from the file, than as-needed. Since data is read sequentially from the file, this
this will be faster than using the resulting library's will be faster than using the resulting library's `precache` method.
`precache` method.
Returns: Returns:
Library object, allowing for deferred load of structures. Library object, allowing for deferred load of structures.
Additional library info (dict, same format as from `read`). Additional library info (dict, same format as from `read`).
""" """
if is_secondary is None:
def is_secondary(k: str) -> bool:
return False
assert(is_secondary is not None)
stream.seek(0) stream.seek(0)
lib = Library() lib = Library()
@ -603,7 +596,7 @@ def load_library(
# Full load approach (immediately load everything) # Full load approach (immediately load everything)
patterns, library_info = read(stream) patterns, library_info = read(stream)
for name, pattern in patterns.items(): for name, pattern in patterns.items():
lib.set_const(name, tag, pattern, secondary=is_secondary(name)) lib[name] = lambda: pattern
return lib, library_info return lib, library_info
# Normal approach (scan and defer load) # Normal approach (scan and defer load)
@ -613,19 +606,17 @@ def load_library(
for name_bytes, pos in structs.items(): for name_bytes, pos in structs.items():
name = name_bytes.decode('ASCII') name = name_bytes.decode('ASCII')
def mkstruct(pos: int = pos, name: str = name) -> Pattern: def mkstruct(pos: int = pos) -> Pattern:
stream.seek(pos) stream.seek(pos)
return read_elements(stream, name, raw_mode=True) return read_elements(stream, raw_mode=True)
lib.set_value(name, tag, mkstruct, secondary=is_secondary(name)) lib[name] = mkstruct
return lib, library_info return lib, library_info
def load_libraryfile( def load_libraryfile(
filename: Union[str, pathlib.Path], filename: Union[str, pathlib.Path],
tag: str,
is_secondary: Optional[Callable[[str], bool]] = None,
*, *,
use_mmap: bool = True, use_mmap: bool = True,
full_load: bool = False, full_load: bool = False,
@ -640,8 +631,6 @@ def load_libraryfile(
Args: Args:
path: filename or path to read from path: filename or path to read from
tag: Unique identifier for library, see `load_library`
is_secondary: Function specifying subcess, see `load_library`
use_mmap: If `True`, will attempt to memory-map the file instead use_mmap: If `True`, will attempt to memory-map the file instead
of buffering. In the case of gzipped files, the file of buffering. In the case of gzipped files, the file
is decompressed into a python `bytes` object in memory is decompressed into a python `bytes` object in memory
@ -667,4 +656,4 @@ def load_libraryfile(
stream = mmap.mmap(base_stream.fileno(), 0, access=mmap.ACCESS_READ) stream = mmap.mmap(base_stream.fileno(), 0, access=mmap.ACCESS_READ)
else: else:
stream = io.BufferedReader(base_stream) stream = io.BufferedReader(base_stream)
return load_library(stream, tag, is_secondary) return load_library(stream, full_load=full_load)

View File

@ -11,7 +11,7 @@ Note that OASIS references follow the same convention as `masque`,
Scaling, rotation, and mirroring apply to individual instances, not grid Scaling, rotation, and mirroring apply to individual instances, not grid
vectors or offsets. vectors or offsets.
""" """
from typing import List, Any, Dict, Tuple, Callable, Union, Sequence, Iterable, Optional from typing import List, Any, Dict, Tuple, Callable, Union, Sequence, Iterable, Mapping, Optional
import re import re
import io import io
import copy import copy
@ -22,11 +22,12 @@ import pathlib
import gzip import gzip
import numpy import numpy
from numpy.typing import ArrayLike, NDArray
import fatamorgana import fatamorgana
import fatamorgana.records as fatrec import fatamorgana.records as fatrec
from fatamorgana.basic import PathExtensionScheme, AString, NString, PropStringReference from fatamorgana.basic import PathExtensionScheme, AString, NString, PropStringReference
from .utils import clean_pattern_vertices, is_gzipped from .utils import is_gzipped
from .. import Pattern, SubPattern, PatternError, Label, Shape from .. import Pattern, SubPattern, PatternError, Label, Shape
from ..shapes import Polygon, Path, Circle from ..shapes import Polygon, Path, Circle
from ..repetition import Grid, Arbitrary, Repetition from ..repetition import Grid, Arbitrary, Repetition
@ -47,19 +48,22 @@ path_cap_map = {
#TODO implement more shape types? #TODO implement more shape types?
def rint_cast(val: ArrayLike) -> NDArray[numpy.int64]:
return numpy.rint(val, dtype=numpy.int64, casting='unsafe')
def build( def build(
patterns: Union[Pattern, Sequence[Pattern]], library: Mapping[str, Pattern], # NOTE: Pattern here should be treated as immutable!
units_per_micron: int, units_per_micron: int,
layer_map: Optional[Dict[str, Union[int, Tuple[int, int]]]] = None, layer_map: Optional[Dict[str, Union[int, Tuple[int, int]]]] = None,
*, *,
modify_originals: bool = False, disambiguate_func: Optional[Callable[[Iterable[str]], List[str]]] = None,
disambiguate_func: Optional[Callable[[Iterable[Pattern]], None]] = None,
annotations: Optional[annotations_t] = None, annotations: Optional[annotations_t] = None,
) -> fatamorgana.OasisLayout: ) -> fatamorgana.OasisLayout:
""" """
Convert a `Pattern` or list of patterns to an OASIS stream, writing patterns Convert a collection of {name: Pattern} pairs to an OASIS stream, writing patterns
as OASIS cells, subpatterns as Placement records, and other shapes and labels as OASIS cells, subpatterns as Placement records, and mapping other shapes and labels
mapped to equivalent record types (Polygon, Path, Circle, Text). to equivalent record types (Polygon, Path, Circle, Text).
Other shape types may be converted to polygons if no equivalent Other shape types may be converted to polygons if no equivalent
record type exists (or is not implemented here yet). record type exists (or is not implemented here yet).
@ -75,7 +79,7 @@ def build(
prior to calling this function. prior to calling this function.
Args: Args:
patterns: A Pattern or list of patterns to convert. library: A {name: Pattern} mapping of patterns to write.
units_per_micron: Written into the OASIS file, number of grid steps per micrometer. units_per_micron: Written into the OASIS file, number of grid steps per micrometer.
All distances are assumed to be an integer multiple of the grid step, and are stored as such. All distances are assumed to be an integer multiple of the grid step, and are stored as such.
layer_map: Dictionary which translates layer names into layer numbers. If this argument is layer_map: Dictionary which translates layer names into layer numbers. If this argument is
@ -86,11 +90,8 @@ def build(
into numbers, omit this argument, and manually generate the required into numbers, omit this argument, and manually generate the required
`fatamorgana.records.LayerName` entries. `fatamorgana.records.LayerName` entries.
Default is an empty dict (no names provided). Default is an empty dict (no names provided).
modify_originals: If `True`, the original pattern is modified as part of the writing disambiguate_func: Function which takes a list of pattern names and returns a list of names
process. Otherwise, a copy is made and `deepunlock()`-ed. altered to be valid and unique. Default is `disambiguate_pattern_names`.
Default `False`.
disambiguate_func: Function which takes a list of patterns and alters them
to make their names valid and unique. Default is `disambiguate_pattern_names`.
annotations: dictionary of key-value pairs which are saved as library-level properties annotations: dictionary of key-value pairs which are saved as library-level properties
Returns: Returns:
@ -108,9 +109,6 @@ def build(
if annotations is None: if annotations is None:
annotations = {} annotations = {}
if not modify_originals:
patterns = [p.deepunlock() for p in copy.deepcopy(patterns)]
# Create library # Create library
lib = fatamorgana.OasisLayout(unit=units_per_micron, validation=None) lib = fatamorgana.OasisLayout(unit=units_per_micron, validation=None)
lib.properties = annotations_to_properties(annotations) lib.properties = annotations_to_properties(annotations)
@ -119,10 +117,12 @@ def build(
for name, layer_num in layer_map.items(): for name, layer_num in layer_map.items():
layer, data_type = _mlayer2oas(layer_num) layer, data_type = _mlayer2oas(layer_num)
lib.layers += [ lib.layers += [
fatrec.LayerName(nstring=name, fatrec.LayerName(
layer_interval=(layer, layer), nstring=name,
type_interval=(data_type, data_type), layer_interval=(layer, layer),
is_textlayer=tt) type_interval=(data_type, data_type),
is_textlayer=tt,
)
for tt in (True, False)] for tt in (True, False)]
def layer2oas(mlayer: layer_t) -> Tuple[int, int]: def layer2oas(mlayer: layer_t) -> Tuple[int, int]:
@ -132,17 +132,14 @@ def build(
else: else:
layer2oas = _mlayer2oas layer2oas = _mlayer2oas
# Get a dict of id(pattern) -> pattern old_names = list(library.keys())
patterns_by_id = {id(pattern): pattern for pattern in patterns} new_names = disambiguate_func(old_names)
for pattern in patterns: renamed_lib = {new_name: library[old_name]
for i, p in pattern.referenced_patterns_by_id().items(): for old_name, new_name in zip(old_names, new_names)}
patterns_by_id[i] = p
disambiguate_func(patterns_by_id.values())
# Now create a structure for each pattern # Now create a structure for each pattern
for pat in patterns_by_id.values(): for name, pat in renamed_lib.items():
structure = fatamorgana.Cell(name=pat.name) structure = fatamorgana.Cell(name=name)
lib.cells.append(structure) lib.cells.append(structure)
structure.properties += annotations_to_properties(pat.annotations) structure.properties += annotations_to_properties(pat.annotations)
@ -229,7 +226,6 @@ def readfile(
def read( def read(
stream: io.BufferedIOBase, stream: io.BufferedIOBase,
clean_vertices: bool = True,
) -> Tuple[Dict[str, Pattern], Dict[str, Any]]: ) -> Tuple[Dict[str, Pattern], Dict[str, Any]]:
""" """
Read a OASIS file and translate it into a dict of Pattern objects. OASIS cells are Read a OASIS file and translate it into a dict of Pattern objects. OASIS cells are
@ -243,9 +239,6 @@ def read(
Args: Args:
stream: Stream to read from. stream: Stream to read from.
clean_vertices: If `True`, remove any redundant vertices when loading polygons.
The cleaning process removes any polygons with zero area or <3 vertices.
Default `True`.
Returns: Returns:
- Dict of `pattern_name`:`Pattern`s generated from OASIS cells - Dict of `pattern_name`:`Pattern`s generated from OASIS cells
@ -264,14 +257,14 @@ def read(
layer_map[str(layer_name.nstring)] = layer_name layer_map[str(layer_name.nstring)] = layer_name
library_info['layer_map'] = layer_map library_info['layer_map'] = layer_map
patterns = [] patterns_dict = {}
for cell in lib.cells: for cell in lib.cells:
if isinstance(cell.name, int): if isinstance(cell.name, int):
cell_name = lib.cellnames[cell.name].nstring.string cell_name = lib.cellnames[cell.name].nstring.string
else: else:
cell_name = cell.name.string cell_name = cell.name.string
pat = Pattern(name=cell_name) pat = Pattern()
for element in cell.geometry: for element in cell.geometry:
if isinstance(element, fatrec.XElement): if isinstance(element, fatrec.XElement):
logger.warning('Skipping XElement record') logger.warning('Skipping XElement record')
@ -450,19 +443,7 @@ def read(
for placement in cell.placements: for placement in cell.placements:
pat.subpatterns.append(_placement_to_subpat(placement, lib)) pat.subpatterns.append(_placement_to_subpat(placement, lib))
if clean_vertices: patterns_dict[name] = pat
clean_pattern_vertices(pat)
patterns.append(pat)
# Create a dict of {pattern.name: pattern, ...}, then fix up all subpattern.pattern entries
# according to the subpattern.identifier (which is deleted after use).
patterns_dict = dict(((p.name, p) for p in patterns))
for p in patterns_dict.values():
for sp in p.subpatterns:
ident = sp.identifier[0]
name = ident if isinstance(ident, str) else lib.cellnames[ident].nstring.string
sp.pattern = patterns_dict[name]
del sp.identifier
return patterns_dict, library_info return patterns_dict, library_info
@ -486,8 +467,7 @@ def _mlayer2oas(mlayer: layer_t) -> Tuple[int, int]:
def _placement_to_subpat(placement: fatrec.Placement, lib: fatamorgana.OasisLayout) -> SubPattern: def _placement_to_subpat(placement: fatrec.Placement, lib: fatamorgana.OasisLayout) -> SubPattern:
""" """
Helper function to create a SubPattern from a placment. Sets subpat.pattern to None Helper function to create a SubPattern from a placment. Sets subpat.target to the placemen name.
and sets the instance .identifier to (struct_name,).
""" """
assert(not isinstance(placement.repetition, fatamorgana.ReuseRepetition)) assert(not isinstance(placement.repetition, fatamorgana.ReuseRepetition))
xy = numpy.array((placement.x, placement.y)) xy = numpy.array((placement.x, placement.y))
@ -499,14 +479,15 @@ def _placement_to_subpat(placement: fatrec.Placement, lib: fatamorgana.OasisLayo
rotation = 0 rotation = 0
else: else:
rotation = numpy.deg2rad(float(placement.angle)) rotation = numpy.deg2rad(float(placement.angle))
subpat = SubPattern(offset=xy, subpat = SubPattern(
pattern=None, target=name,
mirrored=(placement.flip, False), offset=xy,
rotation=rotation, mirrored=(placement.flip, False),
scale=float(mag), rotation=rotation,
identifier=(name,), scale=float(mag),
repetition=repetition_fata2masq(placement.repetition), repetition=repetition_fata2masq(placement.repetition),
annotations=annotations) annotations=annotations,
)
return subpat return subpat
@ -515,17 +496,17 @@ def _subpatterns_to_placements(
) -> List[fatrec.Placement]: ) -> List[fatrec.Placement]:
refs = [] refs = []
for subpat in subpatterns: for subpat in subpatterns:
if subpat.pattern is None: if subpat.target is None:
continue continue
# Note: OASIS mirrors first and rotates second # Note: OASIS mirrors first and rotates second
mirror_across_x, extra_angle = normalize_mirror(subpat.mirrored) mirror_across_x, extra_angle = normalize_mirror(subpat.mirrored)
frep, rep_offset = repetition_masq2fata(subpat.repetition) frep, rep_offset = repetition_masq2fata(subpat.repetition)
offset = numpy.round(subpat.offset + rep_offset).astype(int) offset = rint_cast(subpat.offset + rep_offset)
angle = numpy.rad2deg(subpat.rotation + extra_angle) % 360 angle = numpy.rad2deg(subpat.rotation + extra_angle) % 360
ref = fatrec.Placement( ref = fatrec.Placement(
name=subpat.pattern.name, name=subpat.target,
flip=mirror_across_x, flip=mirror_across_x,
angle=angle, angle=angle,
magnification=subpat.scale, magnification=subpat.scale,
@ -549,46 +530,51 @@ def _shapes_to_elements(
repetition, rep_offset = repetition_masq2fata(shape.repetition) repetition, rep_offset = repetition_masq2fata(shape.repetition)
properties = annotations_to_properties(shape.annotations) properties = annotations_to_properties(shape.annotations)
if isinstance(shape, Circle): if isinstance(shape, Circle):
offset = numpy.round(shape.offset + rep_offset).astype(int) offset = rint_cast(shape.offset + rep_offset)
radius = numpy.round(shape.radius).astype(int) radius = rint_cast(shape.radius)
circle = fatrec.Circle(layer=layer, circle = fatrec.Circle(
datatype=datatype, layer=layer,
radius=radius, datatype=datatype,
x=offset[0], radius=radius,
y=offset[1], x=offset[0],
properties=properties, y=offset[1],
repetition=repetition) properties=properties,
repetition=repetition,
)
elements.append(circle) elements.append(circle)
elif isinstance(shape, Path): elif isinstance(shape, Path):
xy = numpy.round(shape.offset + shape.vertices[0] + rep_offset).astype(int) xy = rint_cast(shape.offset + shape.vertices[0] + rep_offset)
deltas = numpy.round(numpy.diff(shape.vertices, axis=0)).astype(int) deltas = rint_cast(numpy.diff(shape.vertices, axis=0))
half_width = numpy.round(shape.width / 2).astype(int) half_width = rint_cast(shape.width / 2)
path_type = next(k for k, v in path_cap_map.items() if v == shape.cap) # reverse lookup path_type = next(k for k, v in path_cap_map.items() if v == shape.cap) # reverse lookup
extension_start = (path_type, shape.cap_extensions[0] if shape.cap_extensions is not None else None) extension_start = (path_type, shape.cap_extensions[0] if shape.cap_extensions is not None else None)
extension_end = (path_type, shape.cap_extensions[1] if shape.cap_extensions is not None else None) extension_end = (path_type, shape.cap_extensions[1] if shape.cap_extensions is not None else None)
path = fatrec.Path(layer=layer, path = fatrec.Path(
datatype=datatype, layer=layer,
point_list=deltas, datatype=datatype,
half_width=half_width, point_list=deltas,
x=xy[0], half_width=half_width,
y=xy[1], x=xy[0],
extension_start=extension_start, # TODO implement multiple cap types? y=xy[1],
extension_end=extension_end, extension_start=extension_start, # TODO implement multiple cap types?
properties=properties, extension_end=extension_end,
repetition=repetition, properties=properties,
) repetition=repetition,
)
elements.append(path) elements.append(path)
else: else:
for polygon in shape.to_polygons(): for polygon in shape.to_polygons():
xy = numpy.round(polygon.offset + polygon.vertices[0] + rep_offset).astype(int) xy = rint_cast(polygon.offset + polygon.vertices[0] + rep_offset)
points = numpy.round(numpy.diff(polygon.vertices, axis=0)).astype(int) points = rint_cast(numpy.diff(polygon.vertices, axis=0))
elements.append(fatrec.Polygon(layer=layer, elements.append(fatrec.Polygon(
datatype=datatype, layer=layer,
x=xy[0], datatype=datatype,
y=xy[1], x=xy[0],
point_list=points, y=xy[1],
properties=properties, point_list=points,
repetition=repetition)) properties=properties,
repetition=repetition,
))
return elements return elements
@ -600,29 +586,31 @@ def _labels_to_texts(
for label in labels: for label in labels:
layer, datatype = layer2oas(label.layer) layer, datatype = layer2oas(label.layer)
repetition, rep_offset = repetition_masq2fata(label.repetition) repetition, rep_offset = repetition_masq2fata(label.repetition)
xy = numpy.round(label.offset + rep_offset).astype(int) xy = rint_cast(label.offset + rep_offset)
properties = annotations_to_properties(label.annotations) properties = annotations_to_properties(label.annotations)
texts.append(fatrec.Text(layer=layer, texts.append(fatrec.Text(
datatype=datatype, layer=layer,
x=xy[0], datatype=datatype,
y=xy[1], x=xy[0],
string=label.string, y=xy[1],
properties=properties, string=label.string,
repetition=repetition)) properties=properties,
repetition=repetition,
))
return texts return texts
def disambiguate_pattern_names( def disambiguate_pattern_names(
patterns, names: Iterable[str],
dup_warn_filter: Callable[[str], bool] = None, # If returns False, don't warn about this name dup_warn_filter: Callable[[str], bool] = None, # If returns False, don't warn about this name
) -> None: ) -> List[str]:
used_names = [] new_names = []
for pat in patterns: for name in names:
sanitized_name = re.compile(r'[^A-Za-z0-9_\?\$]').sub('_', pat.name) sanitized_name = re.compile(r'[^A-Za-z0-9_\?\$]').sub('_', name)
i = 0 i = 0
suffixed_name = sanitized_name suffixed_name = sanitized_name
while suffixed_name in used_names or suffixed_name == '': while suffixed_name in new_names or suffixed_name == '':
suffix = base64.b64encode(struct.pack('>Q', i), b'$?').decode('ASCII') suffix = base64.b64encode(struct.pack('>Q', i), b'$?').decode('ASCII')
suffixed_name = sanitized_name + '$' + suffix[:-1].lstrip('A') suffixed_name = sanitized_name + '$' + suffix[:-1].lstrip('A')
@ -631,16 +619,16 @@ def disambiguate_pattern_names(
if sanitized_name == '': if sanitized_name == '':
logger.warning(f'Empty pattern name saved as "{suffixed_name}"') logger.warning(f'Empty pattern name saved as "{suffixed_name}"')
elif suffixed_name != sanitized_name: elif suffixed_name != sanitized_name:
if dup_warn_filter is None or dup_warn_filter(pat.name): if dup_warn_filter is None or dup_warn_filter(name):
logger.warning(f'Pattern name "{pat.name}" ({sanitized_name}) appears multiple times;\n' logger.warning(f'Pattern name "{name}" ({sanitized_name}) appears multiple times;\n'
+ f' renaming to "{suffixed_name}"') + f' renaming to "{suffixed_name}"')
if len(suffixed_name) == 0: if len(suffixed_name) == 0:
# Should never happen since zero-length names are replaced # Should never happen since zero-length names are replaced
raise PatternError(f'Zero-length name after sanitize+encode,\n originally "{pat.name}"') raise PatternError(f'Zero-length name after sanitize+encode,\n originally "{name}"')
pat.name = suffixed_name new_names.append(suffixed_name)
used_names.append(suffixed_name) return new_names
def repetition_fata2masq( def repetition_fata2masq(

View File

@ -18,7 +18,7 @@ Notes:
* GDS does not support library- or structure-level annotations * GDS does not support library- or structure-level annotations
""" """
from typing import List, Any, Dict, Tuple, Callable, Union, Iterable, Optional from typing import List, Any, Dict, Tuple, Callable, Union, Iterable, Optional
from typing import Sequence from typing import Sequence, Mapping
import re import re
import io import io
import copy import copy
@ -59,13 +59,13 @@ def rint_cast(val: ArrayLike) -> NDArray[numpy.int32]:
def build( def build(
patterns: Union[Pattern, Sequence[Pattern]], library: Mapping[str, Pattern],
meters_per_unit: float, meters_per_unit: float,
logical_units_per_unit: float = 1, logical_units_per_unit: float = 1,
library_name: str = 'masque-gdsii-write', library_name: str = 'masque-gdsii-write',
*, *,
modify_originals: bool = False, modify_originals: bool = False,
disambiguate_func: Callable[[Iterable[Pattern]], None] = None, disambiguate_func: Callable[[Iterable[str]], List[str]] = None,
) -> gdsii.library.Library: ) -> gdsii.library.Library:
""" """
Convert a `Pattern` or list of patterns to a GDSII stream, by first calling Convert a `Pattern` or list of patterns to a GDSII stream, by first calling
@ -86,7 +86,7 @@ def build(
prior to calling this function. prior to calling this function.
Args: Args:
patterns: A Pattern or list of patterns to convert. library: A {name: Pattern} mapping of patterns to write.
meters_per_unit: Written into the GDSII file, meters per (database) length unit. meters_per_unit: Written into the GDSII file, meters per (database) length unit.
All distances are assumed to be an integer multiple of this unit, and are stored as such. All distances are assumed to be an integer multiple of this unit, and are stored as such.
logical_units_per_unit: Written into the GDSII file. Allows the GDSII to specify a logical_units_per_unit: Written into the GDSII file. Allows the GDSII to specify a
@ -95,27 +95,29 @@ def build(
library_name: Library name written into the GDSII file. library_name: Library name written into the GDSII file.
Default 'masque-gdsii-write'. Default 'masque-gdsii-write'.
modify_originals: If `True`, the original pattern is modified as part of the writing modify_originals: If `True`, the original pattern is modified as part of the writing
process. Otherwise, a copy is made and `deepunlock()`-ed. process. Otherwise, a copy is made.
Default `False`. Default `False`.
disambiguate_func: Function which takes a list of patterns and alters them disambiguate_func: Function which takes a list of pattern names and returns a list of names
to make their names valid and unique. Default is `disambiguate_pattern_names`, which altered to be valid and unique. Default is `disambiguate_pattern_names`, which
attempts to adhere to the GDSII standard as well as possible. attempts to adhere to the GDSII standard reasonably well.
WARNING: No additional error checking is performed on the results. WARNING: No additional error checking is performed on the results.
Returns: Returns:
`gdsii.library.Library` `gdsii.library.Library`
""" """
if isinstance(patterns, Pattern):
patterns = [patterns]
if disambiguate_func is None: if disambiguate_func is None:
disambiguate_func = disambiguate_pattern_names # type: ignore disambiguate_func = disambiguate_pattern_names
assert(disambiguate_func is not None) # placate mypy
if not modify_originals: if not modify_originals:
patterns = [p.deepunlock() for p in copy.deepcopy(patterns)] library = copy.deepcopy(library)
patterns = [p.wrap_repeated_shapes() for p in patterns] for p in library.values():
library.add(p.wrap_repeated_shapes())
old_names = list(library.keys())
new_names = disambiguate_func(old_names)
renamed_lib = {new_name: library[old_name]
for old_name, new_name in zip(old_names, new_names)}
# Create library # Create library
lib = gdsii.library.Library(version=600, lib = gdsii.library.Library(version=600,
@ -123,17 +125,9 @@ def build(
logical_unit=logical_units_per_unit, logical_unit=logical_units_per_unit,
physical_unit=meters_per_unit) physical_unit=meters_per_unit)
# Get a dict of id(pattern) -> pattern
patterns_by_id = {id(pattern): pattern for pattern in patterns}
for pattern in patterns:
for i, p in pattern.referenced_patterns_by_id().items():
patterns_by_id[i] = p
disambiguate_func(patterns_by_id.values())
# Now create a structure for each pattern, and add in any Boundary and SREF elements # Now create a structure for each pattern, and add in any Boundary and SREF elements
for pat in patterns_by_id.values(): for name, pat in renamed_lib.items():
structure = gdsii.structure.Structure(name=pat.name.encode('ASCII')) structure = gdsii.structure.Structure(name=name.encode('ASCII'))
lib.append(structure) lib.append(structure)
structure += _shapes_to_elements(pat.shapes) structure += _shapes_to_elements(pat.shapes)
@ -144,7 +138,7 @@ def build(
def write( def write(
patterns: Union[Pattern, Sequence[Pattern]], library: Mapping[str, Pattern],
stream: io.BufferedIOBase, stream: io.BufferedIOBase,
*args, *args,
**kwargs, **kwargs,
@ -154,31 +148,31 @@ def write(
See `masque.file.gdsii.build()` for details. See `masque.file.gdsii.build()` for details.
Args: Args:
patterns: A Pattern or list of patterns to write to file. library: A {name: Pattern} mapping of patterns to write.
stream: Stream to write to. stream: Stream to write to.
*args: passed to `masque.file.gdsii.build()` *args: passed to `masque.file.gdsii.build()`
**kwargs: passed to `masque.file.gdsii.build()` **kwargs: passed to `masque.file.gdsii.build()`
""" """
lib = build(patterns, *args, **kwargs) lib = build(library, *args, **kwargs)
lib.save(stream) lib.save(stream)
return return
def writefile( def writefile(
patterns: Union[Sequence[Pattern], Pattern], library: Mapping[str, Pattern],
filename: Union[str, pathlib.Path], filename: Union[str, pathlib.Path],
*args, *args,
**kwargs, **kwargs,
) -> None: ) -> None:
""" """
Wrapper for `masque.file.gdsii.write()` that takes a filename or path instead of a stream. Wrapper for `write()` that takes a filename or path instead of a stream.
Will automatically compress the file if it has a .gz suffix. Will automatically compress the file if it has a .gz suffix.
Args: Args:
patterns: `Pattern` or list of patterns to save library: {name: Pattern} pairs to save.
filename: Filename to save to. filename: Filename to save to.
*args: passed to `masque.file.gdsii.write` *args: passed to `write()`
**kwargs: passed to `masque.file.gdsii.write` **kwargs: passed to `write()`
""" """
path = pathlib.Path(filename) path = pathlib.Path(filename)
if path.suffix == '.gz': if path.suffix == '.gz':
@ -196,14 +190,14 @@ def readfile(
**kwargs, **kwargs,
) -> Tuple[Dict[str, Pattern], Dict[str, Any]]: ) -> Tuple[Dict[str, Pattern], Dict[str, Any]]:
""" """
Wrapper for `masque.file.gdsii.read()` that takes a filename or path instead of a stream. Wrapper for `read()` that takes a filename or path instead of a stream.
Will automatically decompress gzipped files. Will automatically decompress gzipped files.
Args: Args:
filename: Filename to save to. filename: Filename to save to.
*args: passed to `masque.file.gdsii.read` *args: passed to `read()`
**kwargs: passed to `masque.file.gdsii.read` **kwargs: passed to `read()`
""" """
path = pathlib.Path(filename) path = pathlib.Path(filename)
if is_gzipped(path): if is_gzipped(path):
@ -251,9 +245,10 @@ def read(
raw_mode = True # Whether to construct shapes in raw mode (less error checking) raw_mode = True # Whether to construct shapes in raw mode (less error checking)
patterns = [] patterns_dict = {}
for structure in lib: for structure in lib:
pat = Pattern(name=structure.name.decode('ASCII')) pat = Pattern()
name=structure.name.decode('ASCII')
for element in structure: for element in structure:
# Switch based on element type: # Switch based on element type:
if isinstance(element, gdsii.elements.Boundary): if isinstance(element, gdsii.elements.Boundary):
@ -275,15 +270,7 @@ def read(
if clean_vertices: if clean_vertices:
clean_pattern_vertices(pat) clean_pattern_vertices(pat)
patterns.append(pat) patterns_dict[name] = pat
# Create a dict of {pattern.name: pattern, ...}, then fix up all subpattern.pattern entries
# according to the subpattern.identifier (which is deleted after use).
patterns_dict = dict(((p.name, p) for p in patterns))
for p in patterns_dict.values():
for sp in p.subpatterns:
sp.pattern = patterns_dict[sp.identifier[0].decode('ASCII')]
del sp.identifier
return patterns_dict, library_info return patterns_dict, library_info
@ -309,8 +296,7 @@ def _ref_to_subpat(
gdsii.elements.ARef] gdsii.elements.ARef]
) -> SubPattern: ) -> SubPattern:
""" """
Helper function to create a SubPattern from an SREF or AREF. Sets subpat.pattern to None Helper function to create a SubPattern from an SREF or AREF. Sets subpat.target to struct_name.
and sets the instance .identifier to (struct_name,).
NOTE: "Absolute" means not affected by parent elements. NOTE: "Absolute" means not affected by parent elements.
That's not currently supported by masque at all (and not planned). That's not currently supported by masque at all (and not planned).
@ -351,7 +337,6 @@ def _ref_to_subpat(
mirrored=(mirror_across_x, False), mirrored=(mirror_across_x, False),
annotations=_properties_to_annotations(element.properties), annotations=_properties_to_annotations(element.properties),
repetition=repetition) repetition=repetition)
subpat.identifier = (element.struct_name,)
return subpat return subpat
@ -395,9 +380,9 @@ def _subpatterns_to_refs(
) -> List[Union[gdsii.elements.ARef, gdsii.elements.SRef]]: ) -> List[Union[gdsii.elements.ARef, gdsii.elements.SRef]]:
refs = [] refs = []
for subpat in subpatterns: for subpat in subpatterns:
if subpat.pattern is None: if subpat.target is None:
continue continue
encoded_name = subpat.pattern.name.encode('ASCII') encoded_name = subpat.target.encode('ASCII')
# Note: GDS mirrors first and rotates second # Note: GDS mirrors first and rotates second
mirror_across_x, extra_angle = normalize_mirror(subpat.mirrored) mirror_across_x, extra_angle = normalize_mirror(subpat.mirrored)
@ -523,14 +508,14 @@ def _labels_to_texts(labels: List[Label]) -> List[gdsii.elements.Text]:
def disambiguate_pattern_names( def disambiguate_pattern_names(
patterns: Sequence[Pattern], names: Iterable[str],
max_name_length: int = 32, max_name_length: int = 32,
suffix_length: int = 6, suffix_length: int = 6,
dup_warn_filter: Optional[Callable[[str], bool]] = None, dup_warn_filter: Optional[Callable[[str], bool]] = None,
) -> None: ) -> List[str]:
""" """
Args: Args:
patterns: List of patterns to disambiguate names: List of pattern names to disambiguate
max_name_length: Names longer than this will be truncated max_name_length: Names longer than this will be truncated
suffix_length: Names which get truncated are truncated by this many extra characters. This is to suffix_length: Names which get truncated are truncated by this many extra characters. This is to
leave room for a suffix if one is necessary. leave room for a suffix if one is necessary.
@ -538,15 +523,15 @@ def disambiguate_pattern_names(
the cell name and returns `False` if the warning should be suppressed and `True` if it should the cell name and returns `False` if the warning should be suppressed and `True` if it should
be displayed. Default displays all warnings. be displayed. Default displays all warnings.
""" """
used_names = [] new_names = []
for pat in set(patterns): for name in names:
# Shorten names which already exceed max-length # Shorten names which already exceed max-length
if len(pat.name) > max_name_length: if len(name) > max_name_length:
shortened_name = pat.name[:max_name_length - suffix_length] shortened_name = name[:max_name_length - suffix_length]
logger.warning(f'Pattern name "{pat.name}" is too long ({len(pat.name)}/{max_name_length} chars),\n' logger.warning(f'Pattern name "{name}" is too long ({len(name)}/{max_name_length} chars),\n'
+ f' shortening to "{shortened_name}" before generating suffix') + f' shortening to "{shortened_name}" before generating suffix')
else: else:
shortened_name = pat.name shortened_name = name
# Remove invalid characters # Remove invalid characters
sanitized_name = re.compile(r'[^A-Za-z0-9_\?\$]').sub('_', shortened_name) sanitized_name = re.compile(r'[^A-Za-z0-9_\?\$]').sub('_', shortened_name)
@ -554,7 +539,7 @@ def disambiguate_pattern_names(
# Add a suffix that makes the name unique # Add a suffix that makes the name unique
i = 0 i = 0
suffixed_name = sanitized_name suffixed_name = sanitized_name
while suffixed_name in used_names or suffixed_name == '': while suffixed_name in new_names or suffixed_name == '':
suffix = base64.b64encode(struct.pack('>Q', i), b'$?').decode('ASCII') suffix = base64.b64encode(struct.pack('>Q', i), b'$?').decode('ASCII')
suffixed_name = sanitized_name + '$' + suffix[:-1].lstrip('A') suffixed_name = sanitized_name + '$' + suffix[:-1].lstrip('A')
@ -563,18 +548,19 @@ def disambiguate_pattern_names(
if sanitized_name == '': if sanitized_name == '':
logger.warning(f'Empty pattern name saved as "{suffixed_name}"') logger.warning(f'Empty pattern name saved as "{suffixed_name}"')
elif suffixed_name != sanitized_name: elif suffixed_name != sanitized_name:
if dup_warn_filter is None or dup_warn_filter(pat.name): if dup_warn_filter is None or dup_warn_filter(name):
logger.warning(f'Pattern name "{pat.name}" ({sanitized_name}) appears multiple times;\n' logger.warning(f'Pattern name "{name}" ({sanitized_name}) appears multiple times;\n'
+ f' renaming to "{suffixed_name}"') + f' renaming to "{suffixed_name}"')
# Encode into a byte-string and perform some final checks # Encode into a byte-string and perform some final checks
encoded_name = suffixed_name.encode('ASCII') encoded_name = suffixed_name.encode('ASCII')
if len(encoded_name) == 0: if len(encoded_name) == 0:
# Should never happen since zero-length names are replaced # Should never happen since zero-length names are replaced
raise PatternError(f'Zero-length name after sanitize+encode,\n originally "{pat.name}"') raise PatternError(f'Zero-length name after sanitize+encode,\n originally "{name}"')
if len(encoded_name) > max_name_length: if len(encoded_name) > max_name_length:
raise PatternError(f'Pattern name "{encoded_name!r}" length > {max_name_length} after encode,\n' raise PatternError(f'Pattern name "{encoded_name!r}" length > {max_name_length} after encode,\n'
+ f' originally "{pat.name}"') + f' originally "{name}"')
new_names.append(suffixed_name)
return new_names
pat.name = suffixed_name
used_names.append(suffixed_name)

View File

@ -1,7 +1,7 @@
""" """
SVG file format readers and writers SVG file format readers and writers
""" """
from typing import Dict, Optional from typing import Dict, Optional, Mapping
import warnings import warnings
import numpy import numpy
@ -13,7 +13,8 @@ from .. import Pattern
def writefile( def writefile(
pattern: Pattern, library: Mapping[str, Pattern],
top: str,
filename: str, filename: str,
custom_attributes: bool = False, custom_attributes: bool = False,
) -> None: ) -> None:
@ -41,11 +42,12 @@ def writefile(
custom_attributes: Whether to write non-standard `pattern_layer` and custom_attributes: Whether to write non-standard `pattern_layer` and
`pattern_dose` attributes to the SVG elements. `pattern_dose` attributes to the SVG elements.
""" """
pattern = library[top]
# Polygonize pattern # Polygonize pattern
pattern.polygonize() pattern.polygonize()
bounds = pattern.get_bounds() bounds = pattern.get_bounds(library=library)
if bounds is None: if bounds is None:
bounds_min, bounds_max = numpy.array([[-1, -1], [1, 1]]) bounds_min, bounds_max = numpy.array([[-1, -1], [1, 1]])
warnings.warn('Pattern had no bounds (empty?); setting arbitrary viewbox') warnings.warn('Pattern had no bounds (empty?); setting arbitrary viewbox')
@ -59,15 +61,10 @@ def writefile(
svg = svgwrite.Drawing(filename, profile='full', viewBox=viewbox_string, svg = svgwrite.Drawing(filename, profile='full', viewBox=viewbox_string,
debug=(not custom_attributes)) debug=(not custom_attributes))
# Get a dict of id(pattern) -> pattern
patterns_by_id = {**(pattern.referenced_patterns_by_id()), id(pattern): pattern} # type: Dict[int, Optional[Pattern]]
# Now create a group for each row in sd_table (ie, each pattern + dose combination) # Now create a group for each row in sd_table (ie, each pattern + dose combination)
# and add in any Boundary and Use elements # and add in any Boundary and Use elements
for pat in patterns_by_id.values(): for name, pat in library.items():
if pat is None: svg_group = svg.g(id=mangle_name(name), fill='blue', stroke='red')
continue
svg_group = svg.g(id=mangle_name(pat), fill='blue', stroke='red')
for shape in pat.shapes: for shape in pat.shapes:
for polygon in shape.to_polygons(): for polygon in shape.to_polygons():
@ -81,20 +78,24 @@ def writefile(
svg_group.add(path) svg_group.add(path)
for subpat in pat.subpatterns: for subpat in pat.subpatterns:
if subpat.pattern is None: if subpat.target is None:
continue continue
transform = f'scale({subpat.scale:g}) rotate({subpat.rotation:g}) translate({subpat.offset[0]:g},{subpat.offset[1]:g})' transform = f'scale({subpat.scale:g}) rotate({subpat.rotation:g}) translate({subpat.offset[0]:g},{subpat.offset[1]:g})'
use = svg.use(href='#' + mangle_name(subpat.pattern), transform=transform) use = svg.use(href='#' + mangle_name(subpat.target), transform=transform)
if custom_attributes: if custom_attributes:
use['pattern_dose'] = subpat.dose use['pattern_dose'] = subpat.dose
svg_group.add(use) svg_group.add(use)
svg.defs.add(svg_group) svg.defs.add(svg_group)
svg.add(svg.use(href='#' + mangle_name(pattern))) svg.add(svg.use(href='#' + mangle_name(top)))
svg.save() svg.save()
def writefile_inverted(pattern: Pattern, filename: str): def writefile_inverted(
library: Mapping[str, Pattern],
top: str,
filename: str,
) -> None:
""" """
Write an inverted Pattern to an SVG file, by first calling `.polygonize()` and Write an inverted Pattern to an SVG file, by first calling `.polygonize()` and
`.flatten()` on it to change the shapes into polygons, then drawing a bounding `.flatten()` on it to change the shapes into polygons, then drawing a bounding
@ -110,10 +111,12 @@ def writefile_inverted(pattern: Pattern, filename: str):
pattern: Pattern to write to file. Modified by this function. pattern: Pattern to write to file. Modified by this function.
filename: Filename to write to. filename: Filename to write to.
""" """
pattern = library[top]
# Polygonize and flatten pattern # Polygonize and flatten pattern
pattern.polygonize().flatten() pattern.polygonize().flatten()
bounds = pattern.get_bounds() bounds = pattern.get_bounds(library=library)
if bounds is None: if bounds is None:
bounds_min, bounds_max = numpy.array([[-1, -1], [1, 1]]) bounds_min, bounds_max = numpy.array([[-1, -1], [1, 1]])
warnings.warn('Pattern had no bounds (empty?); setting arbitrary viewbox') warnings.warn('Pattern had no bounds (empty?); setting arbitrary viewbox')

View File

@ -1,7 +1,7 @@
""" """
Helper functions for file reading and writing Helper functions for file reading and writing
""" """
from typing import Set, Tuple, List from typing import Set, Tuple, List, Iterable, Mapping
import re import re
import copy import copy
import pathlib import pathlib
@ -10,19 +10,22 @@ from .. import Pattern, PatternError
from ..shapes import Polygon, Path from ..shapes import Polygon, Path
def mangle_name(pattern: Pattern, dose_multiplier: float = 1.0) -> str: def mangle_name(name: str, dose_multiplier: float = 1.0) -> str:
""" """
Create a name using `pattern.name`, `id(pattern)`, and the dose multiplier. Create a new name using `name` and the `dose_multiplier`.
Args: Args:
pattern: Pattern whose name we want to mangle. name: Name we want to mangle.
dose_multiplier: Dose multiplier to mangle with. dose_multiplier: Dose multiplier to mangle with.
Returns: Returns:
Mangled name. Mangled name.
""" """
if dose_multiplier == 1:
full_name = name
else:
full_name = f'{name}_dm{dose_multiplier}'
expression = re.compile(r'[^A-Za-z0-9_\?\$]') expression = re.compile(r'[^A-Za-z0-9_\?\$]')
full_name = '{}_{}_{}'.format(pattern.name, dose_multiplier, id(pattern))
sanitized_name = expression.sub('_', full_name) sanitized_name = expression.sub('_', full_name)
return sanitized_name return sanitized_name
@ -51,25 +54,30 @@ def clean_pattern_vertices(pat: Pattern) -> Pattern:
return pat return pat
def make_dose_table(patterns: List[Pattern], dose_multiplier: float = 1.0) -> Set[Tuple[int, float]]: def make_dose_table(
top_names: Iterable[str],
library: Mapping[str, Pattern],
dose_multiplier: float = 1.0,
) -> Set[Tuple[int, float]]:
""" """
Create a set containing `(id(pat), written_dose)` for each pattern (including subpatterns) Create a set containing `(name, written_dose)` for each pattern (including subpatterns)
Args: Args:
top_names: Names of all topcells
pattern: Source Patterns. pattern: Source Patterns.
dose_multiplier: Multiplier for all written_dose entries. dose_multiplier: Multiplier for all written_dose entries.
Returns: Returns:
`{(id(subpat.pattern), written_dose), ...}` `{(name, written_dose), ...}`
""" """
dose_table = {(id(pattern), dose_multiplier) for pattern in patterns} dose_table = {(top_name, dose_multiplier) for top_name in top_names}
for pattern in patterns: for name, pattern in library.items():
for subpat in pattern.subpatterns: for subpat in pattern.subpatterns:
if subpat.pattern is None: if subpat.target is None:
continue continue
subpat_dose_entry = (id(subpat.pattern), subpat.dose * dose_multiplier) subpat_dose_entry = (subpat.target, subpat.dose * dose_multiplier)
if subpat_dose_entry not in dose_table: if subpat_dose_entry not in dose_table:
subpat_dose_table = make_dose_table([subpat.pattern], subpat.dose * dose_multiplier) subpat_dose_table = make_dose_table(subpat.target, library, subpat.dose * dose_multiplier)
dose_table = dose_table.union(subpat_dose_table) dose_table = dose_table.union(subpat_dose_table)
return dose_table return dose_table
@ -96,7 +104,7 @@ def dtype2dose(pattern: Pattern) -> Pattern:
def dose2dtype( def dose2dtype(
patterns: List[Pattern], library: List[Pattern],
) -> Tuple[List[Pattern], List[float]]: ) -> Tuple[List[Pattern], List[float]]:
""" """
For each shape in each pattern, set shape.layer to the tuple For each shape in each pattern, set shape.layer to the tuple
@ -119,21 +127,16 @@ def dose2dtype(
dose_list: A list of doses, providing a mapping between datatype (int, list index) dose_list: A list of doses, providing a mapping between datatype (int, list index)
and dose (float, list entry). and dose (float, list entry).
""" """
# Get a dict of id(pattern) -> pattern logger.warning('TODO: dose2dtype() needs to be tested!')
patterns_by_id = {id(pattern): pattern for pattern in patterns}
for pattern in patterns:
for i, p in pattern.referenced_patterns_by_id().items():
patterns_by_id[i] = p
# Get a table of (id(pat), written_dose) for each pattern and subpattern # Get a table of (id(pat), written_dose) for each pattern and subpattern
sd_table = make_dose_table(patterns) sd_table = make_dose_table(library.find_topcells(), library)
# Figure out all the unique doses necessary to write this pattern # Figure out all the unique doses necessary to write this pattern
# This means going through each row in sd_table and adding the dose values needed to write # This means going through each row in sd_table and adding the dose values needed to write
# that subpattern at that dose level # that subpattern at that dose level
dose_vals = set() dose_vals = set()
for pat_id, pat_dose in sd_table: for name, pat_dose in sd_table:
pat = patterns_by_id[pat_id] pat = library[name]
for shape in pat.shapes: for shape in pat.shapes:
dose_vals.add(shape.dose * pat_dose) dose_vals.add(shape.dose * pat_dose)
@ -144,21 +147,22 @@ def dose2dtype(
# Create a new pattern for each non-1-dose entry in the dose table # Create a new pattern for each non-1-dose entry in the dose table
# and update the shapes to reflect their new dose # and update the shapes to reflect their new dose
new_pats = {} # (id, dose) -> new_pattern mapping new_names = {} # {(old name, dose): new name} mapping
for pat_id, pat_dose in sd_table: new_lib = {} # {new_name: new_pattern} mapping
for name, pat_dose in sd_table:
mangled_name = mangle_name(name, pat_dose)
new_names[(name, pat_dose)] = mangled_name
old_pat = library[name]
if pat_dose == 1: if pat_dose == 1:
new_pats[(pat_id, pat_dose)] = patterns_by_id[pat_id] new_lib[mangled_name] = old_pat
continue continue
old_pat = patterns_by_id[pat_id] pat = old_pat.deepcopy()
pat = old_pat.copy() # keep old subpatterns
pat.shapes = copy.deepcopy(old_pat.shapes)
pat.labels = copy.deepcopy(old_pat.labels)
encoded_name = mangle_name(pat, pat_dose)
if len(encoded_name) == 0: if len(encoded_name) == 0:
raise PatternError('Zero-length name after mangle+encode, originally "{}"'.format(pat.name)) raise PatternError('Zero-length name after mangle+encode, originally "{name}"'.format(pat.name))
pat.name = encoded_name
for shape in pat.shapes: for shape in pat.shapes:
data_type = dose_vals_list.index(shape.dose * pat_dose) data_type = dose_vals_list.index(shape.dose * pat_dose)
@ -169,15 +173,9 @@ def dose2dtype(
else: else:
raise PatternError(f'Invalid layer for gdsii: {shape.layer}') raise PatternError(f'Invalid layer for gdsii: {shape.layer}')
new_pats[(pat_id, pat_dose)] = pat new_lib[mangled_name] = pat
# Go back through all the dose-specific patterns and fix up their subpattern entries return new_lib, dose_vals_list
for (pat_id, pat_dose), pat in new_pats.items():
for subpat in pat.subpatterns:
dose_mult = subpat.dose * pat_dose
subpat.pattern = new_pats[(id(subpat.pattern), dose_mult)]
return patterns, dose_vals_list
def is_gzipped(path: pathlib.Path) -> bool: def is_gzipped(path: pathlib.Path) -> bool:

View File

@ -6,14 +6,14 @@ from numpy.typing import ArrayLike, NDArray
from .repetition import Repetition from .repetition import Repetition
from .utils import rotation_matrix_2d, layer_t, AutoSlots, annotations_t from .utils import rotation_matrix_2d, layer_t, AutoSlots, annotations_t
from .traits import PositionableImpl, LayerableImpl, Copyable, Pivotable, LockableImpl, RepeatableImpl from .traits import PositionableImpl, LayerableImpl, Copyable, Pivotable, RepeatableImpl
from .traits import AnnotatableImpl from .traits import AnnotatableImpl
L = TypeVar('L', bound='Label') L = TypeVar('L', bound='Label')
class Label(PositionableImpl, LayerableImpl, LockableImpl, RepeatableImpl, AnnotatableImpl, class Label(PositionableImpl, LayerableImpl, RepeatableImpl, AnnotatableImpl,
Pivotable, Copyable, metaclass=AutoSlots): Pivotable, Copyable, metaclass=AutoSlots):
""" """
A text annotation with a position and layer (but no size; it is not drawn) A text annotation with a position and layer (but no size; it is not drawn)
@ -49,32 +49,28 @@ class Label(PositionableImpl, LayerableImpl, LockableImpl, RepeatableImpl, Annot
layer: layer_t = 0, layer: layer_t = 0,
repetition: Optional[Repetition] = None, repetition: Optional[Repetition] = None,
annotations: Optional[annotations_t] = None, annotations: Optional[annotations_t] = None,
locked: bool = False,
identifier: Tuple = (), identifier: Tuple = (),
) -> None: ) -> None:
LockableImpl.unlock(self)
self.identifier = identifier self.identifier = identifier
self.string = string self.string = string
self.offset = numpy.array(offset, dtype=float, copy=True) self.offset = numpy.array(offset, dtype=float, copy=True)
self.layer = layer self.layer = layer
self.repetition = repetition self.repetition = repetition
self.annotations = annotations if annotations is not None else {} self.annotations = annotations if annotations is not None else {}
self.set_locked(locked)
def __copy__(self: L) -> L: def __copy__(self: L) -> L:
return type(self)(string=self.string, return type(self)(
offset=self.offset.copy(), string=self.string,
layer=self.layer, offset=self.offset.copy(),
repetition=self.repetition, layer=self.layer,
locked=self.locked, repetition=self.repetition,
identifier=self.identifier) identifier=self.identifier,
)
def __deepcopy__(self: L, memo: Dict = None) -> L: def __deepcopy__(self: L, memo: Dict = None) -> L:
memo = {} if memo is None else memo memo = {} if memo is None else memo
new = copy.copy(self) new = copy.copy(self)
LockableImpl.unlock(new)
new._offset = self._offset.copy() new._offset = self._offset.copy()
new.set_locked(self.locked)
return new return new
def rotate_around(self: L, pivot: ArrayLike, rotation: float) -> L: def rotate_around(self: L, pivot: ArrayLike, rotation: float) -> L:
@ -106,17 +102,3 @@ class Label(PositionableImpl, LayerableImpl, LockableImpl, RepeatableImpl, Annot
Bounds [[xmin, xmax], [ymin, ymax]] Bounds [[xmin, xmax], [ymin, ymax]]
""" """
return numpy.array([self.offset, self.offset]) return numpy.array([self.offset, self.offset])
def lock(self: L) -> L:
PositionableImpl._lock(self)
LockableImpl.lock(self)
return self
def unlock(self: L) -> L:
LockableImpl.unlock(self)
PositionableImpl._unlock(self)
return self
def __repr__(self) -> str:
locked = ' L' if self.locked else ''
return f'<Label "{self.string}" l{self.layer} o{self.offset}{locked}>'

594
masque/library.py Normal file
View File

@ -0,0 +1,594 @@
"""
Library class for managing unique name->pattern mappings and
deferred loading or creation.
"""
from typing import List, Dict, Callable, TypeVar, Type, TYPE_CHECKING
from typing import Any, Tuple, Union, Iterator, Mapping, MutableMapping, Set, Optional, Sequence
import logging
import copy
import base64
import struct
import re
from pprint import pformat
from collections import defaultdict
import numpy
from numpy.typing import ArrayLike, NDArray, NDArray
from .error import LibraryError, PatternError
from .utils import rotation_matrix_2d, normalize_mirror
from .shapes import Shape, Polygon
from .label import Label
if TYPE_CHECKING:
from .pattern import Pattern
logger = logging.getLogger(__name__)
visitor_function_t = Callable[['Pattern', Tuple['Pattern'], Dict, NDArray[numpy.float64]], 'Pattern']
L = TypeVar('L', bound='Library')
class Library:
"""
This class is usually used to create a library of Patterns by mapping names to
functions which generate or load the relevant `Pattern` object as-needed.
The cache can be disabled by setting the `enable_cache` attribute to `False`.
"""
dict: Dict[str, Callable[[], Pattern]]
cache: Dict[str, 'Pattern']
enable_cache: bool = True
def __init__(self) -> None:
self.dict = {}
self.cache = {}
def __setitem__(self, key: str, value: Callable[[], Pattern]) -> None:
self.dict[key] = value
if key in self.cache:
del self.cache[key]
def __delitem__(self, key: str) -> None:
del self.dict[key]
if key in self.cache:
del self.cache[key]
def __getitem__(self, key: str) -> 'Pattern':
logger.debug(f'loading {key}')
if self.enable_cache and key in self.cache:
logger.debug(f'found {key} in cache')
return self.cache[key]
func = self.dict[key]
pat = func()
self.cache[key] = pat
return pat
def __iter__(self) -> Iterator[str]:
return iter(self.keys())
def __contains__(self, key: str) -> bool:
return key in self.dict
def keys(self) -> Iterator[str]:
return iter(self.dict.keys())
def values(self) -> Iterator['Pattern']:
return iter(self[key] for key in self.keys())
def items(self) -> Iterator[Tuple[str, 'Pattern']]:
return iter((key, self[key]) for key in self.keys())
def __repr__(self) -> str:
return '<Library with keys ' + repr(list(self.dict.keys())) + '>'
def precache(self: L) -> L:
"""
Force all patterns into the cache
Returns:
self
"""
for key in self.dict:
_ = self.dict.__getitem__(key)
return self
def add(
self: L,
other: L,
use_ours: Callable[[str], bool] = lambda name: False,
use_theirs: Callable[[str], bool] = lambda name: False,
) -> L:
"""
Add keys from another library into this one.
Args:
other: The library to insert keys from
use_ours: Decision function for name conflicts, called with cell name.
Should return `True` if the value from `self` should be used.
use_theirs: Decision function for name conflicts. Same format as `use_ours`.
Should return `True` if the value from `other` should be used.
`use_ours` takes priority over `use_theirs`.
Returns:
self
"""
duplicates = set(self.keys()) & set(other.keys())
keep_ours = set(name for name in duplicates if use_ours(name))
keep_theirs = set(name for name in duplicates - keep_ours if use_theirs(name))
conflicts = duplicates - keep_ours - keep_theirs
if conflicts:
raise LibraryError('Unresolved duplicate keys encountered in library merge: ' + pformat(conflicts))
for key in set(other.keys()) - keep_ours:
self.dict[key] = other.dict[key]
if key in other.cache:
self.cache[key] = other.cache[key]
return self
def clear_cache(self: L) -> L:
"""
Clear the cache of this library.
This is usually used before modifying or deleting cells, e.g. when merging
with another library.
Returns:
self
"""
self.cache.clear()
return self
def referenced_patterns(
self,
tops: Union[str, Sequence[str]],
skip: Optional[Set[Optional[str]]] = None,
) -> Set[Optional[str]]:
"""
Get the set of all pattern names referenced by `top`. Recursively traverses into any subpatterns.
Args:
top: Name of the top pattern(s) to check.
skip: Memo, set patterns which have already been traversed.
Returns:
Set of all referenced pattern names
"""
if skip is None:
skip = set([None])
if isinstance(tops, str):
tops = (tops,)
# Get referenced patterns for all tops
targets = set()
for top in set(tops):
targets |= self[top].referenced_patterns()
# Perform recursive lookups, but only once for each name
for target in targets - skip:
assert(target is not None)
self.referenced_patterns(target, skip)
skip.add(target)
return targets
def subtree(
self: L,
tops: Union[str, Sequence[str]],
) -> L:
"""
Return a new `Library`, containing only the specified patterns and the patterns they
reference (recursively).
Args:
tops: Name(s) of patterns to keep
Returns:
A `Library` containing only `tops` and the patterns they reference.
"""
keep: Set[str] = self.referenced_patterns(tops) - set((None,)) # type: ignore
new = type(self)()
for key in keep:
new.dict[key] = self.dict[key]
if key in self.cache:
new.cache[key] = self.cache[key]
return new
def dfs(
self: L,
top: str,
visit_before: visitor_function_t = None,
visit_after: visitor_function_t = None,
transform: Union[ArrayLike, bool, None] = False,
memo: Optional[Dict] = None,
hierarchy: Tuple[str, ...] = (),
) -> L:
"""
Convenience function.
Performs a depth-first traversal of a pattern and its subpatterns.
At each pattern in the tree, the following sequence is called:
```
current_pattern = visit_before(current_pattern, **vist_args)
for sp in current_pattern.subpatterns]
self.dfs(sp.target, visit_before, visit_after, updated_transform,
memo, (current_pattern,) + hierarchy)
current_pattern = visit_after(current_pattern, **visit_args)
```
where `visit_args` are
`hierarchy`: (top_pattern, L1_pattern, L2_pattern, ..., parent_pattern)
tuple of all parent-and-higher patterns
`transform`: numpy.ndarray containing cumulative
[x_offset, y_offset, rotation (rad), mirror_x (0 or 1)]
for the instance being visited
`memo`: Arbitrary dict (not altered except by `visit_before()` and `visit_after()`)
Args:
top: Name of the pattern to start at (root node of the tree).
visit_before: Function to call before traversing subpatterns.
Should accept a `Pattern` and `**visit_args`, and return the (possibly modified)
pattern. Default `None` (not called).
visit_after: Function to call after traversing subpatterns.
Should accept a `Pattern` and `**visit_args`, and return the (possibly modified)
pattern. Default `None` (not called).
transform: Initial value for `visit_args['transform']`.
Can be `False`, in which case the transform is not calculated.
`True` or `None` is interpreted as `[0, 0, 0, 0]`.
memo: Arbitrary dict for use by `visit_*()` functions. Default `None` (empty dict).
hierarchy: Tuple of patterns specifying the hierarchy above the current pattern.
Appended to the start of the generated `visit_args['hierarchy']`.
Default is an empty tuple.
Returns:
self
"""
if memo is None:
memo = {}
if transform is None or transform is True:
transform = numpy.zeros(4)
elif transform is not False:
transform = numpy.array(transform)
if top in hierarchy:
raise PatternError('.dfs() called on pattern with circular reference')
pat = self[top]
if visit_before is not None:
pat = visit_before(pat, hierarchy=hierarchy, memo=memo, transform=transform) # type: ignore
for subpattern in pat.subpatterns:
if transform is not False:
sign = numpy.ones(2)
if transform[3]:
sign[1] = -1
xy = numpy.dot(rotation_matrix_2d(transform[2]), subpattern.offset * sign)
mirror_x, angle = normalize_mirror(subpattern.mirrored)
angle += subpattern.rotation
sp_transform = transform + (xy[0], xy[1], angle, mirror_x)
sp_transform[3] %= 2
else:
sp_transform = False
if subpattern.target is None:
continue
self.dfs(
top=subpattern.target,
visit_before=visit_before,
visit_after=visit_after,
transform=sp_transform,
memo=memo,
hierarchy=hierarchy + (top,),
)
if visit_after is not None:
pat = visit_after(pat, hierarchy=hierarchy, memo=memo, transform=transform) # type: ignore
self[top] = lambda: pat
return self
def polygonize(
self: L,
poly_num_points: Optional[int] = None,
poly_max_arclen: Optional[float] = None,
) -> L:
"""
Calls `.polygonize(...)` on each pattern in this library.
Arguments are passed on to `shape.to_polygons(...)`.
Args:
poly_num_points: Number of points to use for each polygon. Can be overridden by
`poly_max_arclen` if that results in more points. Optional, defaults to shapes'
internal defaults.
poly_max_arclen: Maximum arclength which can be approximated by a single line
segment. Optional, defaults to shapes' internal defaults.
Returns:
self
"""
for pat in self.values():
pat.polygonize(poly_num_points, poly_max_arclen)
return self
def manhattanize(
self: L,
grid_x: ArrayLike,
grid_y: ArrayLike,
) -> L:
"""
Calls `.manhattanize(grid_x, grid_y)` on each pattern in this library.
Args:
grid_x: List of allowed x-coordinates for the Manhattanized polygon edges.
grid_y: List of allowed y-coordinates for the Manhattanized polygon edges.
Returns:
self
"""
for pat in self.values():
pat.manhattanize(grid_x, grid_y)
return self
def subpatternize(
self: L,
norm_value: int = int(1e6),
exclude_types: Tuple[Type] = (Polygon,),
label2name: Optional[Callable[[Tuple], str]] = None,
threshold: int = 2,
) -> L:
"""
Iterates through all `Pattern`s. Within each `Pattern`, it iterates
over all shapes, calling `.normalized_form(norm_value)` on them to retrieve a scale-,
offset-, dose-, and rotation-independent form. Each shape whose normalized form appears
more than once is removed and re-added using subpattern objects referencing a newly-created
`Pattern` containing only the normalized form of the shape.
Note:
The default norm_value was chosen to give a reasonable precision when using
integer values for coordinates.
Args:
norm_value: Passed to `shape.normalized_form(norm_value)`. Default `1e6` (see function
note)
exclude_types: Shape types passed in this argument are always left untouched, for
speed or convenience. Default: `(shapes.Polygon,)`
label2name: Given a label tuple as returned by `shape.normalized_form(...)`, pick
a name for the generated pattern. Default `self.get_name('_shape')`.
threshold: Only replace shapes with subpatterns if there will be at least this many
instances.
Returns:
self
"""
# This currently simplifies globally (same shape in different patterns is
# merged into the same subpattern target.
if exclude_types is None:
exclude_types = ()
if label2name is None:
label2name = lambda label: self.get_name('_shape')
shape_counts: MutableMapping[Tuple, int] = defaultdict(int)
shape_funcs = {}
### First pass ###
# Using the label tuple from `.normalized_form()` as a key, check how many of each shape
# are present and store the shape function for each one
for pat in tuple(self.values()):
for i, shape in enumerate(pat.shapes):
if not any(isinstance(shape, t) for t in exclude_types):
label, _values, func = shape.normalized_form(norm_value)
shape_funcs[label] = func
shape_counts[label] += 1
shape_pats = {}
for label, count in shape_counts.items():
if count < threshold:
continue
shape_func = shape_funcs[label]
shape_pat = Pattern(shapes=[shape_func()])
shape_pats[label] = shape_pat
### Second pass ###
for pat in tuple(self.values()):
# Store `[(index_in_shapes, values_from_normalized_form), ...]` for all shapes which
# are to be replaced.
# The `values` are `(offset, scale, rotation, dose)`.
shape_table: MutableMapping[Tuple, List] = defaultdict(list)
for i, shape in enumerate(pat.shapes):
if any(isinstance(shape, t) for t in exclude_types):
continue
label, values, _func = shape.normalized_form(norm_value)
if label not in shape_pats:
continue
shape_table[label].append((i, values))
# For repeated shapes, create a `Pattern` holding a normalized shape object,
# and add `pat.subpatterns` entries for each occurrence in pat. Also, note down that
# we should delete the `pat.shapes` entries for which we made SubPatterns.
shapes_to_remove = []
for label in shape_table:
target = label2name(label)
for i, values in shape_table[label]:
offset, scale, rotation, mirror_x, dose = values
pat.addsp(target=target, offset=offset, scale=scale,
rotation=rotation, dose=dose, mirrored=(mirror_x, False))
shapes_to_remove.append(i)
# Remove any shapes for which we have created subpatterns.
for i in sorted(shapes_to_remove, reverse=True):
del pat.shapes[i]
for ll, pp in shape_pats.items():
self[label2name(ll)] = lambda: pp
return self
def wrap_repeated_shapes(
self: L,
name_func: Optional[Callable[['Pattern', Union[Shape, Label]], str]] = None,
) -> L:
"""
Wraps all shapes and labels with a non-`None` `repetition` attribute
into a `SubPattern`/`Pattern` combination, and applies the `repetition`
to each `SubPattern` instead of its contained shape.
Args:
name_func: Function f(this_pattern, shape) which generates a name for the
wrapping pattern. Default is `self.get_name('_rep')`.
Returns:
self
"""
if name_func is None:
name_func = lambda _pat, _shape: self.get_name('_rep')
for pat in tuple(self.values()):
new_shapes = []
for shape in pat.shapes:
if shape.repetition is None:
new_shapes.append(shape)
continue
name = name_func(pat, shape)
self[name] = lambda: Pattern(shapes=[shape])
pat.addsp(name, repetition=shape.repetition)
shape.repetition = None
pat.shapes = new_shapes
new_labels = []
for label in pat.labels:
if label.repetition is None:
new_labels.append(label)
continue
name = name_func(pat, label)
self[name] = lambda: Pattern(labels=[label])
pat.addsp(name, repetition=label.repetition)
label.repetition = None
pat.labels = new_labels
return self
def flatten(
self: L,
tops: Union[str, Sequence[str]],
) -> Dict[str, Pattern]:
"""
Removes all subpatterns and adds equivalent shapes.
Also flattens all subpatterns.
Args:
tops: The pattern(s) to flattern.
Returns:
{name: flat_pattern} mapping for all flattened patterns.
"""
if isinstance(tops, str):
tops = (tops,)
flattened: Dict[str, Optional[Pattern]] = {}
def flatten_single(name) -> None:
flattened[name] = None
pat = self[name].deepcopy()
for subpat in pat.subpatterns:
target = subpat.target
if target is None:
continue
if target not in flattened:
flatten_single(target)
if flattened[target] is None:
raise PatternError(f'Circular reference in {name} to {target}')
p = subpat.as_pattern(pattern=flattened[target])
pat.append(p)
pat.subpatterns.clear()
flattened[name] = pat
for top in tops:
flatten_single(top)
assert(None not in flattened.values())
return flattened # type: ignore
def get_name(
self,
name: str = '__',
sanitize: bool = True,
max_length: int = 32,
quiet: bool = False,
) -> str:
"""
Find a unique name for the pattern.
This function may be overridden in a subclass or monkey-patched to fit the caller's requirements.
Args:
name: Preferred name for the pattern. Default '__'.
sanitize: Allows only alphanumeric charaters and _?$. Replaces invalid characters with underscores.
max_length: Names longer than this will be truncated.
quiet: If `True`, suppress log messages.
Returns:
Unique name for this library.
"""
if sanitize:
# Remove invalid characters
sanitized_name = re.compile(r'[^A-Za-z0-9_\?\$]').sub('_', name)
else:
sanitized_name = name
ii = 0
suffixed_name = sanitized_name
while suffixed_name in self or suffixed_name == '':
suffix = base64.b64encode(struct.pack('>Q', ii), b'$?').decode('ASCII')
suffixed_name = sanitized_name + '$' + suffix[:-1].lstrip('A')
ii += 1
if len(suffixed_name) > max_length:
if name == '':
raise LibraryError(f'No valid pattern names remaining within the specified {max_length=}')
cropped_name = self.get_name(sanitized_name[:-1], sanitize=sanitize, max_length=max_length, quiet=True)
else:
cropped_name = suffixed_name
if not quiet:
logger.info(f'Requested name "{name}" changed to "{cropped_name}"')
return cropped_name
def find_toplevel(self) -> List[str]:
"""
Return the list of all patterns that are not referenced by any other pattern in the library.
Returns:
A list of pattern names in which no pattern is referenced by any other pattern.
"""
names = set(self.keys())
not_toplevel: Set[Optional[str]] = set()
for name in names:
not_toplevel |= set(sp.target for sp in self[name].subpatterns)
toplevel = list(names - not_toplevel)
return toplevel
def __deepcopy__(self, memo: Dict = None) -> 'Library':
raise LibraryError('Libraries cannot be deepcopied (deepcopy doesn\'t descend into closures)')

View File

@ -1,2 +0,0 @@
from .library import Library, PatternGenerator
from .device_library import DeviceLibrary, LibDeviceLibrary

View File

@ -1,355 +0,0 @@
"""
Library class for managing unique name->pattern mappings and
deferred loading or creation.
"""
from typing import Dict, Callable, TypeVar, TYPE_CHECKING
from typing import Any, Tuple, Union, Iterator
import logging
from pprint import pformat
from dataclasses import dataclass
import copy
from ..error import LibraryError
if TYPE_CHECKING:
from ..pattern import Pattern
logger = logging.getLogger(__name__)
@dataclass
class PatternGenerator:
__slots__ = ('tag', 'gen')
tag: str
""" Unique identifier for the source """
gen: Callable[[], 'Pattern']
""" Function which generates a pattern when called """
L = TypeVar('L', bound='Library')
class Library:
"""
This class is usually used to create a library of Patterns by mapping names to
functions which generate or load the relevant `Pattern` object as-needed.
Generated/loaded patterns can have "symbolic" references, where a SubPattern
object `sp` has a `None`-valued `sp.pattern` attribute, in which case the
Library expects `sp.identifier[0]` to contain a string which specifies the
referenced pattern's name.
Patterns can either be "primary" (default) or "secondary". Both get the
same deferred-load behavior, but "secondary" patterns may have conflicting
names and are not accessible through basic []-indexing. They are only used
to fill symbolic references in cases where there is no "primary" pattern
available, and only if both the referencing and referenced pattern-generators'
`tag` values match (i.e., only if they came from the same source).
Primary patterns can be turned into secondary patterns with the `demote`
method, `promote` performs the reverse (secondary -> primary) operation.
The `set_const` and `set_value` methods provide an easy way to transparently
construct PatternGenerator objects and directly set create "secondary"
patterns.
The cache can be disabled by setting the `enable_cache` attribute to `False`.
"""
primary: Dict[str, PatternGenerator]
secondary: Dict[Tuple[str, str], PatternGenerator]
cache: Dict[Union[str, Tuple[str, str]], 'Pattern']
enable_cache: bool = True
def __init__(self) -> None:
self.primary = {}
self.secondary = {}
self.cache = {}
def __setitem__(self, key: str, value: PatternGenerator) -> None:
self.primary[key] = value
if key in self.cache:
logger.warning(f'Replaced library item "{key}" & existing cache entry.'
' Previously-generated Pattern will *not* be updated!')
del self.cache[key]
def __delitem__(self, key: str) -> None:
if isinstance(key, str):
del self.primary[key]
elif isinstance(key, tuple):
del self.secondary[key]
if key in self.cache:
logger.warning(f'Deleting library item "{key}" & existing cache entry.'
' Previously-generated Pattern may remain in the wild!')
del self.cache[key]
def __getitem__(self, key: str) -> 'Pattern':
return self.get_primary(key)
def __iter__(self) -> Iterator[str]:
return iter(self.keys())
def __contains__(self, key: str) -> bool:
return key in self.primary
def get_primary(self, key: str) -> 'Pattern':
if self.enable_cache and key in self.cache:
logger.debug(f'found {key} in cache')
return self.cache[key]
logger.debug(f'loading {key}')
pg = self.primary[key]
pat = pg.gen()
self.resolve_subpatterns(pat, pg.tag)
self.cache[key] = pat
return pat
def get_secondary(self, key: str, tag: str) -> 'Pattern':
logger.debug(f'get_secondary({key}, {tag})')
key2 = (key, tag)
if self.enable_cache and key2 in self.cache:
return self.cache[key2]
pg = self.secondary[key2]
pat = pg.gen()
self.resolve_subpatterns(pat, pg.tag)
self.cache[key2] = pat
return pat
def set_secondary(self, key: str, tag: str, value: PatternGenerator) -> None:
self.secondary[(key, tag)] = value
if (key, tag) in self.cache:
logger.warning(f'Replaced library item "{key}" & existing cache entry.'
' Previously-generated Pattern will *not* be updated!')
del self.cache[(key, tag)]
def resolve_subpatterns(self, pat: 'Pattern', tag: str) -> 'Pattern':
logger.debug(f'Resolving subpatterns in {pat.name}')
for sp in pat.subpatterns:
if sp.pattern is not None:
continue
key = sp.identifier[0]
if key in self.primary:
sp.pattern = self.get_primary(key)
continue
if (key, tag) in self.secondary:
sp.pattern = self.get_secondary(key, tag)
continue
raise LibraryError(f'Broken reference to {key} (tag {tag})')
return pat
def keys(self) -> Iterator[str]:
return iter(self.primary.keys())
def values(self) -> Iterator['Pattern']:
return iter(self[key] for key in self.keys())
def items(self) -> Iterator[Tuple[str, 'Pattern']]:
return iter((key, self[key]) for key in self.keys())
def __repr__(self) -> str:
return '<Library with keys ' + repr(list(self.primary.keys())) + '>'
def set_const(
self,
key: str,
tag: Any,
const: 'Pattern',
secondary: bool = False,
) -> None:
"""
Convenience function to avoid having to manually wrap
constant values into callables.
Args:
key: Lookup key, usually the cell/pattern name
tag: Unique tag for the source, used to disambiguate secondary patterns
const: Pattern object to return
secondary: If True, this pattern is not accessible for normal lookup, and is
only used as a sub-component of other patterns if no non-secondary
equivalent is available.
"""
pg = PatternGenerator(tag=tag, gen=lambda: const)
if secondary:
self.secondary[(key, tag)] = pg
else:
self.primary[key] = pg
def set_value(
self,
key: str,
tag: str,
value: Callable[[], 'Pattern'],
secondary: bool = False,
) -> None:
"""
Convenience function to automatically build a PatternGenerator.
Args:
key: Lookup key, usually the cell/pattern name
tag: Unique tag for the source, used to disambiguate secondary patterns
value: Callable which takes no arguments and generates the `Pattern` object
secondary: If True, this pattern is not accessible for normal lookup, and is
only used as a sub-component of other patterns if no non-secondary
equivalent is available.
"""
pg = PatternGenerator(tag=tag, gen=value)
if secondary:
self.secondary[(key, tag)] = pg
else:
self.primary[key] = pg
def precache(self: L) -> L:
"""
Force all patterns into the cache
Returns:
self
"""
for key in self.primary:
_ = self.get_primary(key)
for key2 in self.secondary:
_ = self.get_secondary(*key2)
return self
def add(
self: L,
other: L,
use_ours: Callable[[Union[str, Tuple[str, str]]], bool] = lambda name: False,
use_theirs: Callable[[Union[str, Tuple[str, str]]], bool] = lambda name: False,
) -> L:
"""
Add keys from another library into this one.
Args:
other: The library to insert keys from
use_ours: Decision function for name conflicts.
May be called with cell names and (name, tag) tuples for primary or
secondary cells, respectively.
Should return `True` if the value from `self` should be used.
use_theirs: Decision function for name conflicts. Same format as `use_ours`.
Should return `True` if the value from `other` should be used.
`use_ours` takes priority over `use_theirs`.
Returns:
self
"""
duplicates1 = set(self.primary.keys()) & set(other.primary.keys())
duplicates2 = set(self.secondary.keys()) & set(other.secondary.keys())
keep_ours1 = set(name for name in duplicates1 if use_ours(name))
keep_ours2 = set(name for name in duplicates2 if use_ours(name))
keep_theirs1 = set(name for name in duplicates1 - keep_ours1 if use_theirs(name))
keep_theirs2 = set(name for name in duplicates2 - keep_ours2 if use_theirs(name))
conflicts1 = duplicates1 - keep_ours1 - keep_theirs1
conflicts2 = duplicates2 - keep_ours2 - keep_theirs2
if conflicts1:
raise LibraryError('Unresolved duplicate keys encountered in library merge: ' + pformat(conflicts1))
if conflicts2:
raise LibraryError('Unresolved duplicate secondary keys encountered in library merge: ' + pformat(conflicts2))
for key1 in set(other.primary.keys()) - keep_ours1:
self[key1] = other.primary[key1]
if key1 in other.cache:
self.cache[key1] = other.cache[key1]
for key2 in set(other.secondary.keys()) - keep_ours2:
self.set_secondary(*key2, other.secondary[key2])
if key2 in other.cache:
self.cache[key2] = other.cache[key2]
return self
def demote(self, key: str) -> None:
"""
Turn a primary pattern into a secondary one.
It will no longer be accessible through [] indexing and will only be used to
when referenced by other patterns from the same source, and only if no primary
pattern with the same name exists.
Args:
key: Lookup key, usually the cell/pattern name
"""
pg = self.primary[key]
key2 = (key, pg.tag)
self.secondary[key2] = pg
if key in self.cache:
self.cache[key2] = self.cache[key]
del self[key]
def promote(self, key: str, tag: str) -> None:
"""
Turn a secondary pattern into a primary one.
It will become accessible through [] indexing and will be used to satisfy any
reference to a pattern with its key, regardless of tag.
Args:
key: Lookup key, usually the cell/pattern name
tag: Unique tag for identifying the pattern's source, used to disambiguate
secondary patterns
"""
if key in self.primary:
raise LibraryError(f'Promoting ({key}, {tag}), but {key} already exists in primary!')
key2 = (key, tag)
pg = self.secondary[key2]
self.primary[key] = pg
if key2 in self.cache:
self.cache[key] = self.cache[key2]
del self.secondary[key2]
del self.cache[key2]
def copy(self, preserve_cache: bool = False) -> 'Library':
"""
Create a copy of this `Library`.
A shallow copy is made of the contained dicts.
Note that you should probably clear the cache (with `clear_cache()`) after copying.
Returns:
A copy of self
"""
new = Library()
new.primary.update(self.primary)
new.secondary.update(self.secondary)
new.cache.update(self.cache)
return new
def clear_cache(self: L) -> L:
"""
Clear the cache of this library.
This is usually used before modifying or deleting cells, e.g. when merging
with another library.
Returns:
self
"""
self.cache = {}
return self
r"""
# Add a filter for names which aren't added
- Registration:
- scanned files (tag=filename, gen_fn[stream, {name: pos}])
- generator functions (tag='fn?', gen_fn[params])
- merge decision function (based on tag and cell name, can be "neither") ??? neither=keep both, load using same tag!
- Load process:
- file:
- read single cell
- check subpat identifiers, and load stuff recursively based on those. If not present, load from same file??
- function:
- generate cell
- traverse and check if we should load any subcells from elsewhere. replace if so.
* should fn generate subcells at all, or register those separately and have us control flow? maybe ask us and generate itself if not present?
- Scan all GDS files, save name -> (file, position). Keep the streams handy.
- Merge all names. This requires subcell merge because we don't know hierarchy.
- possibly include a "neither" option during merge, to deal with subcells. Means: just use parent's file.
"""

View File

@ -3,9 +3,8 @@
""" """
from typing import List, Callable, Tuple, Dict, Union, Set, Sequence, Optional, Type, overload, cast from typing import List, Callable, Tuple, Dict, Union, Set, Sequence, Optional, Type, overload, cast
from typing import MutableMapping, Iterable, TypeVar, Any from typing import Mapping, MutableMapping, Iterable, TypeVar, Any
import copy import copy
import pickle
from itertools import chain from itertools import chain
from collections import defaultdict from collections import defaultdict
@ -18,23 +17,20 @@ from .subpattern import SubPattern
from .shapes import Shape, Polygon from .shapes import Shape, Polygon
from .label import Label from .label import Label
from .utils import rotation_matrix_2d, normalize_mirror, AutoSlots, annotations_t from .utils import rotation_matrix_2d, normalize_mirror, AutoSlots, annotations_t
from .error import PatternError, PatternLockedError from .error import PatternError
from .traits import LockableImpl, AnnotatableImpl, Scalable, Mirrorable from .traits import AnnotatableImpl, Scalable, Mirrorable
from .traits import Rotatable, Positionable from .traits import Rotatable, Positionable
visitor_function_t = Callable[['Pattern', Tuple['Pattern'], Dict, NDArray[numpy.float64]], 'Pattern']
P = TypeVar('P', bound='Pattern') P = TypeVar('P', bound='Pattern')
class Pattern(LockableImpl, AnnotatableImpl, Mirrorable, metaclass=AutoSlots): class Pattern(AnnotatableImpl, Mirrorable, metaclass=AutoSlots):
""" """
2D layout consisting of some set of shapes, labels, and references to other Pattern objects 2D layout consisting of some set of shapes, labels, and references to other Pattern objects
(via SubPattern). Shapes are assumed to inherit from masque.shapes.Shape or provide equivalent functions. (via SubPattern). Shapes are assumed to inherit from masque.shapes.Shape or provide equivalent functions.
""" """
__slots__ = ('shapes', 'labels', 'subpatterns', 'name') __slots__ = ('shapes', 'labels', 'subpatterns')
shapes: List[Shape] shapes: List[Shape]
""" List of all shapes in this Pattern. """ List of all shapes in this Pattern.
@ -50,18 +46,13 @@ class Pattern(LockableImpl, AnnotatableImpl, Mirrorable, metaclass=AutoSlots):
(i.e. multiple instances of the same object). (i.e. multiple instances of the same object).
""" """
name: str
""" A name for this pattern """
def __init__( def __init__(
self, self,
name: str = '',
*, *,
shapes: Sequence[Shape] = (), shapes: Sequence[Shape] = (),
labels: Sequence[Label] = (), labels: Sequence[Label] = (),
subpatterns: Sequence[SubPattern] = (), subpatterns: Sequence[SubPattern] = (),
annotations: Optional[annotations_t] = None, annotations: Optional[annotations_t] = None,
locked: bool = False,
) -> None: ) -> None:
""" """
Basic init; arguments get assigned to member variables. Basic init; arguments get assigned to member variables.
@ -71,10 +62,7 @@ class Pattern(LockableImpl, AnnotatableImpl, Mirrorable, metaclass=AutoSlots):
shapes: Initial shapes in the Pattern shapes: Initial shapes in the Pattern
labels: Initial labels in the Pattern labels: Initial labels in the Pattern
subpatterns: Initial subpatterns in the Pattern subpatterns: Initial subpatterns in the Pattern
name: An identifier for the Pattern
locked: Whether to lock the pattern after construction
""" """
LockableImpl.unlock(self)
if isinstance(shapes, list): if isinstance(shapes, list):
self.shapes = shapes self.shapes = shapes
else: else:
@ -91,41 +79,25 @@ class Pattern(LockableImpl, AnnotatableImpl, Mirrorable, metaclass=AutoSlots):
self.subpatterns = list(subpatterns) self.subpatterns = list(subpatterns)
self.annotations = annotations if annotations is not None else {} self.annotations = annotations if annotations is not None else {}
self.name = name
self.set_locked(locked)
def __copy__(self, memo: Dict = None) -> 'Pattern': def __copy__(self, memo: Dict = None) -> 'Pattern':
return Pattern(name=self.name, return Pattern(
shapes=copy.deepcopy(self.shapes), shapes=copy.deepcopy(self.shapes),
labels=copy.deepcopy(self.labels), labels=copy.deepcopy(self.labels),
subpatterns=[copy.copy(sp) for sp in self.subpatterns], subpatterns=[copy.copy(sp) for sp in self.subpatterns],
annotations=copy.deepcopy(self.annotations), annotations=copy.deepcopy(self.annotations),
locked=self.locked) )
def __deepcopy__(self, memo: Dict = None) -> 'Pattern': def __deepcopy__(self, memo: Dict = None) -> 'Pattern':
memo = {} if memo is None else memo memo = {} if memo is None else memo
new = Pattern( new = Pattern(
name=self.name,
shapes=copy.deepcopy(self.shapes, memo), shapes=copy.deepcopy(self.shapes, memo),
labels=copy.deepcopy(self.labels, memo), labels=copy.deepcopy(self.labels, memo),
subpatterns=copy.deepcopy(self.subpatterns, memo), subpatterns=copy.deepcopy(self.subpatterns, memo),
annotations=copy.deepcopy(self.annotations, memo), annotations=copy.deepcopy(self.annotations, memo),
locked=self.locked) )
return new return new
def rename(self: P, name: str) -> P:
"""
Chainable function for renaming the pattern.
Args:
name: The new name
Returns:
self
"""
self.name = name
return self
def append(self: P, other_pattern: P) -> P: def append(self: P, other_pattern: P) -> P:
""" """
Appends all shapes, labels and subpatterns from other_pattern to self's shapes, Appends all shapes, labels and subpatterns from other_pattern to self's shapes,
@ -144,10 +116,9 @@ class Pattern(LockableImpl, AnnotatableImpl, Mirrorable, metaclass=AutoSlots):
def subset( def subset(
self, self,
shapes_func: Callable[[Shape], bool] = None, shapes: Callable[[Shape], bool] = None,
labels_func: Callable[[Label], bool] = None, labels: Callable[[Label], bool] = None,
subpatterns_func: Callable[[SubPattern], bool] = None, subpatterns: Callable[[SubPattern], bool] = None,
recursive: bool = False,
) -> 'Pattern': ) -> 'Pattern':
""" """
Returns a Pattern containing only the entities (e.g. shapes) for which the Returns a Pattern containing only the entities (e.g. shapes) for which the
@ -155,169 +126,24 @@ class Pattern(LockableImpl, AnnotatableImpl, Mirrorable, metaclass=AutoSlots):
Self is _not_ altered, but shapes, labels, and subpatterns are _not_ copied. Self is _not_ altered, but shapes, labels, and subpatterns are _not_ copied.
Args: Args:
shapes_func: Given a shape, returns a boolean denoting whether the shape is a member shapes: Given a shape, returns a boolean denoting whether the shape is a member
of the subset. Default always returns False. of the subset. Default always returns False.
labels_func: Given a label, returns a boolean denoting whether the label is a member labels: Given a label, returns a boolean denoting whether the label is a member
of the subset. Default always returns False. of the subset. Default always returns False.
subpatterns_func: Given a subpattern, returns a boolean denoting if it is a member subpatterns: Given a subpattern, returns a boolean denoting if it is a member
of the subset. Default always returns False. of the subset. Default always returns False.
recursive: If True, also calls .subset() recursively on patterns referenced by this
pattern.
Returns: Returns:
A Pattern containing all the shapes and subpatterns for which the parameter A Pattern containing all the shapes and subpatterns for which the parameter
functions return True functions return True
""" """
def do_subset(src: Optional['Pattern']) -> Optional['Pattern']: pat = Pattern()
if src is None: if shapes is not None:
return None pat.shapes = [s for s in self.shapes if shapes(s)]
pat = Pattern(name=src.name) if labels is not None:
if shapes_func is not None: pat.labels = [s for s in self.labels if labels(s)]
pat.shapes = [s for s in src.shapes if shapes_func(s)] if subpatterns is not None:
if labels_func is not None: pat.subpatterns = [s for s in self.subpatterns if subpatterns(s)]
pat.labels = [s for s in src.labels if labels_func(s)]
if subpatterns_func is not None:
pat.subpatterns = [s for s in src.subpatterns if subpatterns_func(s)]
return pat
if recursive:
pat = self.apply(do_subset)
else:
pat = do_subset(self)
assert(pat is not None)
return pat
def apply(
self,
func: Callable[[Optional['Pattern']], Optional['Pattern']],
memo: Optional[Dict[int, Optional['Pattern']]] = None,
) -> Optional['Pattern']:
"""
Recursively apply func() to this pattern and any pattern it references.
func() is expected to take and return a Pattern.
func() is first applied to the pattern as a whole, then any referenced patterns.
It is only applied to any given pattern once, regardless of how many times it is
referenced.
Args:
func: Function which accepts a Pattern, and returns a pattern.
memo: Dictionary used to avoid re-running on multiply-referenced patterns.
Stores `{id(pattern): func(pattern)}` for patterns which have already been processed.
Default `None` (no already-processed patterns).
Returns:
The result of applying func() to this pattern and all subpatterns.
Raises:
PatternError if called on a pattern containing a circular reference.
"""
if memo is None:
memo = {}
pat_id = id(self)
if pat_id not in memo:
memo[pat_id] = None
pat = func(self)
if pat is not None:
for subpat in pat.subpatterns:
if subpat.pattern is None:
subpat.pattern = func(None)
else:
subpat.pattern = subpat.pattern.apply(func, memo)
memo[pat_id] = pat
elif memo[pat_id] is None:
raise PatternError('.apply() called on pattern with circular reference')
else:
pat = memo[pat_id]
return pat
def dfs(
self: P,
visit_before: visitor_function_t = None,
visit_after: visitor_function_t = None,
transform: Union[ArrayLike, bool, None] = False,
memo: Optional[Dict] = None,
hierarchy: Tuple[P, ...] = (),
) -> P:
"""
Convenience function.
Performs a depth-first traversal of this pattern and its subpatterns.
At each pattern in the tree, the following sequence is called:
```
current_pattern = visit_before(current_pattern, **vist_args)
for sp in current_pattern.subpatterns]
sp.pattern = sp.pattern.df(visit_before, visit_after, updated_transform,
memo, (current_pattern,) + hierarchy)
current_pattern = visit_after(current_pattern, **visit_args)
```
where `visit_args` are
`hierarchy`: (top_pattern, L1_pattern, L2_pattern, ..., parent_pattern)
tuple of all parent-and-higher patterns
`transform`: numpy.ndarray containing cumulative
[x_offset, y_offset, rotation (rad), mirror_x (0 or 1)]
for the instance being visited
`memo`: Arbitrary dict (not altered except by visit_*())
Args:
visit_before: Function to call before traversing subpatterns.
Should accept a `Pattern` and `**visit_args`, and return the (possibly modified)
pattern. Default `None` (not called).
visit_after: Function to call after traversing subpatterns.
Should accept a Pattern and **visit_args, and return the (possibly modified)
pattern. Default `None` (not called).
transform: Initial value for `visit_args['transform']`.
Can be `False`, in which case the transform is not calculated.
`True` or `None` is interpreted as `[0, 0, 0, 0]`.
memo: Arbitrary dict for use by `visit_*()` functions. Default `None` (empty dict).
hierarchy: Tuple of patterns specifying the hierarchy above the current pattern.
Appended to the start of the generated `visit_args['hierarchy']`.
Default is an empty tuple.
Returns:
The result, including `visit_before(self, ...)` and `visit_after(self, ...)`.
Note that `self` may also be altered!
"""
if memo is None:
memo = {}
if transform is None or transform is True:
transform = numpy.zeros(4)
elif transform is not False:
transform = numpy.array(transform)
if self in hierarchy:
raise PatternError('.dfs() called on pattern with circular reference')
pat = self
if visit_before is not None:
pat = visit_before(pat, hierarchy=hierarchy, memo=memo, transform=transform) # type: ignore
for subpattern in self.subpatterns:
if transform is not False:
sign = numpy.ones(2)
if transform[3]:
sign[1] = -1
xy = numpy.dot(rotation_matrix_2d(transform[2]), subpattern.offset * sign)
mirror_x, angle = normalize_mirror(subpattern.mirrored)
angle += subpattern.rotation
sp_transform = transform + (xy[0], xy[1], angle, mirror_x)
sp_transform[3] %= 2
else:
sp_transform = False
if subpattern.pattern is not None:
result = subpattern.pattern.dfs(visit_before=visit_before,
visit_after=visit_after,
transform=sp_transform,
memo=memo,
hierarchy=hierarchy + (self,))
if result is not subpattern.pattern:
# skip assignment to avoid PatternLockedError unless modified
subpattern.pattern = result
if visit_after is not None:
pat = visit_after(pat, hierarchy=hierarchy, memo=memo, transform=transform) # type: ignore
return pat return pat
def polygonize( def polygonize(
@ -326,8 +152,7 @@ class Pattern(LockableImpl, AnnotatableImpl, Mirrorable, metaclass=AutoSlots):
poly_max_arclen: Optional[float] = None, poly_max_arclen: Optional[float] = None,
) -> P: ) -> P:
""" """
Calls `.to_polygons(...)` on all the shapes in this Pattern and any referenced patterns, Calls `.to_polygons(...)` on all the shapes in this Pattern, replacing them with the returned polygons.
replacing them with the returned polygons.
Arguments are passed directly to `shape.to_polygons(...)`. Arguments are passed directly to `shape.to_polygons(...)`.
Args: Args:
@ -341,12 +166,9 @@ class Pattern(LockableImpl, AnnotatableImpl, Mirrorable, metaclass=AutoSlots):
self self
""" """
old_shapes = self.shapes old_shapes = self.shapes
self.shapes = list(chain.from_iterable( self.shapes = list(chain.from_iterable((
(shape.to_polygons(poly_num_points, poly_max_arclen) shape.to_polygons(poly_num_points, poly_max_arclen)
for shape in old_shapes))) for shape in old_shapes)))
for subpat in self.subpatterns:
if subpat.pattern is not None:
subpat.pattern.polygonize(poly_num_points, poly_max_arclen)
return self return self
def manhattanize( def manhattanize(
@ -355,7 +177,7 @@ class Pattern(LockableImpl, AnnotatableImpl, Mirrorable, metaclass=AutoSlots):
grid_y: ArrayLike, grid_y: ArrayLike,
) -> P: ) -> P:
""" """
Calls `.polygonize()` and `.flatten()` on the pattern, then calls `.manhattanize()` on all the Calls `.polygonize()` on the pattern, then calls `.manhattanize()` on all the
resulting shapes, replacing them with the returned Manhattan polygons. resulting shapes, replacing them with the returned Manhattan polygons.
Args: Args:
@ -366,84 +188,13 @@ class Pattern(LockableImpl, AnnotatableImpl, Mirrorable, metaclass=AutoSlots):
self self
""" """
self.polygonize().flatten() self.polygonize()
old_shapes = self.shapes old_shapes = self.shapes
self.shapes = list(chain.from_iterable( self.shapes = list(chain.from_iterable(
(shape.manhattanize(grid_x, grid_y) for shape in old_shapes))) (shape.manhattanize(grid_x, grid_y) for shape in old_shapes)))
return self return self
def subpatternize( def as_polygons(self, library: Mapping[str, Pattern]) -> List[NDArray[numpy.float64]]:
self: P,
recursive: bool = True,
norm_value: int = int(1e6),
exclude_types: Tuple[Type] = (Polygon,)
) -> P:
"""
Iterates through this `Pattern` and all referenced `Pattern`s. Within each `Pattern`, it iterates
over all shapes, calling `.normalized_form(norm_value)` on them to retrieve a scale-,
offset-, dose-, and rotation-independent form. Each shape whose normalized form appears
more than once is removed and re-added using subpattern objects referencing a newly-created
`Pattern` containing only the normalized form of the shape.
Note:
The default norm_value was chosen to give a reasonable precision when converting
to GDSII, which uses integer values for pixel coordinates.
Args:
recursive: Whether to call recursively on self's subpatterns. Default `True`.
norm_value: Passed to `shape.normalized_form(norm_value)`. Default `1e6` (see function
note about GDSII)
exclude_types: Shape types passed in this argument are always left untouched, for
speed or convenience. Default: `(shapes.Polygon,)`
Returns:
self
"""
if exclude_types is None:
exclude_types = ()
if recursive:
for subpat in self.subpatterns:
if subpat.pattern is None:
continue
subpat.pattern.subpatternize(recursive=True,
norm_value=norm_value,
exclude_types=exclude_types)
# Create a dict which uses the label tuple from `.normalized_form()` as a key, and which
# stores `(function_to_create_normalized_shape, [(index_in_shapes, values), ...])`, where
# values are the `(offset, scale, rotation, dose)` values as calculated by `.normalized_form()`
shape_table: MutableMapping[Tuple, List] = defaultdict(lambda: [None, list()])
for i, shape in enumerate(self.shapes):
if not any((isinstance(shape, t) for t in exclude_types)):
label, values, func = shape.normalized_form(norm_value)
shape_table[label][0] = func
shape_table[label][1].append((i, values))
# Iterate over the normalized shapes in the table. If any normalized shape occurs more than
# once, create a `Pattern` holding a normalized shape object, and add `self.subpatterns`
# entries for each occurrence in self. Also, note down that we should delete the
# `self.shapes` entries for which we made SubPatterns.
shapes_to_remove = []
for label in shape_table:
if len(shape_table[label][1]) > 1:
shape = shape_table[label][0]()
pat = Pattern(shapes=[shape])
for i, values in shape_table[label][1]:
(offset, scale, rotation, mirror_x, dose) = values
self.addsp(pattern=pat, offset=offset, scale=scale,
rotation=rotation, dose=dose, mirrored=(mirror_x, False))
shapes_to_remove.append(i)
# Remove any shapes for which we have created subpatterns.
for i in sorted(shapes_to_remove, reverse=True):
del self.shapes[i]
return self
def as_polygons(self) -> List[NDArray[numpy.float64]]:
""" """
Represents the pattern as a list of polygons. Represents the pattern as a list of polygons.
@ -454,95 +205,22 @@ class Pattern(LockableImpl, AnnotatableImpl, Mirrorable, metaclass=AutoSlots):
A list of `(Ni, 2)` `numpy.ndarray`s specifying vertices of the polygons. Each ndarray A list of `(Ni, 2)` `numpy.ndarray`s specifying vertices of the polygons. Each ndarray
is of the form `[[x0, y0], [x1, y1],...]`. is of the form `[[x0, y0], [x1, y1],...]`.
""" """
pat = self.deepcopy().deepunlock().polygonize().flatten() pat = self.deepcopy().polygonize().flatten(library=library)
return [shape.vertices + shape.offset for shape in pat.shapes] # type: ignore # mypy can't figure out that shapes are all Polygons now return [shape.vertices + shape.offset for shape in pat.shapes] # type: ignore # mypy can't figure out that shapes are all Polygons now
@overload def referenced_patterns(self) -> Set[Optional[str]]:
def referenced_patterns_by_id(self) -> Dict[int, 'Pattern']:
pass
@overload
def referenced_patterns_by_id(self, include_none: bool) -> Dict[int, Optional['Pattern']]:
pass
def referenced_patterns_by_id(
self,
include_none: bool = False,
recursive: bool = True,
) -> Union[Dict[int, Optional['Pattern']],
Dict[int, 'Pattern']]:
""" """
Create a dictionary with `{id(pat): pat}` for all Pattern objects referenced by this Get all pattern namers referenced by this pattern. Non-recursive.
Pattern (by default, operates recursively on all referenced Patterns as well).
Args:
include_none: If `True`, references to `None` will be included. Default `False`.
recursive: If `True`, operates recursively on all referenced patterns. Default `True`.
Returns: Returns:
Dictionary with `{id(pat): pat}` for all referenced Pattern objects A set of all pattern names referenced by this pattern.
""" """
ids: Dict[int, Optional['Pattern']] = {} return set(sp.target for sp in self.subpatterns)
for subpat in self.subpatterns:
pat = subpat.pattern
if id(pat) in ids:
continue
if include_none or pat is not None:
ids[id(pat)] = pat
if recursive and pat is not None:
ids.update(pat.referenced_patterns_by_id())
return ids
def referenced_patterns_by_name( def get_bounds(
self, self,
**kwargs: Any, library: Optional[Mapping[str, 'Pattern']] = None,
) -> List[Tuple[Optional[str], Optional['Pattern']]]: ) -> Optional[NDArray[numpy.float64]]:
"""
Create a list of `(pat.name, pat)` tuples for all Pattern objects referenced by this
Pattern (operates recursively on all referenced Patterns as well).
Note that names are not necessarily unique, so a list of tuples is returned
rather than a dict.
Args:
**kwargs: passed to `referenced_patterns_by_id()`.
Returns:
List of `(pat.name, pat)` tuples for all referenced Pattern objects
"""
pats_by_id = self.referenced_patterns_by_id(**kwargs)
pat_list: List[Tuple[Optional[str], Optional['Pattern']]]
pat_list = [(p.name if p is not None else None, p) for p in pats_by_id.values()]
return pat_list
def subpatterns_by_id(
self,
include_none: bool = False,
recursive: bool = True,
) -> Dict[int, List[SubPattern]]:
"""
Create a dictionary which maps `{id(referenced_pattern): [subpattern0, ...]}`
for all SubPattern objects referenced by this Pattern (by default, operates
recursively on all referenced Patterns as well).
Args:
include_none: If `True`, references to `None` will be included. Default `False`.
recursive: If `True`, operates recursively on all referenced patterns. Default `True`.
Returns:
Dictionary mapping each pattern id to a list of subpattern objects referencing the pattern.
"""
ids: Dict[int, List[SubPattern]] = defaultdict(list)
for subpat in self.subpatterns:
pat = subpat.pattern
if include_none or pat is not None:
ids[id(pat)].append(subpat)
if recursive and pat is not None:
ids.update(pat.subpatterns_by_id(include_none=include_none))
return dict(ids)
def get_bounds(self) -> Union[NDArray[numpy.float64], None]:
""" """
Return a `numpy.ndarray` containing `[[x_min, y_min], [x_max, y_max]]`, corresponding to the Return a `numpy.ndarray` containing `[[x_min, y_min], [x_max, y_max]]`, corresponding to the
extent of the Pattern's contents in each dimension. extent of the Pattern's contents in each dimension.
@ -557,119 +235,42 @@ class Pattern(LockableImpl, AnnotatableImpl, Mirrorable, metaclass=AutoSlots):
min_bounds = numpy.array((+inf, +inf)) min_bounds = numpy.array((+inf, +inf))
max_bounds = numpy.array((-inf, -inf)) max_bounds = numpy.array((-inf, -inf))
for entry in chain(self.shapes, self.subpatterns, self.labels): for entry in chain(self.shapes, self.labels):
bounds = entry.get_bounds() bounds = entry.get_bounds()
if bounds is None: if bounds is None:
continue continue
min_bounds = numpy.minimum(min_bounds, bounds[0, :]) min_bounds = numpy.minimum(min_bounds, bounds[0, :])
max_bounds = numpy.maximum(max_bounds, bounds[1, :]) max_bounds = numpy.maximum(max_bounds, bounds[1, :])
if self.subpatterns and (library is None):
raise PatternError('Must provide a library to get_bounds() to resolve subpatterns')
for entry in self.subpatterns:
bounds = entry.get_bounds(library=library)
if bounds is None:
continue
min_bounds = numpy.minimum(min_bounds, bounds[0, :])
max_bounds = numpy.maximum(max_bounds, bounds[1, :])
if (max_bounds < min_bounds).any(): if (max_bounds < min_bounds).any():
return None return None
else: else:
return numpy.vstack((min_bounds, max_bounds)) return numpy.vstack((min_bounds, max_bounds))
def get_bounds_nonempty(self) -> NDArray[numpy.float64]: def get_bounds_nonempty(
self,
library: Optional[Mapping[str, 'Pattern']] = None,
) -> NDArray[numpy.float64]:
""" """
Convenience wrapper for `get_bounds()` which asserts that the Pattern as non-None bounds. Convenience wrapper for `get_bounds()` which asserts that the Pattern as non-None bounds.
Returns: Returns:
`[[x_min, y_min], [x_max, y_max]]` `[[x_min, y_min], [x_max, y_max]]`
""" """
bounds = self.get_bounds() bounds = self.get_bounds(library)
assert(bounds is not None) assert(bounds is not None)
return bounds return bounds
def flatten(self: P) -> P:
"""
Removes all subpatterns and adds equivalent shapes.
Also flattens all subpatterns.
Modifies patterns in-place.
Shape/label identifiers are changed to represent their original position in the
pattern hierarchy:
`(L1_sp_index (int), L2_sp_index (int), ..., sh_index (int), *original_shape_identifier)`
where the original shape can be accessed as e.g.
`self.subpatterns[L1_sp_index].pattern.subpatterns[L2_sp_index].shapes[L1_sh_index]`
Returns:
self
"""
def flatten_single(pat: P, flattened: Set[P]) -> P:
# Update identifiers so each shape has a unique one
for ss, shape in enumerate(pat.shapes):
shape.identifier = (ss,) + shape.identifier
for ll, label in enumerate(pat.labels):
label.identifier = (ll,) + label.identifier
for pp, subpat in enumerate(pat.subpatterns):
if subpat.pattern is None:
continue
if subpat.pattern not in flattened:
flatten_single(subpat.pattern, flattened)
flattened.add(subpat.pattern)
p = subpat.as_pattern()
for item in chain(p.shapes, p.labels):
item.identifier = (pp,) + item.identifier
pat.append(p)
pat.subpatterns = []
return pat
flatten_single(self, set())
return self
def wrap_repeated_shapes(
self: P,
name_func: Callable[['Pattern', Union[Shape, Label]], str] = lambda p, s: '_repetition',
recursive: bool = True,
) -> P:
"""
Wraps all shapes and labels with a non-`None` `repetition` attribute
into a `SubPattern`/`Pattern` combination, and applies the `repetition`
to each `SubPattern` instead of its contained shape.
Args:
name_func: Function f(this_pattern, shape) which generates a name for the
wrapping pattern. Default always returns '_repetition'.
recursive: If `True`, this function is also applied to all referenced patterns
recursively. Default `True`.
Returns:
self
"""
def do_wrap(pat: Optional[Pattern]) -> Optional[Pattern]:
if pat is None:
return pat
new_shapes = []
for shape in pat.shapes:
if shape.repetition is None:
new_shapes.append(shape)
continue
pat.addsp(Pattern(name_func(pat, shape), shapes=[shape]), repetition=shape.repetition)
shape.repetition = None
pat.shapes = new_shapes
new_labels = []
for label in pat.labels:
if label.repetition is None:
new_labels.append(label)
continue
pat.addsp(Pattern(name_func(pat, label), labels=[label]), repetition=label.repetition)
label.repetition = None
pat.labels = new_labels
return pat
if recursive:
self.apply(do_wrap)
else:
do_wrap(self)
return self
def translate_elements(self: P, offset: ArrayLike) -> P: def translate_elements(self: P, offset: ArrayLike) -> P:
""" """
Translates all shapes, label, and subpatterns by the given offset. Translates all shapes, label, and subpatterns by the given offset.
@ -872,98 +473,51 @@ class Pattern(LockableImpl, AnnotatableImpl, Mirrorable, metaclass=AutoSlots):
self.subpatterns.append(SubPattern(*args, **kwargs)) self.subpatterns.append(SubPattern(*args, **kwargs))
return self return self
def lock(self: P) -> P: def flatten(
self: P,
library: Mapping[str, P],
) -> 'Pattern':
""" """
Lock the pattern, raising an exception if it is modified. Removes all subpatterns (recursively) and adds equivalent shapes.
Also see `deeplock()`. Alters the current pattern in-place
Returns:
self
"""
if not self.locked:
self.shapes = tuple(self.shapes)
self.labels = tuple(self.labels)
self.subpatterns = tuple(self.subpatterns)
LockableImpl.lock(self)
return self
def unlock(self: P) -> P:
"""
Unlock the pattern
Returns:
self
"""
if self.locked:
LockableImpl.unlock(self)
self.shapes = list(self.shapes)
self.labels = list(self.labels)
self.subpatterns = list(self.subpatterns)
return self
def deeplock(self: P) -> P:
"""
Recursively lock the pattern, all referenced shapes, subpatterns, and labels.
Returns:
self
"""
self.lock()
for ss in chain(self.shapes, self.labels):
ss.lock() # type: ignore # mypy struggles with multiple inheritance :(
for sp in self.subpatterns:
sp.deeplock()
return self
def deepunlock(self: P) -> P:
"""
Recursively unlock the pattern, all referenced shapes, subpatterns, and labels.
This is dangerous unless you have just performed a deepcopy, since anything
you change will be changed everywhere it is referenced!
Return:
self
"""
self.unlock()
for ss in chain(self.shapes, self.labels):
ss.unlock() # type: ignore # mypy struggles with multiple inheritance :(
for sp in self.subpatterns:
sp.deepunlock()
return self
@staticmethod
def load(filename: str) -> 'Pattern':
"""
Load a Pattern from a file using pickle
Args: Args:
filename: Filename to load from library: Source for referenced patterns.
Returns:
Loaded Pattern
"""
with open(filename, 'rb') as f:
pattern = pickle.load(f)
return pattern
def save(self, filename: str) -> 'Pattern':
"""
Save the Pattern to a file using pickle
Args:
filename: Filename to save to
Returns: Returns:
self self
""" """
with open(filename, 'wb') as f: flattened: Dict[Optional[str], Optional[P]] = {}
pickle.dump(self, f, protocol=pickle.HIGHEST_PROTOCOL)
def flatten_single(name: Optional[str]) -> None:
if name is None:
pat = self
else:
pat = library[name].deepcopy()
flattened[name] = None
for subpat in pat.subpatterns:
target = subpat.target
if target is None:
continue
if target not in flattened:
flatten_single(target)
if flattened[target] is None:
raise PatternError(f'Circular reference in {name} to {target}')
p = subpat.as_pattern(pattern=flattened[target])
pat.append(p)
pat.subpatterns.clear()
flattened[name] = pat
flatten_single(None)
return self return self
def visualize( def visualize(
self, self: P,
library: Optional[Mapping[str, P]] = None,
offset: ArrayLike = (0., 0.), offset: ArrayLike = (0., 0.),
line_color: str = 'k', line_color: str = 'k',
fill_color: str = 'none', fill_color: str = 'none',
@ -987,6 +541,9 @@ class Pattern(LockableImpl, AnnotatableImpl, Mirrorable, metaclass=AutoSlots):
from matplotlib import pyplot # type: ignore from matplotlib import pyplot # type: ignore
import matplotlib.collections # type: ignore import matplotlib.collections # type: ignore
if self.subpatterns and library is None:
raise PatternError('Must provide a library when visualizing a pattern with subpatterns')
offset = numpy.array(offset, dtype=float) offset = numpy.array(offset, dtype=float)
if not overdraw: if not overdraw:
@ -1001,50 +558,27 @@ class Pattern(LockableImpl, AnnotatableImpl, Mirrorable, metaclass=AutoSlots):
for shape in self.shapes: for shape in self.shapes:
polygons += [offset + s.offset + s.vertices for s in shape.to_polygons()] polygons += [offset + s.offset + s.vertices for s in shape.to_polygons()]
mpl_poly_collection = matplotlib.collections.PolyCollection(polygons, mpl_poly_collection = matplotlib.collections.PolyCollection(
facecolors=fill_color, polygons,
edgecolors=line_color) facecolors=fill_color,
edgecolors=line_color,
)
axes.add_collection(mpl_poly_collection) axes.add_collection(mpl_poly_collection)
pyplot.axis('equal') pyplot.axis('equal')
for subpat in self.subpatterns: for subpat in self.subpatterns:
subpat.as_pattern().visualize(offset=offset, overdraw=True, subpat.as_pattern(library=library).visualize(
line_color=line_color, fill_color=fill_color) library=library,
offset=offset,
overdraw=True,
line_color=line_color,
fill_color=fill_color,
)
if not overdraw: if not overdraw:
pyplot.xlabel('x') pyplot.xlabel('x')
pyplot.ylabel('y') pyplot.ylabel('y')
pyplot.show() pyplot.show()
@staticmethod
def find_toplevel(patterns: Iterable['Pattern']) -> List['Pattern']:
"""
Given a list of Pattern objects, return those that are not referenced by
any other pattern.
Args:
patterns: A list of patterns to filter.
Returns:
A filtered list in which no pattern is referenced by any other pattern.
"""
def get_children(pat: Pattern, memo: Set) -> Set:
children = set(sp.pattern for sp in pat.subpatterns if sp.pattern is not None)
new_children = children - memo
memo |= new_children
for child_pat in new_children:
memo |= get_children(child_pat, memo)
return memo
patterns = set(patterns)
not_toplevel: Set['Pattern'] = set()
for pattern in patterns:
not_toplevel |= get_children(pattern, not_toplevel)
toplevel = list(patterns - not_toplevel)
return toplevel
def __repr__(self) -> str: def __repr__(self) -> str:
locked = ' L' if self.locked else '' return (f'<Pattern: sh{len(self.shapes)} sp{len(self.subpatterns)} la{len(self.labels)}>')
return (f'<Pattern "{self.name}": sh{len(self.shapes)} sp{len(self.subpatterns)} la{len(self.labels)}{locked}>')

View File

@ -12,7 +12,7 @@ from numpy.typing import ArrayLike, NDArray
from .error import PatternError from .error import PatternError
from .utils import rotation_matrix_2d, AutoSlots from .utils import rotation_matrix_2d, AutoSlots
from .traits import LockableImpl, Copyable, Scalable, Rotatable, Mirrorable from .traits import Copyable, Scalable, Rotatable, Mirrorable
class Repetition(Copyable, Rotatable, Mirrorable, Scalable, metaclass=ABCMeta): class Repetition(Copyable, Rotatable, Mirrorable, Scalable, metaclass=ABCMeta):
@ -30,7 +30,7 @@ class Repetition(Copyable, Rotatable, Mirrorable, Scalable, metaclass=ABCMeta):
pass pass
class Grid(LockableImpl, Repetition, metaclass=AutoSlots): class Grid(Repetition, metaclass=AutoSlots):
""" """
`Grid` describes a 2D grid formed by two basis vectors and two 'counts' (sizes). `Grid` describes a 2D grid formed by two basis vectors and two 'counts' (sizes).
@ -67,7 +67,6 @@ class Grid(LockableImpl, Repetition, metaclass=AutoSlots):
a_count: int, a_count: int,
b_vector: Optional[ArrayLike] = None, b_vector: Optional[ArrayLike] = None,
b_count: Optional[int] = 1, b_count: Optional[int] = 1,
locked: bool = False,
) -> None: ) -> None:
""" """
Args: Args:
@ -79,7 +78,6 @@ class Grid(LockableImpl, Repetition, metaclass=AutoSlots):
Can be omitted when specifying a 1D array. Can be omitted when specifying a 1D array.
b_count: Number of elements in the `b_vector` direction. b_count: Number of elements in the `b_vector` direction.
Should be omitted if `b_vector` was omitted. Should be omitted if `b_vector` was omitted.
locked: Whether the `Grid` is locked after initialization.
Raises: Raises:
PatternError if `b_*` inputs conflict with each other PatternError if `b_*` inputs conflict with each other
@ -99,12 +97,10 @@ class Grid(LockableImpl, Repetition, metaclass=AutoSlots):
if b_count < 1: if b_count < 1:
raise PatternError(f'Repetition has too-small b_count: {b_count}') raise PatternError(f'Repetition has too-small b_count: {b_count}')
object.__setattr__(self, 'locked', False)
self.a_vector = a_vector # type: ignore # setter handles type conversion self.a_vector = a_vector # type: ignore # setter handles type conversion
self.b_vector = b_vector # type: ignore # setter handles type conversion self.b_vector = b_vector # type: ignore # setter handles type conversion
self.a_count = a_count self.a_count = a_count
self.b_count = b_count self.b_count = b_count
self.locked = locked
@classmethod @classmethod
def aligned( def aligned(
@ -129,18 +125,17 @@ class Grid(LockableImpl, Repetition, metaclass=AutoSlots):
return cls(a_vector=(x, 0), b_vector=(0, y), a_count=x_count, b_count=y_count) return cls(a_vector=(x, 0), b_vector=(0, y), a_count=x_count, b_count=y_count)
def __copy__(self) -> 'Grid': def __copy__(self) -> 'Grid':
new = Grid(a_vector=self.a_vector.copy(), new = Grid(
b_vector=copy.copy(self.b_vector), a_vector=self.a_vector.copy(),
a_count=self.a_count, b_vector=copy.copy(self.b_vector),
b_count=self.b_count, a_count=self.a_count,
locked=self.locked) b_count=self.b_count,
)
return new return new
def __deepcopy__(self, memo: Dict = None) -> 'Grid': def __deepcopy__(self, memo: Dict = None) -> 'Grid':
memo = {} if memo is None else memo memo = {} if memo is None else memo
new = copy.copy(self) new = copy.copy(self)
LocakbleImpl.unlock(new)
new.locked = self.locked
return new return new
# a_vector property # a_vector property
@ -264,36 +259,9 @@ class Grid(LockableImpl, Repetition, metaclass=AutoSlots):
self.b_vector *= c self.b_vector *= c
return self return self
def lock(self) -> 'Grid':
"""
Lock the `Grid`, disallowing changes.
Returns:
self
"""
self.a_vector.flags.writeable = False
if self.b_vector is not None:
self.b_vector.flags.writeable = False
LockableImpl.lock(self)
return self
def unlock(self) -> 'Grid':
"""
Unlock the `Grid`
Returns:
self
"""
self.a_vector.flags.writeable = True
if self.b_vector is not None:
self.b_vector.flags.writeable = True
LockableImpl.unlock(self)
return self
def __repr__(self) -> str: def __repr__(self) -> str:
locked = ' L' if self.locked else ''
bv = f', {self.b_vector}' if self.b_vector is not None else '' bv = f', {self.b_vector}' if self.b_vector is not None else ''
return (f'<Grid {self.a_count}x{self.b_count} ({self.a_vector}{bv}){locked}>') return (f'<Grid {self.a_count}x{self.b_count} ({self.a_vector}{bv})>')
def __eq__(self, other: Any) -> bool: def __eq__(self, other: Any) -> bool:
if not isinstance(other, type(self)): if not isinstance(other, type(self)):
@ -308,12 +276,10 @@ class Grid(LockableImpl, Repetition, metaclass=AutoSlots):
return False return False
if any(self.b_vector[ii] != other.b_vector[ii] for ii in range(2)): if any(self.b_vector[ii] != other.b_vector[ii] for ii in range(2)):
return False return False
if self.locked != other.locked:
return False
return True return True
class Arbitrary(LockableImpl, Repetition, metaclass=AutoSlots): class Arbitrary(Repetition, metaclass=AutoSlots):
""" """
`Arbitrary` is a simple list of (absolute) displacements for instances. `Arbitrary` is a simple list of (absolute) displacements for instances.
@ -342,48 +308,19 @@ class Arbitrary(LockableImpl, Repetition, metaclass=AutoSlots):
def __init__( def __init__(
self, self,
displacements: ArrayLike, displacements: ArrayLike,
locked: bool = False,
) -> None: ) -> None:
""" """
Args: Args:
displacements: List of vectors (Nx2 ndarray) specifying displacements. displacements: List of vectors (Nx2 ndarray) specifying displacements.
locked: Whether the object is locked after initialization.
""" """
object.__setattr__(self, 'locked', False)
self.displacements = displacements self.displacements = displacements
self.locked = locked
def lock(self) -> 'Arbitrary':
"""
Lock the object, disallowing changes.
Returns:
self
"""
self._displacements.flags.writeable = False
LockableImpl.lock(self)
return self
def unlock(self) -> 'Arbitrary':
"""
Unlock the object
Returns:
self
"""
self._displacements.flags.writeable = True
LockableImpl.unlock(self)
return self
def __repr__(self) -> str: def __repr__(self) -> str:
locked = ' L' if self.locked else '' return (f'<Arbitrary {len(self.displacements)}pts >')
return (f'<Arbitrary {len(self.displacements)}pts {locked}>')
def __eq__(self, other: Any) -> bool: def __eq__(self, other: Any) -> bool:
if not isinstance(other, type(self)): if not isinstance(other, type(self)):
return False return False
if self.locked != other.locked:
return False
return numpy.array_equal(self.displacements, other.displacements) return numpy.array_equal(self.displacements, other.displacements)
def rotate(self, rotation: float) -> 'Arbitrary': def rotate(self, rotation: float) -> 'Arbitrary':

View File

@ -10,7 +10,6 @@ from . import Shape, Polygon, normalized_shape_tuple, DEFAULT_POLY_NUM_POINTS
from .. import PatternError from .. import PatternError
from ..repetition import Repetition from ..repetition import Repetition
from ..utils import is_scalar, layer_t, AutoSlots, annotations_t from ..utils import is_scalar, layer_t, AutoSlots, annotations_t
from ..traits import LockableImpl
class Arc(Shape, metaclass=AutoSlots): class Arc(Shape, metaclass=AutoSlots):
@ -166,10 +165,8 @@ class Arc(Shape, metaclass=AutoSlots):
dose: float = 1.0, dose: float = 1.0,
repetition: Optional[Repetition] = None, repetition: Optional[Repetition] = None,
annotations: Optional[annotations_t] = None, annotations: Optional[annotations_t] = None,
locked: bool = False,
raw: bool = False, raw: bool = False,
) -> None: ) -> None:
LockableImpl.unlock(self)
self.identifier = () self.identifier = ()
if raw: if raw:
assert(isinstance(radii, numpy.ndarray)) assert(isinstance(radii, numpy.ndarray))
@ -197,17 +194,14 @@ class Arc(Shape, metaclass=AutoSlots):
self.poly_num_points = poly_num_points self.poly_num_points = poly_num_points
self.poly_max_arclen = poly_max_arclen self.poly_max_arclen = poly_max_arclen
[self.mirror(a) for a, do in enumerate(mirrored) if do] [self.mirror(a) for a, do in enumerate(mirrored) if do]
self.set_locked(locked)
def __deepcopy__(self, memo: Dict = None) -> 'Arc': def __deepcopy__(self, memo: Dict = None) -> 'Arc':
memo = {} if memo is None else memo memo = {} if memo is None else memo
new = copy.copy(self) new = copy.copy(self)
Shape.unlock(new)
new._offset = self._offset.copy() new._offset = self._offset.copy()
new._radii = self._radii.copy() new._radii = self._radii.copy()
new._angles = self._angles.copy() new._angles = self._angles.copy()
new._annotations = copy.deepcopy(self._annotations) new._annotations = copy.deepcopy(self._annotations)
new.set_locked(self.locked)
return new return new
def to_polygons( def to_polygons(
@ -429,21 +423,8 @@ class Arc(Shape, metaclass=AutoSlots):
a.append((a0, a1)) a.append((a0, a1))
return numpy.array(a) return numpy.array(a)
def lock(self) -> 'Arc':
self.radii.flags.writeable = False
self.angles.flags.writeable = False
Shape.lock(self)
return self
def unlock(self) -> 'Arc':
Shape.unlock(self)
self.radii.flags.writeable = True
self.angles.flags.writeable = True
return self
def __repr__(self) -> str: def __repr__(self) -> str:
angles = f'{numpy.rad2deg(self.angles)}' angles = f'{numpy.rad2deg(self.angles)}'
rotation = f'{numpy.rad2deg(self.rotation):g}' if self.rotation != 0 else '' rotation = f'{numpy.rad2deg(self.rotation):g}' if self.rotation != 0 else ''
dose = f' d{self.dose:g}' if self.dose != 1 else '' dose = f' d{self.dose:g}' if self.dose != 1 else ''
locked = ' L' if self.locked else '' return f'<Arc l{self.layer} o{self.offset} r{self.radii}{angles} w{self.width:g}{rotation}{dose}>'
return f'<Arc l{self.layer} o{self.offset} r{self.radii}{angles} w{self.width:g}{rotation}{dose}{locked}>'

View File

@ -9,7 +9,6 @@ from . import Shape, Polygon, normalized_shape_tuple, DEFAULT_POLY_NUM_POINTS
from .. import PatternError from .. import PatternError
from ..repetition import Repetition from ..repetition import Repetition
from ..utils import is_scalar, layer_t, AutoSlots, annotations_t from ..utils import is_scalar, layer_t, AutoSlots, annotations_t
from ..traits import LockableImpl
class Circle(Shape, metaclass=AutoSlots): class Circle(Shape, metaclass=AutoSlots):
@ -54,10 +53,8 @@ class Circle(Shape, metaclass=AutoSlots):
dose: float = 1.0, dose: float = 1.0,
repetition: Optional[Repetition] = None, repetition: Optional[Repetition] = None,
annotations: Optional[annotations_t] = None, annotations: Optional[annotations_t] = None,
locked: bool = False,
raw: bool = False, raw: bool = False,
) -> None: ) -> None:
LockableImpl.unlock(self)
self.identifier = () self.identifier = ()
if raw: if raw:
assert(isinstance(offset, numpy.ndarray)) assert(isinstance(offset, numpy.ndarray))
@ -76,15 +73,12 @@ class Circle(Shape, metaclass=AutoSlots):
self.dose = dose self.dose = dose
self.poly_num_points = poly_num_points self.poly_num_points = poly_num_points
self.poly_max_arclen = poly_max_arclen self.poly_max_arclen = poly_max_arclen
self.set_locked(locked)
def __deepcopy__(self, memo: Dict = None) -> 'Circle': def __deepcopy__(self, memo: Dict = None) -> 'Circle':
memo = {} if memo is None else memo memo = {} if memo is None else memo
new = copy.copy(self) new = copy.copy(self)
Shape.unlock(new)
new._offset = self._offset.copy() new._offset = self._offset.copy()
new._annotations = copy.deepcopy(self._annotations) new._annotations = copy.deepcopy(self._annotations)
new.set_locked(self.locked)
return new return new
def to_polygons( def to_polygons(
@ -138,5 +132,4 @@ class Circle(Shape, metaclass=AutoSlots):
def __repr__(self) -> str: def __repr__(self) -> str:
dose = f' d{self.dose:g}' if self.dose != 1 else '' dose = f' d{self.dose:g}' if self.dose != 1 else ''
locked = ' L' if self.locked else '' return f'<Circle l{self.layer} o{self.offset} r{self.radius:g}{dose}>'
return f'<Circle l{self.layer} o{self.offset} r{self.radius:g}{dose}{locked}>'

View File

@ -10,7 +10,6 @@ from . import Shape, Polygon, normalized_shape_tuple, DEFAULT_POLY_NUM_POINTS
from .. import PatternError from .. import PatternError
from ..repetition import Repetition from ..repetition import Repetition
from ..utils import is_scalar, rotation_matrix_2d, layer_t, AutoSlots, annotations_t from ..utils import is_scalar, rotation_matrix_2d, layer_t, AutoSlots, annotations_t
from ..traits import LockableImpl
class Ellipse(Shape, metaclass=AutoSlots): class Ellipse(Shape, metaclass=AutoSlots):
@ -101,10 +100,8 @@ class Ellipse(Shape, metaclass=AutoSlots):
dose: float = 1.0, dose: float = 1.0,
repetition: Optional[Repetition] = None, repetition: Optional[Repetition] = None,
annotations: Optional[annotations_t] = None, annotations: Optional[annotations_t] = None,
locked: bool = False,
raw: bool = False, raw: bool = False,
) -> None: ) -> None:
LockableImpl.unlock(self)
self.identifier = () self.identifier = ()
if raw: if raw:
assert(isinstance(radii, numpy.ndarray)) assert(isinstance(radii, numpy.ndarray))
@ -127,16 +124,13 @@ class Ellipse(Shape, metaclass=AutoSlots):
[self.mirror(a) for a, do in enumerate(mirrored) if do] [self.mirror(a) for a, do in enumerate(mirrored) if do]
self.poly_num_points = poly_num_points self.poly_num_points = poly_num_points
self.poly_max_arclen = poly_max_arclen self.poly_max_arclen = poly_max_arclen
self.set_locked(locked)
def __deepcopy__(self, memo: Dict = None) -> 'Ellipse': def __deepcopy__(self, memo: Dict = None) -> 'Ellipse':
memo = {} if memo is None else memo memo = {} if memo is None else memo
new = copy.copy(self) new = copy.copy(self)
Shape.unlock(new)
new._offset = self._offset.copy() new._offset = self._offset.copy()
new._radii = self._radii.copy() new._radii = self._radii.copy()
new._annotations = copy.deepcopy(self._annotations) new._annotations = copy.deepcopy(self._annotations)
new.set_locked(self.locked)
return new return new
def to_polygons( def to_polygons(
@ -209,18 +203,7 @@ class Ellipse(Shape, metaclass=AutoSlots):
(self.offset, scale / norm_value, angle, False, self.dose), (self.offset, scale / norm_value, angle, False, self.dose),
lambda: Ellipse(radii=radii * norm_value, layer=self.layer)) lambda: Ellipse(radii=radii * norm_value, layer=self.layer))
def lock(self) -> 'Ellipse':
self.radii.flags.writeable = False
Shape.lock(self)
return self
def unlock(self) -> 'Ellipse':
Shape.unlock(self)
self.radii.flags.writeable = True
return self
def __repr__(self) -> str: def __repr__(self) -> str:
rotation = f' r{self.rotation*180/pi:g}' if self.rotation != 0 else '' rotation = f' r{self.rotation*180/pi:g}' if self.rotation != 0 else ''
dose = f' d{self.dose:g}' if self.dose != 1 else '' dose = f' d{self.dose:g}' if self.dose != 1 else ''
locked = ' L' if self.locked else '' return f'<Ellipse l{self.layer} o{self.offset} r{self.radii}{rotation}{dose}>'
return f'<Ellipse l{self.layer} o{self.offset} r{self.radii}{rotation}{dose}{locked}>'

View File

@ -11,7 +11,6 @@ from .. import PatternError
from ..repetition import Repetition from ..repetition import Repetition
from ..utils import is_scalar, rotation_matrix_2d, layer_t, AutoSlots from ..utils import is_scalar, rotation_matrix_2d, layer_t, AutoSlots
from ..utils import remove_colinear_vertices, remove_duplicate_vertices, annotations_t from ..utils import remove_colinear_vertices, remove_duplicate_vertices, annotations_t
from ..traits import LockableImpl
class PathCap(Enum): class PathCap(Enum):
@ -155,10 +154,8 @@ class Path(Shape, metaclass=AutoSlots):
dose: float = 1.0, dose: float = 1.0,
repetition: Optional[Repetition] = None, repetition: Optional[Repetition] = None,
annotations: Optional[annotations_t] = None, annotations: Optional[annotations_t] = None,
locked: bool = False,
raw: bool = False, raw: bool = False,
) -> None: ) -> None:
LockableImpl.unlock(self)
self._cap_extensions = None # Since .cap setter might access it self._cap_extensions = None # Since .cap setter might access it
self.identifier = () self.identifier = ()
@ -187,18 +184,15 @@ class Path(Shape, metaclass=AutoSlots):
self.cap_extensions = cap_extensions self.cap_extensions = cap_extensions
self.rotate(rotation) self.rotate(rotation)
[self.mirror(a) for a, do in enumerate(mirrored) if do] [self.mirror(a) for a, do in enumerate(mirrored) if do]
self.set_locked(locked)
def __deepcopy__(self, memo: Dict = None) -> 'Path': def __deepcopy__(self, memo: Dict = None) -> 'Path':
memo = {} if memo is None else memo memo = {} if memo is None else memo
new = copy.copy(self) new = copy.copy(self)
Shape.unlock(new)
new._offset = self._offset.copy() new._offset = self._offset.copy()
new._vertices = self._vertices.copy() new._vertices = self._vertices.copy()
new._cap = copy.deepcopy(self._cap, memo) new._cap = copy.deepcopy(self._cap, memo)
new._cap_extensions = copy.deepcopy(self._cap_extensions, memo) new._cap_extensions = copy.deepcopy(self._cap_extensions, memo)
new._annotations = copy.deepcopy(self._annotations) new._annotations = copy.deepcopy(self._annotations)
new.set_locked(self.locked)
return new return new
@staticmethod @staticmethod
@ -424,22 +418,7 @@ class Path(Shape, metaclass=AutoSlots):
extensions = numpy.zeros(2) extensions = numpy.zeros(2)
return extensions return extensions
def lock(self) -> 'Path':
self.vertices.flags.writeable = False
if self.cap_extensions is not None:
self.cap_extensions.flags.writeable = False
Shape.lock(self)
return self
def unlock(self) -> 'Path':
Shape.unlock(self)
self.vertices.flags.writeable = True
if self.cap_extensions is not None:
self.cap_extensions.flags.writeable = True
return self
def __repr__(self) -> str: def __repr__(self) -> str:
centroid = self.offset + self.vertices.mean(axis=0) centroid = self.offset + self.vertices.mean(axis=0)
dose = f' d{self.dose:g}' if self.dose != 1 else '' dose = f' d{self.dose:g}' if self.dose != 1 else ''
locked = ' L' if self.locked else '' return f'<Path l{self.layer} centroid {centroid} v{len(self.vertices)} w{self.width} c{self.cap}{dose}>'
return f'<Path l{self.layer} centroid {centroid} v{len(self.vertices)} w{self.width} c{self.cap}{dose}{locked}>'

View File

@ -10,7 +10,6 @@ from .. import PatternError
from ..repetition import Repetition from ..repetition import Repetition
from ..utils import is_scalar, rotation_matrix_2d, layer_t, AutoSlots from ..utils import is_scalar, rotation_matrix_2d, layer_t, AutoSlots
from ..utils import remove_colinear_vertices, remove_duplicate_vertices, annotations_t from ..utils import remove_colinear_vertices, remove_duplicate_vertices, annotations_t
from ..traits import LockableImpl
class Polygon(Shape, metaclass=AutoSlots): class Polygon(Shape, metaclass=AutoSlots):
@ -83,10 +82,8 @@ class Polygon(Shape, metaclass=AutoSlots):
dose: float = 1.0, dose: float = 1.0,
repetition: Optional[Repetition] = None, repetition: Optional[Repetition] = None,
annotations: Optional[annotations_t] = None, annotations: Optional[annotations_t] = None,
locked: bool = False,
raw: bool = False, raw: bool = False,
) -> None: ) -> None:
LockableImpl.unlock(self)
self.identifier = () self.identifier = ()
if raw: if raw:
assert(isinstance(vertices, numpy.ndarray)) assert(isinstance(vertices, numpy.ndarray))
@ -106,16 +103,13 @@ class Polygon(Shape, metaclass=AutoSlots):
self.dose = dose self.dose = dose
self.rotate(rotation) self.rotate(rotation)
[self.mirror(a) for a, do in enumerate(mirrored) if do] [self.mirror(a) for a, do in enumerate(mirrored) if do]
self.set_locked(locked)
def __deepcopy__(self, memo: Optional[Dict] = None) -> 'Polygon': def __deepcopy__(self, memo: Optional[Dict] = None) -> 'Polygon':
memo = {} if memo is None else memo memo = {} if memo is None else memo
new = copy.copy(self) new = copy.copy(self)
Shape.unlock(new)
new._offset = self._offset.copy() new._offset = self._offset.copy()
new._vertices = self._vertices.copy() new._vertices = self._vertices.copy()
new._annotations = copy.deepcopy(self._annotations) new._annotations = copy.deepcopy(self._annotations)
new.set_locked(self.locked)
return new return new
@staticmethod @staticmethod
@ -430,18 +424,7 @@ class Polygon(Shape, metaclass=AutoSlots):
self.vertices = remove_colinear_vertices(self.vertices, closed_path=True) self.vertices = remove_colinear_vertices(self.vertices, closed_path=True)
return self return self
def lock(self) -> 'Polygon':
self.vertices.flags.writeable = False
Shape.lock(self)
return self
def unlock(self) -> 'Polygon':
Shape.unlock(self)
self.vertices.flags.writeable = True
return self
def __repr__(self) -> str: def __repr__(self) -> str:
centroid = self.offset + self.vertices.mean(axis=0) centroid = self.offset + self.vertices.mean(axis=0)
dose = f' d{self.dose:g}' if self.dose != 1 else '' dose = f' d{self.dose:g}' if self.dose != 1 else ''
locked = ' L' if self.locked else '' return f'<Polygon l{self.layer} centroid {centroid} v{len(self.vertices)}{dose}>'
return f'<Polygon l{self.layer} centroid {centroid} v{len(self.vertices)}{dose}{locked}>'

View File

@ -4,10 +4,11 @@ from abc import ABCMeta, abstractmethod
import numpy import numpy
from numpy.typing import NDArray, ArrayLike from numpy.typing import NDArray, ArrayLike
from ..traits import (PositionableImpl, LayerableImpl, DoseableImpl, from ..traits import (
Rotatable, Mirrorable, Copyable, Scalable, PositionableImpl, LayerableImpl, DoseableImpl,
PivotableImpl, LockableImpl, RepeatableImpl, Rotatable, Mirrorable, Copyable, Scalable,
AnnotatableImpl) PivotableImpl, RepeatableImpl, AnnotatableImpl,
)
if TYPE_CHECKING: if TYPE_CHECKING:
from . import Polygon from . import Polygon
@ -27,7 +28,7 @@ T = TypeVar('T', bound='Shape')
class Shape(PositionableImpl, LayerableImpl, DoseableImpl, Rotatable, Mirrorable, Copyable, Scalable, class Shape(PositionableImpl, LayerableImpl, DoseableImpl, Rotatable, Mirrorable, Copyable, Scalable,
PivotableImpl, RepeatableImpl, LockableImpl, AnnotatableImpl, metaclass=ABCMeta): PivotableImpl, RepeatableImpl, AnnotatableImpl, metaclass=ABCMeta):
""" """
Abstract class specifying functions common to all shapes. Abstract class specifying functions common to all shapes.
""" """
@ -303,13 +304,3 @@ class Shape(PositionableImpl, LayerableImpl, DoseableImpl, Rotatable, Mirrorable
dose=self.dose)) dose=self.dose))
return manhattan_polygons return manhattan_polygons
def lock(self: T) -> T:
PositionableImpl._lock(self)
LockableImpl.lock(self)
return self
def unlock(self: T) -> T:
LockableImpl.unlock(self)
PositionableImpl._unlock(self)
return self

View File

@ -11,7 +11,6 @@ from ..repetition import Repetition
from ..traits import RotatableImpl from ..traits import RotatableImpl
from ..utils import is_scalar, get_bit, normalize_mirror, layer_t, AutoSlots from ..utils import is_scalar, get_bit, normalize_mirror, layer_t, AutoSlots
from ..utils import annotations_t from ..utils import annotations_t
from ..traits import LockableImpl
# Loaded on use: # Loaded on use:
# from freetype import Face # from freetype import Face
@ -74,10 +73,8 @@ class Text(RotatableImpl, Shape, metaclass=AutoSlots):
dose: float = 1.0, dose: float = 1.0,
repetition: Optional[Repetition] = None, repetition: Optional[Repetition] = None,
annotations: Optional[annotations_t] = None, annotations: Optional[annotations_t] = None,
locked: bool = False,
raw: bool = False, raw: bool = False,
) -> None: ) -> None:
LockableImpl.unlock(self)
self.identifier = () self.identifier = ()
if raw: if raw:
assert(isinstance(offset, numpy.ndarray)) assert(isinstance(offset, numpy.ndarray))
@ -102,16 +99,13 @@ class Text(RotatableImpl, Shape, metaclass=AutoSlots):
self.repetition = repetition self.repetition = repetition
self.annotations = annotations if annotations is not None else {} self.annotations = annotations if annotations is not None else {}
self.font_path = font_path self.font_path = font_path
self.set_locked(locked)
def __deepcopy__(self, memo: Dict = None) -> 'Text': def __deepcopy__(self, memo: Dict = None) -> 'Text':
memo = {} if memo is None else memo memo = {} if memo is None else memo
new = copy.copy(self) new = copy.copy(self)
Shape.unlock(new)
new._offset = self._offset.copy() new._offset = self._offset.copy()
new._mirrored = copy.deepcopy(self._mirrored, memo) new._mirrored = copy.deepcopy(self._mirrored, memo)
new._annotations = copy.deepcopy(self._annotations) new._annotations = copy.deepcopy(self._annotations)
new.set_locked(self.locked)
return new return new
def to_polygons( def to_polygons(
@ -259,19 +253,8 @@ def get_char_as_polygons(
return polygons, advance return polygons, advance
def lock(self) -> 'Text':
self.mirrored.flags.writeable = False
Shape.lock(self)
return self
def unlock(self) -> 'Text':
Shape.unlock(self)
self.mirrored.flags.writeable = True
return self
def __repr__(self) -> str: def __repr__(self) -> str:
rotation = f'{self.rotation*180/pi:g}' if self.rotation != 0 else '' rotation = f'{self.rotation*180/pi:g}' if self.rotation != 0 else ''
dose = f' d{self.dose:g}' if self.dose != 1 else '' dose = f' d{self.dose:g}' if self.dose != 1 else ''
locked = ' L' if self.locked else ''
mirrored = ' m{:d}{:d}'.format(*self.mirrored) if self.mirrored.any() else '' mirrored = ' m{:d}{:d}'.format(*self.mirrored) if self.mirrored.any() else ''
return f'<TextShape "{self.string}" l{self.layer} o{self.offset} h{self.height:g}{rotation}{mirrored}{dose}{locked}>' return f'<TextShape "{self.string}" l{self.layer} o{self.offset} h{self.height:g}{rotation}{mirrored}{dose}>'

View File

@ -4,7 +4,7 @@
""" """
#TODO more top-level documentation #TODO more top-level documentation
from typing import Dict, Tuple, Optional, Sequence, TYPE_CHECKING, Any, TypeVar from typing import Dict, Tuple, Optional, Sequence, Mapping, TYPE_CHECKING, Any, TypeVar
import copy import copy
import numpy import numpy
@ -14,9 +14,10 @@ from numpy.typing import NDArray, ArrayLike
from .error import PatternError from .error import PatternError
from .utils import is_scalar, AutoSlots, annotations_t from .utils import is_scalar, AutoSlots, annotations_t
from .repetition import Repetition from .repetition import Repetition
from .traits import (PositionableImpl, DoseableImpl, RotatableImpl, ScalableImpl, from .traits import (
Mirrorable, PivotableImpl, Copyable, LockableImpl, RepeatableImpl, PositionableImpl, DoseableImpl, RotatableImpl, ScalableImpl,
AnnotatableImpl) Mirrorable, PivotableImpl, Copyable, RepeatableImpl, AnnotatableImpl,
)
if TYPE_CHECKING: if TYPE_CHECKING:
@ -27,19 +28,16 @@ S = TypeVar('S', bound='SubPattern')
class SubPattern(PositionableImpl, DoseableImpl, RotatableImpl, ScalableImpl, Mirrorable, class SubPattern(PositionableImpl, DoseableImpl, RotatableImpl, ScalableImpl, Mirrorable,
PivotableImpl, Copyable, RepeatableImpl, LockableImpl, AnnotatableImpl, PivotableImpl, Copyable, RepeatableImpl, AnnotatableImpl,
metaclass=AutoSlots): metaclass=AutoSlots):
""" """
SubPattern provides basic support for nesting Pattern objects within each other, by adding SubPattern provides basic support for nesting Pattern objects within each other, by adding
offset, rotation, scaling, and associated methods. offset, rotation, scaling, and associated methods.
""" """
__slots__ = ('_pattern', __slots__ = ('_target', '_mirrored', 'identifier')
'_mirrored',
'identifier',
)
_pattern: Optional['Pattern'] _target: Optional[str]
""" The `Pattern` being instanced """ """ The name of the `Pattern` being instanced """
_mirrored: NDArray[numpy.bool_] _mirrored: NDArray[numpy.bool_]
""" Whether to mirror the instance across the x and/or y axes. """ """ Whether to mirror the instance across the x and/or y axes. """
@ -49,7 +47,7 @@ class SubPattern(PositionableImpl, DoseableImpl, RotatableImpl, ScalableImpl, Mi
def __init__( def __init__(
self, self,
pattern: Optional['Pattern'], target: Optional[str],
*, *,
offset: ArrayLike = (0.0, 0.0), offset: ArrayLike = (0.0, 0.0),
rotation: float = 0.0, rotation: float = 0.0,
@ -58,24 +56,21 @@ class SubPattern(PositionableImpl, DoseableImpl, RotatableImpl, ScalableImpl, Mi
scale: float = 1.0, scale: float = 1.0,
repetition: Optional[Repetition] = None, repetition: Optional[Repetition] = None,
annotations: Optional[annotations_t] = None, annotations: Optional[annotations_t] = None,
locked: bool = False,
identifier: Tuple[Any, ...] = (), identifier: Tuple[Any, ...] = (),
) -> None: ) -> None:
""" """
Args: Args:
pattern: Pattern to reference. target: Name of the Pattern to reference.
offset: (x, y) offset applied to the referenced pattern. Not affected by rotation etc. offset: (x, y) offset applied to the referenced pattern. Not affected by rotation etc.
rotation: Rotation (radians, counterclockwise) relative to the referenced pattern's (0, 0). rotation: Rotation (radians, counterclockwise) relative to the referenced pattern's (0, 0).
mirrored: Whether to mirror the referenced pattern across its x and y axes. mirrored: Whether to mirror the referenced pattern across its x and y axes.
dose: Scaling factor applied to the dose. dose: Scaling factor applied to the dose.
scale: Scaling factor applied to the pattern's geometry. scale: Scaling factor applied to the pattern's geometry.
repetition: TODO repetition: `Repetition` object, default `None`
locked: Whether the `SubPattern` is locked after initialization.
identifier: Arbitrary tuple, used internally by some `masque` functions. identifier: Arbitrary tuple, used internally by some `masque` functions.
""" """
LockableImpl.unlock(self)
self.identifier = identifier self.identifier = identifier
self.pattern = pattern self.target = target
self.offset = offset self.offset = offset
self.rotation = rotation self.rotation = rotation
self.dose = dose self.dose = dose
@ -85,41 +80,37 @@ class SubPattern(PositionableImpl, DoseableImpl, RotatableImpl, ScalableImpl, Mi
self.mirrored = mirrored self.mirrored = mirrored
self.repetition = repetition self.repetition = repetition
self.annotations = annotations if annotations is not None else {} self.annotations = annotations if annotations is not None else {}
self.set_locked(locked)
def __copy__(self) -> 'SubPattern': def __copy__(self) -> 'SubPattern':
new = SubPattern(pattern=self.pattern, new = SubPattern(
offset=self.offset.copy(), target=self.target,
rotation=self.rotation, offset=self.offset.copy(),
dose=self.dose, rotation=self.rotation,
scale=self.scale, dose=self.dose,
mirrored=self.mirrored.copy(), scale=self.scale,
repetition=copy.deepcopy(self.repetition), mirrored=self.mirrored.copy(),
annotations=copy.deepcopy(self.annotations), repetition=copy.deepcopy(self.repetition),
locked=self.locked) annotations=copy.deepcopy(self.annotations),
)
return new return new
def __deepcopy__(self, memo: Dict = None) -> 'SubPattern': def __deepcopy__(self, memo: Dict = None) -> 'SubPattern':
memo = {} if memo is None else memo memo = {} if memo is None else memo
new = copy.copy(self) new = copy.copy(self)
LockableImpl.unlock(new)
new.pattern = copy.deepcopy(self.pattern, memo)
new.repetition = copy.deepcopy(self.repetition, memo) new.repetition = copy.deepcopy(self.repetition, memo)
new.annotations = copy.deepcopy(self.annotations, memo) new.annotations = copy.deepcopy(self.annotations, memo)
new.set_locked(self.locked)
return new return new
# pattern property # target property
@property @property
def pattern(self) -> Optional['Pattern']: def target(self) -> Optional[str]:
return self._pattern return self._target
@pattern.setter @target.setter
def pattern(self, val: Optional['Pattern']) -> None: def target(self, val: Optional[str]) -> None:
from .pattern import Pattern if val is not None and not isinstance(val, str):
if val is not None and not isinstance(val, Pattern): raise PatternError(f'Provided target {val} is not a str or None!')
raise PatternError(f'Provided pattern {val} is not a Pattern object or None!') self._target = val
self._pattern = val
# Mirrored property # Mirrored property
@property @property
@ -132,14 +123,31 @@ class SubPattern(PositionableImpl, DoseableImpl, RotatableImpl, ScalableImpl, Mi
raise PatternError('Mirrored must be a 2-element list of booleans') raise PatternError('Mirrored must be a 2-element list of booleans')
self._mirrored = numpy.array(val, dtype=bool, copy=True) self._mirrored = numpy.array(val, dtype=bool, copy=True)
def as_pattern(self) -> 'Pattern': def as_pattern(
self,
*,
pattern: Optional[Pattern] = None,
library: Optional[Mapping[str, Pattern]] = None,
) -> 'Pattern':
""" """
Args:
pattern: Pattern object to transform
library: A str->Pattern mapping, used instead of `pattern`. Must contain
`self.target`.
Returns: Returns:
A copy of self.pattern which has been scaled, rotated, etc. according to this A copy of the referenced Pattern which has been scaled, rotated, etc.
`SubPattern`'s properties. according to this `SubPattern`'s properties.
""" """
assert(self.pattern is not None) if pattern is None:
pattern = self.pattern.deepcopy().deepunlock() if library is None:
raise PatternError('as_pattern() must be given a pattern or library.')
assert(self.target is not None)
pattern = library[self.target]
pattern = pattern.deepcopy()
if self.scale != 1: if self.scale != 1:
pattern.scale_by(self.scale) pattern.scale_by(self.scale)
if numpy.any(self.mirrored): if numpy.any(self.mirrored):
@ -152,7 +160,7 @@ class SubPattern(PositionableImpl, DoseableImpl, RotatableImpl, ScalableImpl, Mi
pattern.scale_element_doses(self.dose) pattern.scale_element_doses(self.dose)
if self.repetition is not None: if self.repetition is not None:
combined = type(pattern)(name='__repetition__') combined = type(pattern)()
for dd in self.repetition.displacements: for dd in self.repetition.displacements:
temp_pat = pattern.deepcopy() temp_pat = pattern.deepcopy()
temp_pat.translate_elements(dd) temp_pat.translate_elements(dd)
@ -174,75 +182,33 @@ class SubPattern(PositionableImpl, DoseableImpl, RotatableImpl, ScalableImpl, Mi
self.repetition.mirror(axis) self.repetition.mirror(axis)
return self return self
def get_bounds(self) -> Optional[NDArray[numpy.float64]]: def get_bounds(
self,
*,
pattern: Optional[Pattern] = None,
library: Optional[Mapping[str, Pattern]] = None,
) -> Optional[NDArray[numpy.float64]]:
""" """
Return a `numpy.ndarray` containing `[[x_min, y_min], [x_max, y_max]]`, corresponding to the Return a `numpy.ndarray` containing `[[x_min, y_min], [x_max, y_max]]`, corresponding to the
extent of the `SubPattern` in each dimension. extent of the `SubPattern` in each dimension.
Returns `None` if the contained `Pattern` is empty. Returns `None` if the contained `Pattern` is empty.
Args:
library: Name-to-Pattern mapping for resul
Returns: Returns:
`[[x_min, y_min], [x_max, y_max]]` or `None` `[[x_min, y_min], [x_max, y_max]]` or `None`
""" """
if self.pattern is None: if pattern is None and library is None:
raise PatternError('as_pattern() must be given a pattern or library.')
if pattern is None and self.target is None:
return None return None
return self.as_pattern().get_bounds() return self.as_pattern(pattern=pattern, library=library).get_bounds()
def lock(self: S) -> S:
"""
Lock the SubPattern, disallowing changes
Returns:
self
"""
self.mirrored.flags.writeable = False
PositionableImpl._lock(self)
LockableImpl.lock(self)
return self
def unlock(self: S) -> S:
"""
Unlock the SubPattern
Returns:
self
"""
LockableImpl.unlock(self)
PositionableImpl._unlock(self)
self.mirrored.flags.writeable = True
return self
def deeplock(self: S) -> S:
"""
Recursively lock the SubPattern and its contained pattern
Returns:
self
"""
assert(self.pattern is not None)
self.lock()
self.pattern.deeplock()
return self
def deepunlock(self: S) -> S:
"""
Recursively unlock the SubPattern and its contained pattern
This is dangerous unless you have just performed a deepcopy, since
the subpattern and its components may be used in more than one once!
Returns:
self
"""
assert(self.pattern is not None)
self.unlock()
self.pattern.deepunlock()
return self
def __repr__(self) -> str: def __repr__(self) -> str:
name = self.pattern.name if self.pattern is not None else None name = f'"{self.target}"' if self.target is not None else None
rotation = f' r{self.rotation*180/pi:g}' if self.rotation != 0 else '' rotation = f' r{self.rotation*180/pi:g}' if self.rotation != 0 else ''
scale = f' d{self.scale:g}' if self.scale != 1 else '' scale = f' d{self.scale:g}' if self.scale != 1 else ''
mirrored = ' m{:d}{:d}'.format(*self.mirrored) if self.mirrored.any() else '' mirrored = ' m{:d}{:d}'.format(*self.mirrored) if self.mirrored.any() else ''
dose = f' d{self.dose:g}' if self.dose != 1 else '' dose = f' d{self.dose:g}' if self.dose != 1 else ''
locked = ' L' if self.locked else '' return f'<SubPattern {name} at {self.offset}{rotation}{scale}{mirrored}{dose}>'
return f'<SubPattern "{name}" at {self.offset}{rotation}{scale}{mirrored}{dose}{locked}>'

View File

@ -9,5 +9,4 @@ from .repeatable import Repeatable, RepeatableImpl
from .scalable import Scalable, ScalableImpl from .scalable import Scalable, ScalableImpl
from .mirrorable import Mirrorable from .mirrorable import Mirrorable
from .copyable import Copyable from .copyable import Copyable
from .lockable import Lockable, LockableImpl
from .annotatable import Annotatable, AnnotatableImpl from .annotatable import Annotatable, AnnotatableImpl

View File

@ -44,9 +44,6 @@ class AnnotatableImpl(Annotatable, metaclass=ABCMeta):
@property @property
def annotations(self) -> annotations_t: def annotations(self) -> annotations_t:
return self._annotations return self._annotations
# # TODO: Find a way to make sure the subclass implements Lockable without dealing with diamond inheritance or this extra hasattr
# if hasattr(self, 'is_locked') and self.is_locked():
# return MappingProxyType(self._annotations)
@annotations.setter @annotations.setter
def annotations(self, annotations: annotations_t): def annotations(self, annotations: annotations_t):

View File

@ -120,23 +120,3 @@ class PositionableImpl(Positionable, metaclass=ABCMeta):
def translate(self: I, offset: ArrayLike) -> I: def translate(self: I, offset: ArrayLike) -> I:
self._offset += offset # type: ignore # NDArray += ArrayLike should be fine?? self._offset += offset # type: ignore # NDArray += ArrayLike should be fine??
return self return self
def _lock(self: I) -> I:
"""
Lock the entity, disallowing further changes
Returns:
self
"""
self._offset.flags.writeable = False
return self
def _unlock(self: I) -> I:
"""
Unlock the entity
Returns:
self
"""
self._offset.flags.writeable = True
return self

View File

@ -5,6 +5,7 @@ from .types import layer_t, annotations_t
from .array import is_scalar from .array import is_scalar
from .autoslots import AutoSlots from .autoslots import AutoSlots
from .deferreddict import DeferredDict
from .bitwise import get_bit, set_bit from .bitwise import get_bit, set_bit
from .vertices import ( from .vertices import (

View File

@ -1,7 +1,7 @@
""" """
2D bin-packing 2D bin-packing
""" """
from typing import Tuple, List, Set, Sequence, Callable from typing import Tuple, List, Set, Sequence, Callable, Mapping
import numpy import numpy
from numpy.typing import NDArray, ArrayLike from numpy.typing import NDArray, ArrayLike
@ -11,16 +11,18 @@ from ..pattern import Pattern
from ..subpattern import SubPattern from ..subpattern import SubPattern
def pack_patterns(patterns: Sequence[Pattern], def pack_patterns(
regions: numpy.ndarray, library: Mapping[str, Pattern],
spacing: Tuple[float, float], patterns: Sequence[str],
presort: bool = True, regions: numpy.ndarray,
allow_rejects: bool = True, spacing: Tuple[float, float],
packer: Callable = maxrects_bssf, presort: bool = True,
) -> Tuple[Pattern, List[Pattern]]: allow_rejects: bool = True,
packer: Callable = maxrects_bssf,
) -> Tuple[Pattern, List[str]]:
half_spacing = numpy.array(spacing) / 2 half_spacing = numpy.array(spacing) / 2
bounds = [pp.get_bounds() for pp in patterns] bounds = [library[pp].get_bounds() for pp in patterns]
sizes = [bb[1] - bb[0] + spacing if bb is not None else spacing for bb in bounds] sizes = [bb[1] - bb[0] + spacing if bb is not None else spacing for bb in bounds]
offsets = [half_spacing - bb[0] if bb is not None else (0, 0) for bb in bounds] offsets = [half_spacing - bb[0] if bb is not None else (0, 0) for bb in bounds]