Compare commits

..

No commits in common. "genericpy" and "master" have entirely different histories.

11 changed files with 0 additions and 2493 deletions

View File

@ -1,14 +0,0 @@
[package]
name = "klamath_rs_ext"
version = "0.2.0"
authors = ["jan <jan@mpxd.net>"]
edition = "2021"
[lib]
name = "klamath_rs_ext"
crate-type = ["cdylib", "rlib"]
[dependencies]
byteorder = "^1"

View File

@ -1,6 +0,0 @@
from .basic import pack_int2 as pack_int2
from .basic import pack_int4 as pack_int4
__version__ = 0.2

View File

@ -1,92 +0,0 @@
from collections.abc import Sequence
import ctypes
from pathlib import Path
from itertools import chain
import numpy
from numpy.typing import NDArray
from .klamath_rs_ext import lib, ffi
CONV_TABLE_i16 = {
numpy.float64: lib.f64_to_i16,
numpy.float32: lib.f32_to_i16,
numpy.int64: lib.i64_to_i16,
numpy.int32: lib.i32_to_i16,
numpy.int16: lib.i16_to_i16,
numpy.uint64: lib.u64_to_i16,
numpy.uint32: lib.u32_to_i16,
numpy.uint16: lib.u16_to_i16,
}
CONV_TABLE_i32 = {
numpy.float64: lib.f64_to_i32,
numpy.float32: lib.f32_to_i32,
numpy.int64: lib.i64_to_i32,
numpy.int32: lib.i32_to_i32,
numpy.uint64: lib.u64_to_i32,
numpy.uint32: lib.u32_to_i32,
}
def pack_int2(data: NDArray[numpy.integer] | Sequence[int] | int) -> bytes:
arr = numpy.atleast_1d(data)
for dtype in CONV_TABLE_i16.keys():
if arr.dtype != dtype:
continue
arr = numpy.require(arr, requirements=('C_CONTIGUOUS', 'ALIGNED', 'WRITEABLE', 'OWNDATA'))
if arr is data:
arr = numpy.array(arr, copy=True)
fn = CONV_TABLE_i16[dtype]
buf = ffi.from_buffer(ffi.typeof(fn).args[0], arr, require_writable=True)
result = fn(buf, arr.size)
if result != 0:
raise ValueError(f'Invalid value for conversion to Int2: {result}')
i2arr = arr.view('>i2')[::arr.itemsize // 2]
return i2arr.tobytes()
if arr.dtype == numpy.dtype('>i2'):
return arr.tobytes()
if (arr > 32767).any() or (arr < -32768).any():
raise Exception(f'int2 data out of range: {arr}')
return arr.astype('>i2').tobytes()
def pack_int4(data: NDArray[numpy.integer] | Sequence[int] | int) -> bytes:
arr = numpy.atleast_1d(data)
for dtype in CONV_TABLE_i32.keys():
if arr.dtype != dtype:
continue
arr = numpy.require(arr, requirements=('C_CONTIGUOUS', 'ALIGNED', 'WRITEABLE', 'OWNDATA'))
if arr is data:
arr = numpy.array(arr, copy=True)
fn = CONV_TABLE_i32[dtype]
buf = ffi.from_buffer(ffi.typeof(fn).args[0], arr, require_writable=True)
result = fn(buf, arr.size)
if result != 0:
raise ValueError(f'Invalid value for conversion to Int4: {result}')
i4arr = arr.view('>i4')[::arr.itemsize // 4]
return i4arr.tobytes()
if arr.dtype == numpy.dtype('>i4'):
return arr.tobytes()
if (arr > 2147483647).any() or (arr < -2147483648).any():
raise Exception(f'int4 data out of range: {arr}')
return arr.astype('>i4').tobytes()

View File

@ -1,37 +0,0 @@
[build-system]
requires = ["maturin>1.0,<2.0"]
build-backend = "maturin"
[project]
name = "klamath_rs_ext"
description = "Compiled extensions for klamath GDS library"
#readme = "README.md"
#license = { file = "LICENSE.md" }
authors = [
{ name="Jan Petykiewicz", email="jan@mpxd.net" },
]
homepage = "https://mpxd.net/code/jan/klamath-rs"
repository = "https://mpxd.net/code/jan/klamath-rs"
classifiers = [
"Programming Language :: Python :: 3",
"Development Status :: 4 - Beta",
# "Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",
"Intended Audience :: Information Technology",
"Intended Audience :: Manufacturing",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: GNU General Public License v3 (GPLv3)",
"Topic :: Scientific/Engineering :: Electronic Design Automation (EDA)",
]
requires-python = ">=3.11"
#include = [
# "LICENSE.md"
# ]
dynamic = ["version"]
dependencies = [
"cffi",
]
[tool.maturin]
bindings = "cffi"

View File

@ -1,393 +0,0 @@
///
/// Functionality for parsing and writing basic data types
///
use byteorder::{ByteOrder, BigEndian};
use std::io;
use std::fmt;
pub type OResult = Result<usize, io::Error>;
pub type IResult<'a, O> = Result<(&'a [u8], O), (&'a [u8], ErrType)>;
#[derive(Debug)]
pub enum ErrType {
Incomplete(Option<usize>),
Failed(String),
}
pub fn fail<O>(input: &[u8], msg: String) -> IResult<O> {
Err((input, ErrType::Failed(msg)))
}
pub fn incomplete<O>(input: &[u8], size: Option<usize>) -> IResult<O> {
Err((input, ErrType::Incomplete(size)))
}
pub fn take_bytes<CC: Into<usize>>(input: &[u8], count: CC) -> IResult<&[u8]> {
let cc = count.into();
if input.len() < cc {
incomplete(input, Some(cc))
} else {
let (taken, input) = input.split_at(cc);
Ok((input, taken))
}
}
/*
* Parse functions
*/
pub fn parse_u16(input: &[u8]) -> IResult<u16> {
let (input, buf) = take_bytes(input, 2_usize)?;
let val = BigEndian::read_u16(&buf);
Ok((input, val))
}
pub fn parse_int2(input: &[u8]) -> IResult<i16> {
let (input, buf) = take_bytes(input, 2_usize)?;
let val = BigEndian::read_i16(&buf);
Ok((input, val))
}
pub fn parse_int4(input: &[u8]) -> IResult<i32> {
let (input, buf) = take_bytes(input, 4_usize)?;
let val = BigEndian::read_i32(&buf);
Ok((input, val))
}
/// Convert GDS REAL8 to IEEE float64
pub fn decode_real8(int: u64) -> f64 {
let neg = int & 0x8000_0000_0000_0000;
let exp = (int >> 56) & 0x7f;
let mut mant = (int & 0x00ff_ffff_ffff_ffff) as f64;
if neg != 0 {
mant *= -1.0
}
let exp2 = 4 * (exp as i32 - 64) - 56;
mant * 2_f64.powi(exp2)
}
pub fn parse_real8(input: &[u8]) -> IResult<f64> {
let (input, buf) = take_bytes(input, 8_usize)?;
let data = BigEndian::read_u64(&buf);
Ok((input, decode_real8(data)))
}
pub fn parse_datetime(input: &[u8]) -> IResult<[i16; 6]> {
let mut buf = [0_i16; 6];
let mut input = input;
for ii in 0..6 {
(input, buf[ii]) = parse_int2(input)?;
}
buf[0] += 1900; // Year is from 1900
Ok((input, buf))
}
pub fn parse_bitarray(input: &[u8]) -> IResult<[bool; 16]> {
let mut bits = [false; 16];
let (input, val) = parse_int2(input)?;
for ii in 0..16 {
bits[ii] = ((val >> (16 - 1 - ii)) & 0x01) == 1;
}
Ok((input, bits))
}
pub fn parse_ascii(input: &[u8], length: u16) -> IResult<Vec<u8>> {
let length = length as usize;
let (input, data) = take_bytes(input, length)?;
let last = data[length - 1];
let true_length = if last == 0 { length - 1 } else { length };
let vec = data[..true_length].to_vec();
Ok((input, vec))
}
/*
* Pack functions
*/
pub fn bitarray2int(bits: &[bool; 16]) -> u16 {
let mut int: u16 = 0;
for ii in 0..16 {
int |= (bits[ii] as u16) << (16 - 1 - ii);
}
int
}
pub fn pack_bitarray(buf: &mut [u8], bits: &[bool; 16]) {
BigEndian::write_u16(buf, bitarray2int(bits));
}
pub fn pack_int2(buf: &mut [u8], int: i16) {
BigEndian::write_i16(buf, int);
}
pub fn pack_int4(buf: &mut [u8], int: i32) {
BigEndian::write_i32(buf, int);
}
pub fn pack_real8(buf: &mut [u8], fnum: f64) -> Result<(), FloatTooBigError> {
BigEndian::write_u64(buf, encode_real8(fnum)?);
Ok(())
}
pub fn pack_ascii(buf: &mut [u8], data: &[u8]) -> usize {
let len = data.len();
buf[..len].copy_from_slice(data);
if len % 2 == 1 {
buf[len] = 0;
len + 1
} else {
len
}
}
pub fn pack_datetime(buf: &mut [u8], date: &[i16; 6]) {
assert!(buf.len() >= 6 * 2);
let year = date[0] - 1900;
pack_int2(buf, year);
for ii in 1..6 {
pack_int2(&mut buf[(2 * ii)..], date[ii]);
}
}
#[derive(Debug, Clone)]
pub struct FloatTooBigError {
float_value: f64,
}
impl fmt::Display for FloatTooBigError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Float {0} is too large for Real8", self.float_value)
}
}
/// Convert from float64 to GDS REAL8 representation.
pub fn encode_real8(fnum: f64) -> Result<u64, FloatTooBigError> {
// Split the ieee float bitfields
let ieee = fnum.to_bits();
let sign = ieee & 0x8000_0000_0000_0000;
let ieee_exp = (ieee >> 52) as i32 & 0x7ff;
let ieee_mant = ieee & 0x000f_ffff_ffff_ffff;
let subnorm = (ieee_exp == 0) & (ieee_mant != 0);
if (ieee_exp == 0) & (ieee_mant == 0) {
return Ok(0)
}
// IEEE normal double is (1 + ieee_mant / 2^52) * 2^(ieee_exp - 1023)
// IEEE subnormal double is (ieee_mant / 2^52) * 2^(-1022)
// GDS real8 is (gds_mant / 2^(7*8)) * 16^(gds_exp - 64)
// = (gds_mant / 2^56) * 2^(4 * gds_exp - 256)
// Convert exponent.
let exp2 = if subnorm { -1022 } else {ieee_exp + 1 - 1023}; // +1 is due to mantissa (1.xxxx in IEEE vs 0.xxxxx in GDSII)
let mut exp16 = exp2 / 4;
let rest = exp2 % 4;
// Compensate for exponent coarseness
let comp = rest != 0;
let mut shift;
if comp {
exp16 += 1;
shift = 4 - rest;
} else {
shift = rest;
}
shift -= 3; // account for gds bit position
// add leading one
let mut gds_mant_unshifted = ieee_mant;
if !subnorm {
gds_mant_unshifted += 0x10_0000_0000_0000;
}
let mut gds_mant = if shift > 0 {
gds_mant_unshifted >> shift
} else {
gds_mant_unshifted << -shift
};
// add gds exponent bias
let mut gds_exp = exp16 + 64;
if gds_exp < -14 {
// number is too small
return Ok(0)
}
let neg_biased = gds_exp < 0;
if neg_biased {
gds_mant >>= gds_exp * 4;
gds_exp = 0;
}
let too_big = (gds_exp > 0x7f) & !subnorm;
if too_big {
return Err(FloatTooBigError{float_value: fnum});
}
let gds_exp_bits = (gds_exp as u64) << 56;
let real8 = sign | gds_exp_bits | gds_mant;
Ok(real8)
}
#[cfg(test)]
mod tests {
#[test]
fn test_parse_bitarray() {
use crate::basic::parse_bitarray;
//assert!(parse_bitarray(b"59") == 13625);
assert_eq!(parse_bitarray(b"\x00\x00").unwrap().1, [false; 16]);
assert_eq!(parse_bitarray(b"\xff\xff").unwrap().1, [true; 16]);
let arr_0001 = parse_bitarray(b"\x00\x01").unwrap().1;
for (ii, &vv) in arr_0001.iter().enumerate() {
assert_eq!(ii == 15, vv);
}
let arr_8000 = parse_bitarray(b"\x80\x00").unwrap().1;
for (ii, &vv) in arr_8000.iter().enumerate() {
assert_eq!(ii == 0, vv);
}
}
#[test]
fn test_parse_int2() {
use crate::basic::parse_int2;
assert_eq!(parse_int2(b"59").unwrap().1, 13625);
assert_eq!(parse_int2(b"\0\0").unwrap().1, 0);
assert_eq!(parse_int2(b"\xff\xff").unwrap().1, -1);
}
#[test]
fn test_parse_int4() {
use crate::basic::parse_int4;
assert_eq!(parse_int4(b"4321").unwrap().1, 875770417);
}
#[test]
fn test_decode_real8() {
use crate::basic::decode_real8;
// zeroes
assert_eq!(decode_real8(0x0), 0.0);
assert_eq!(decode_real8(1<<63), 0.0); // negative
assert_eq!(decode_real8(0xff << 56), 0.0); // denormalized
assert_eq!(decode_real8(0x4110 << 48), 1.0);
assert_eq!(decode_real8(0xC120 << 48), -2.0);
}
#[test]
#[should_panic]
fn test_encode_real8_panic() {
use crate::basic::encode_real8;
encode_real8(1e80).unwrap();
}
#[test]
fn test_parse_real8() {
use crate::basic:: parse_real8;
assert_eq!(0.0, parse_real8(&[0; 8]).unwrap().1);
assert_eq!(1.0, parse_real8(&[0x41, 0x10, 0, 0, 0, 0, 0, 0]).unwrap().1);
assert_eq!(-2.0, parse_real8(&[0xC1, 0x20, 0, 0, 0, 0, 0, 0]).unwrap().1);
}
#[test]
fn test_parse_ascii() {
use crate::basic::parse_ascii;
assert_eq!(parse_ascii(b"12345", 5).unwrap().1, b"12345");
assert_eq!(parse_ascii(b"12345\0", 6).unwrap().1, b"12345"); // strips trailing null byte
assert_eq!(parse_ascii(b"123456", 6).unwrap().1, b"123456");
}
#[test]
fn test_pack_bitarray() {
use crate::basic::pack_bitarray;
let mut buf = [10; 3];
let mut bools = [false; 16];
bools[1] = true;
bools[2] = true;
bools[11] = true;
pack_bitarray(&mut buf, &bools);
assert_eq!(buf[0], 0b0110_0000);
assert_eq!(buf[1], 0b0001_0000);
assert_eq!(buf[2], 10);
}
#[test]
fn test_pack_int2() {
use crate::basic::pack_int2;
let mut buf = [10; 3 * 2];
pack_int2(&mut buf, -3);
pack_int2(&mut buf[2..], 2);
pack_int2(&mut buf[4..], -1);
assert_eq!(buf[0..2], [0xFF, 0xFD]);
assert_eq!(buf[2..4], [0x00, 0x02]);
assert_eq!(buf[4..6], [0xFF, 0xFF]);
}
#[test]
fn test_pack_int4() {
use crate::basic::pack_int4;
let mut buf = [10; 3 * 4];
pack_int4(&mut buf, -3);
pack_int4(&mut buf[4..], 2);
pack_int4(&mut buf[8..], -1);
assert_eq!(buf[0..4], [0xFF, 0xFF, 0xFF, 0xFD]);
assert_eq!(buf[4..8], [0x00, 0x00, 0x00, 0x02]);
assert_eq!(buf[8..12], [0xFF, 0xFF, 0xFF, 0xFF]);
}
#[test]
fn test_encode_real8() {
use crate::basic::{encode_real8, decode_real8};
const REALS: [f64; 5] = [1.0, -2.0, 1e-9, 1e-3, 1e-12];
for vv in REALS {
print!("{vv}\n");
assert!((decode_real8(encode_real8(vv).unwrap()) - vv).abs() < f64::EPSILON);
}
}
#[test]
fn test_pack_real8() {
use crate::basic::{pack_real8, parse_real8};
const COUNT: usize = 7;
const REALS: [f64; COUNT] = [0.0, 1.0, -1.0, 0.5, 1e-9, 1e-3, 1e-12];
let mut buf = [10; 8 * COUNT];
for (ii, &vv) in REALS.iter().enumerate() {
pack_real8(&mut buf[ii * 8..], vv).unwrap();
}
for (ii, &vv) in REALS.iter().enumerate() {
print!("{vv}\n");
let parsed_val = parse_real8(&buf[ii * 8..]).unwrap().1;
assert!((parsed_val - vv).abs() < f64::EPSILON);
}
}
#[test]
fn test_pack_ascii() {
use crate::basic::pack_ascii;
let mut buf = [10; 12];
pack_ascii(&mut buf[0..], "4321".as_bytes());
pack_ascii(&mut buf[6..], "321".as_bytes());
assert_eq!(&buf[0..4], "4321".as_bytes());
assert_eq!(&buf[4..6], [10, 10]);
assert_eq!(&buf[6..9], "321".as_bytes());
assert_eq!(&buf[9..], [0, 10, 10]);
}
}

View File

@ -1,532 +0,0 @@
///
/// Functionality for reading/writing elements (geometry, text labels,
/// structure references) and associated properties.
///
use crate::records::{BOX, BOUNDARY, NODE, PATH, TEXT, SREF, AREF,
DATATYPE, PATHTYPE, BOXTYPE, NODETYPE, TEXTTYPE,
LAYER, XY, WIDTH, COLROW, PRESENTATION, STRING,
STRANS, MAG, ANGLE, PROPATTR, PROPVALUE,
ENDEL, BGNEXTN, ENDEXTN, SNAME,
};
use crate::records;
use crate::record::{RecordHeader, Record};
use crate::basic::{OResult, IResult, fail};
use std::collections::HashMap;
use std::io::Write;
///
/// Read element properties.
///
/// Assumes PROPATTR records have unique values.
/// Stops reading after consuming ENDEL record.
///
/// Args:
/// stream: Stream to read from.
///
/// Returns:
/// propattr: -> propvalue mapping
///
pub fn read_properties(input: &[u8]) -> IResult<HashMap::<i16, Vec<u8>>> {
let mut properties = HashMap::new();
let (mut input, mut header) = RecordHeader::read(input)?;
while header.tag != ENDEL::tag() {
if header.tag == PROPATTR::tag() {
let result = PROPATTR::read_data(input, header.data_size)?;
input = result.0;
let key = result.1;
let result = PROPVALUE::read(input)?;
input = result.0;
let value = result.1;
assert!(!properties.contains_key(&key), "Duplicate property key: {}", key);
properties.insert(key, value);
}
(input, header) = RecordHeader::read(input)?;
}
Ok((input, properties))
}
///
/// Write element properties.
///
/// This is does _not_ write the ENDEL record.
///
/// Args:
/// stream: Stream to write to.
///
pub fn write_properties<W: Write>(ww: &mut W, properties: &HashMap::<i16, Vec<u8>>) -> OResult {
let mut size = 0;
for (key, value) in properties {
size += PROPATTR::write(ww, key)?;
size += PROPVALUE::write(ww, value)?;
}
Ok(size)
}
pub trait Element {
///
/// Read from a stream to construct this object.
/// Consumes up to (and including) the ENDEL record.
///
fn read(input: &[u8]) -> IResult<Self> where Self: Sized;
///
/// Write this element to a stream.
/// Finishes with an ENDEL record.
///
fn write<W: Write>(&self, ww: &mut W) -> OResult;
}
///
/// Datastructure representing
/// an instance of a structure (SREF / structure reference) or
/// an array of instances (AREF / array reference).
/// Type is determined by the presence of the `colrow` tuple.
///
/// Transforms are applied to each individual instance (_not_
/// to the instance's origin location || array vectors).
///
#[derive(Debug, Clone)]
pub struct Reference {
/// Name of the structure being referenced.
struct_name: Vec<u8>,
/// Whether to mirror the pattern (negate y-values / flip across x-axis). Default false.
invert_y: bool,
/// Scaling factor (default 1)
mag: f64,
/// Rotation (degrees counterclockwise)
angle_deg: f64,
/// (For SREF) Location in the parent structure corresponding to the instance's origin (0, 0).
/// (For AREF) 3 locations:
/// [`offset`,
/// `offset + col_basis_vector * colrow[0]`,
/// `offset + row_basis_vector * colrow[1]`]
/// which define the first instance's offset and the array's basis vectors.
/// Note that many GDS implementations only support manhattan basis vectors, and some
/// assume a certain axis mapping (e.g. x->columns, y->rows) and "reinterpret" the
/// basis vectors to match it.
xy: Vec<i32>,
/// Number of columns and rows (AREF) || None (SREF)
colrow: Option<(i16, i16)>,
/// Properties associated with this reference.
properties: HashMap::<i16, Vec<u8>>,
}
impl Element for Reference {
fn read(input: &[u8]) -> IResult<Self> {
let mut invert_y = false;
let mut mag = 1.0;
let mut angle_deg = 0.0;
let mut colrow = None;
let (input, struct_name) = SNAME::skip_and_read(input)?;
let (mut input, mut header) = RecordHeader::read(input)?;
while header.tag != records::RTAG_XY {
match header.tag {
records::RTAG_STRANS => {
let result = STRANS::read_data(input, header.data_size)?;
input = result.0;
invert_y = result.1[0];
},
records::RTAG_MAG =>
{(input, mag) = MAG::read_data(input, header.data_size)?;},
records::RTAG_ANGLE =>
{(input, angle_deg) = ANGLE::read_data(input, header.data_size)?;},
records::RTAG_COLROW => {
let result = COLROW::read_data(input, header.data_size)?;
input = result.0;
colrow = Some((result.1[0], result.1[1]));
},
_ =>
return fail(input, format!("Unexpected tag {:04x}", header.tag)),
};
(input, header) = RecordHeader::read(input)?;
}
let (input, xy) = XY::read_data(input, header.data_size)?;
let (input, properties) = read_properties(input)?;
Ok((input, Reference{
struct_name: struct_name,
xy: xy,
properties: properties,
colrow: colrow,
invert_y: invert_y,
mag: mag,
angle_deg: angle_deg
}))
}
fn write<W: Write>(&self, ww: &mut W) -> OResult {
let mut size = 0;
size += match self.colrow {
None => SREF::write(ww, &())?,
Some(_) => AREF::write(ww, &())?,
};
size += SNAME::write(ww, &self.struct_name)?;
if self.angle_deg != 0.0 || self.mag != 1.0 || self.invert_y {
let strans = {
let mut arr = [false; 16];
arr[0] = self.invert_y;
arr
};
size += STRANS::write(ww, &strans)?;
if self.mag != 1.0 {
size += MAG::write(ww, &self.mag)?;
}
if self.angle_deg != 0.0 {
size += ANGLE::write(ww, &self.angle_deg)?;
}
}
if let Some(cr) = self.colrow {
size += COLROW::write(ww, &vec!{cr.0, cr.1})?;
}
size += XY::write(ww, &self.xy)?;
size += write_properties(ww, &self.properties)?;
size += ENDEL::write(ww, &())?;
Ok(size)
}
}
impl Reference {
pub fn check(&self) {
if self.colrow.is_some() {
assert!(self.xy.len() != 6, "colrow is Some, so expected size-6 xy. Got {:?}", self.xy);
} else {
assert!(self.xy.len() != 2, "Expected size-2 xy. Got {:?}", self.xy);
}
}
}
///
/// Datastructure representing a Boundary element.
///
#[derive(Debug, Clone)]
pub struct Boundary {
/// (layer, data_type) tuple
layer: (i16, i16),
/// Ordered vertices of the shape. First and last points should be identical. Order x0, y0, x1,...
xy: Vec<i32>,
/// Properties for the element.
properties: HashMap::<i16, Vec<u8>>,
}
impl Element for Boundary {
fn read(input: &[u8]) -> IResult<Self> {
let (input, layer) = LAYER::skip_and_read(input)?;
let (input, dtype) = DATATYPE::read(input)?;
let (input, xy) = XY::read(input)?;
let (input, properties) = read_properties(input)?;
Ok((input, Boundary{
layer: (layer, dtype),
xy: xy,
properties: properties,
}))
}
fn write<W: Write>(&self, ww: &mut W) -> OResult {
let mut size = 0;
size += BOUNDARY::write(ww, &())?;
size += LAYER::write(ww, &self.layer.0)?;
size += DATATYPE::write(ww, &self.layer.1)?;
size += XY::write(ww, &self.xy)?;
size += write_properties(ww, &self.properties)?;
size += ENDEL::write(ww, &())?;
Ok(size)
}
}
///
/// Datastructure representing a Path element.
///
/// If `path_type < 4`, `extension` values are not written.
/// During read, `exension` defaults to (0, 0) even if unused.
///
#[derive(Debug, Clone)]
pub struct Path {
/// (layer, data_type) tuple
layer: (i16, i16),
/// End-cap type (0: flush, 1: circle, 2: square, 4: custom)
path_type: i16,
/// Path width
width: i32,
/// Extension when using path_type=4. Ignored otherwise.
extension: (i32, i32),
/// Path centerline coordinates. [x0, y0, x1, y1,...]
xy: Vec<i32>,
/// Properties for the element.
properties: HashMap::<i16, Vec<u8>>,
}
impl Element for Path {
fn read(input: &[u8]) -> IResult<Self> {
let mut path_type = 0;
let mut width = 0;
let mut bgn_ext = 0;
let mut end_ext = 0;
let (input, layer) = LAYER::skip_and_read(input)?;
let (input, dtype) = DATATYPE::read(input)?;
let (mut input, mut header) = RecordHeader::read(&input)?;
while header.tag != records::RTAG_XY {
match header.tag {
records::RTAG_PATHTYPE =>
{(input, path_type) = PATHTYPE::read_data(input, header.data_size)?;},
records::RTAG_WIDTH =>
{(input, width) = WIDTH::read_data(input, header.data_size)?;},
records::RTAG_BGNEXTN =>
{(input, bgn_ext) = BGNEXTN::read_data(input, header.data_size)?;},
records::RTAG_ENDEXTN =>
{(input, end_ext) = ENDEXTN::read_data(input, header.data_size)?;},
_ =>
return fail(input, format!("Unexpected tag {:04x}", header.tag)),
};
(input, header) = RecordHeader::read(&input)?;
}
let (input, xy) = XY::read_data(input, header.data_size)?;
let (input, properties) = read_properties(input)?;
Ok((input, Path{
layer: (layer, dtype),
xy: xy,
properties: properties,
extension: (bgn_ext, end_ext),
path_type: path_type,
width: width,
}))
}
fn write<W: Write>(&self, ww: &mut W) -> OResult {
let mut size = 0;
size += PATH::write(ww, &())?;
size += LAYER::write(ww, &self.layer.0)?;
size += DATATYPE::write(ww, &self.layer.1)?;
if self.path_type != 0 {
size += PATHTYPE::write(ww, &self.path_type)?;
}
if self.width != 0 {
size += WIDTH::write(ww, &self.width)?;
}
if self.path_type < 4 {
let (bgn_ext, end_ext) = self.extension;
if bgn_ext != 0 {
size += BGNEXTN::write(ww, &bgn_ext)?;
}
if end_ext != 0 {
size += ENDEXTN::write(ww, &end_ext)?;
}
}
size += XY::write(ww, &self.xy)?;
size += write_properties(ww, &self.properties)?;
size += ENDEL::write(ww, &())?;
Ok(size)
}
}
///
/// Datastructure representing a Box element. Rarely used.
///
#[derive(Debug, Clone)]
pub struct GDSBox {
/// (layer, box_type) tuple
layer: (i16, i16),
/// Box coordinates (5 pairs)
xy: Vec<i32>,
/// Properties for the element.
properties: HashMap::<i16, Vec<u8>>,
}
impl Element for GDSBox {
fn read(input: &[u8]) -> IResult<Self> {
let (input, layer) = LAYER::skip_and_read(input)?;
let (input, dtype) = BOXTYPE::read(input)?;
let (input, xy) = XY::read(input)?;
let (input, properties) = read_properties(input)?;
Ok((input, GDSBox{
layer: (layer, dtype),
xy: xy,
properties: properties,
}))
}
fn write<W: Write>(&self, ww: &mut W) -> OResult {
let mut size = 0;
size += BOX::write(ww, &())?;
size += LAYER::write(ww, &self.layer.0)?;
size += BOXTYPE::write(ww, &self.layer.1)?;
size += XY::write(ww, &self.xy)?;
size += write_properties(ww, &self.properties)?;
size += ENDEL::write(ww, &())?;
Ok(size)
}
}
///
/// Datastructure representing a Node element. Rarely used.
///
#[derive(Debug, Clone)]
pub struct Node {
/// (layer, box_type) tuple
layer: (i16, i16),
/// 1-50 pairs of coordinates.
xy: Vec<i32>,
/// Properties for the element.
properties: HashMap::<i16, Vec<u8>>,
}
impl Element for Node {
fn read(input: &[u8]) -> IResult<Self> {
let (input, layer) = LAYER::skip_and_read(input)?;
let (input, dtype) = NODETYPE::read(input)?;
let (input, xy) = XY::read(input)?;
let (input, properties) = read_properties(input)?;
Ok((input, Node{
layer: (layer, dtype),
xy: xy,
properties: properties,
}))
}
fn write<W: Write>(&self, ww: &mut W) -> OResult {
let mut size = 0;
size += NODE::write(ww, &())?;
size += LAYER::write(ww, &self.layer.0)?;
size += NODETYPE::write(ww, &self.layer.1)?;
size += XY::write(ww, &self.xy)?;
size += write_properties(ww, &self.properties)?;
size += ENDEL::write(ww, &())?;
Ok(size)
}
}
///
/// Datastructure representing a text label.
///
#[derive(Debug, Clone)]
pub struct Text {
/// (layer, node_type) tuple
layer: (i16, i16),
/// Bit array. Default all zeros.
/// bits 0-1: 00 left/01 center/10 right
/// bits 2-3: 00 top/01 middle/10 bottom
/// bits 4-5: font number
presentation: [bool; 16],
/// Default 0
path_type: i16,
/// Default 0
width: i32,
/// Vertical inversion. Default false.
invert_y: bool,
/// Scaling factor. Default 1.
mag: f64,
/// Rotation (ccw). Default 0.
angle_deg: f64,
/// Position (1 pair only)
xy: Vec<i32>,
/// Text content
string: Vec<u8>,
/// Properties for the element.
properties: HashMap::<i16, Vec<u8>>
}
impl Element for Text {
fn read(input: &[u8]) -> IResult<Self> {
let mut path_type = 0;
let mut presentation = [false; 16];
let mut invert_y = false;
let mut width = 0;
let mut mag = 1.0;
let mut angle_deg = 0.0;
let (input, layer) = LAYER::skip_and_read(input)?;
let (input, dtype) = TEXTTYPE::read(input)?;
let (mut input, mut header) = RecordHeader::read(input)?;
while header.tag != records::RTAG_XY {
match header.tag {
records::RTAG_PRESENTATION =>
{(input, presentation) = PRESENTATION::read_data(input, header.data_size)?;},
records::RTAG_PATHTYPE =>
{(input, path_type) = PATHTYPE::read_data(input, header.data_size)?;},
records::RTAG_WIDTH =>
{(input, width) = WIDTH::read_data(input, header.data_size)?;},
records::RTAG_STRANS => {
let result = STRANS::read_data(input, header.data_size)?;
input = result.0;
invert_y = result.1[0];
},
records::RTAG_MAG =>
{(input, mag) = MAG::read_data(input, header.data_size)?;},
records::RTAG_ANGLE =>
{(input, angle_deg) = ANGLE::read_data(input, header.data_size)?;},
_ =>
return fail(input, format!("Unexpected tag {:04x}", header.tag)),
}
(input, header) = RecordHeader::read(input)?;
}
let (input, xy) = XY::read_data(input, header.data_size)?;
let (input, string) = STRING::read(input)?;
let (input, properties) = read_properties(input)?;
Ok((input, Text{
layer: (layer, dtype),
xy: xy,
properties: properties,
string: string,
presentation: presentation,
path_type: path_type,
width: width,
invert_y: invert_y,
mag: mag,
angle_deg: angle_deg,
}))
}
fn write<W: Write>(&self, ww: &mut W) -> OResult {
let mut size = 0;
size += TEXT::write(ww, &())?;
size += LAYER::write(ww, &self.layer.0)?;
size += TEXTTYPE::write(ww, &self.layer.1)?;
if self.presentation.iter().any(|&x| x) {
size += PRESENTATION::write(ww, &self.presentation)?;
}
if self.path_type != 0 {
size += PATHTYPE::write(ww, &self.path_type)?;
}
if self.width != 0 {
size += WIDTH::write(ww, &self.width)?
}
if self.angle_deg != 0.0 || self.mag != 1.0 || self.invert_y {
let strans = {
let mut arr = [false; 16];
arr[0] = self.invert_y;
arr
};
size += STRANS::write(ww, &strans)?;
if self.mag != 1.0 {
size += MAG::write(ww, &self.mag)?;
}
if self.angle_deg != 0.0 {
size += ANGLE::write(ww, &self.angle_deg)?;
}
}
size += XY::write(ww, &self.xy)?;
size += STRING::write(ww, &self.string)?;
size += write_properties(ww, &self.properties)?;
size += ENDEL::write(ww, &())?;
Ok(size)
}
}

View File

@ -1,86 +0,0 @@
extern crate byteorder;
pub mod basic;
pub mod record;
pub mod records;
pub mod elements;
pub mod library;
use byteorder::{ByteOrder, BigEndian};
use std::mem::size_of;
macro_rules! impl_i16be {
( $tt:ty, $arr:ident, $size:ident ) => {
{
let sl = unsafe { std::slice::from_raw_parts_mut($arr, $size) };
for xx in sl.iter_mut() {
if *xx < i16::MIN as $tt { return *xx }
if *xx > i16::MAX as $tt { return *xx }
let mut buf = [0; size_of::<$tt>()];
BigEndian::write_i16(&mut buf, *xx as i16);
*xx = <$tt>::from_le_bytes(buf);
}
0 as $tt
}
}
}
macro_rules! impl_i32be {
( $tt:ty, $arr:ident, $size:ident ) => {
{
let sl = unsafe { std::slice::from_raw_parts_mut($arr, $size) };
for xx in sl.iter_mut() {
if *xx < i32::MIN as $tt { return *xx }
if *xx > i32::MAX as $tt { return *xx }
let mut buf = [0; size_of::<$tt>()];
BigEndian::write_i32(&mut buf, *xx as i32);
*xx = <$tt>::from_le_bytes(buf);
}
0 as $tt
}
}
}
#[no_mangle]
pub extern "C" fn f64_to_i16(arr: *mut f64, size: usize) -> f64 { impl_i16be!(f64, arr, size) }
#[no_mangle]
pub extern "C" fn f64_to_i32(arr: *mut f64, size: usize) -> f64 { impl_i32be!(f64, arr, size) }
#[no_mangle]
pub extern "C" fn f32_to_i16(arr: *mut f32, size: usize) -> f32 { impl_i16be!(f32, arr, size) }
#[no_mangle]
pub extern "C" fn f32_to_i32(arr: *mut f32, size: usize) -> f32 { impl_i32be!(f32, arr, size) }
#[no_mangle]
pub extern "C" fn u64_to_i16(arr: *mut u64, size: usize) -> u64 { impl_i16be!(u64, arr, size) }
#[no_mangle]
pub extern "C" fn u64_to_i32(arr: *mut u64, size: usize) -> u64 { impl_i32be!(u64, arr, size) }
#[no_mangle]
pub extern "C" fn i64_to_i16(arr: *mut i64, size: usize) -> i64 { impl_i16be!(i64, arr, size) }
#[no_mangle]
pub extern "C" fn i64_to_i32(arr: *mut i64, size: usize) -> i64 { impl_i32be!(i64, arr, size) }
#[no_mangle]
pub extern "C" fn u32_to_i16(arr: *mut u32, size: usize) -> u32 { impl_i16be!(u32, arr, size) }
#[no_mangle]
pub extern "C" fn u32_to_i32(arr: *mut u32, size: usize) -> u32 { impl_i32be!(u32, arr, size) }
#[no_mangle]
pub extern "C" fn i32_to_i16(arr: *mut i32, size: usize) -> i32 { impl_i16be!(i32, arr, size) }
#[no_mangle]
pub extern "C" fn i32_to_i32(arr: *mut i32, size: usize) -> i32 { impl_i32be!(i32, arr, size) }
#[no_mangle]
pub extern "C" fn u16_to_i16(arr: *mut u16, size: usize) -> u16 { impl_i16be!(u16, arr, size) }
#[no_mangle]
pub extern "C" fn i16_to_i16(arr: *mut i16, size: usize) -> i16 { impl_i16be!(i16, arr, size) }

View File

@ -1,393 +0,0 @@
///
/// File-level read/write functionality.
///
use std::io::Write;
use std::collections::HashMap;
pub use crate::record;
pub use crate::record::{RecordHeader, Record};
pub use crate::records;
pub use crate::elements;
pub use crate::elements::{Element};
pub use crate::basic::{IResult, OResult, take_bytes, fail};
const DEFAULT_DATE: [i16; 6] = [1900, 0, 0, 0, 0, 0];
///
/// Representation of the GDS file header.
///
/// File header records: HEADER BGNLIB LIBNAME UNITS
/// Optional records are ignored if present and never written.
///
/// Version is written as `600`.
///
#[derive(Debug, Clone)]
pub struct FileHeader {
/// Number of user units in one database unit
user_units_per_db_unit: f64,
/// Number of meters in one database unit
meters_per_db_unit: f64,
/// Last-modified time [y, m, d, h, m, s]
mod_time: [i16; 6],
/// Last-accessed time [y, m, d, h, m, s]
acc_time: [i16; 6],
/// Library name
name: Vec<u8>,
}
impl FileHeader {
pub fn new(name: &[u8], meters_per_db_unit: f64, user_units_per_db_unit: f64) -> Self {
FileHeader{
mod_time: [0, 1, 1, 0, 0, 0],
acc_time: [0, 1, 1, 0, 0, 0],
name: name.to_owned(),
user_units_per_db_unit: user_units_per_db_unit,
meters_per_db_unit: meters_per_db_unit,
}
}
/// Read and construct a header from the provided input.
///
/// Args:
/// input: Seekable input to read from
///
/// Returns:
/// FileHeader object
///
pub fn read(input: &[u8]) -> IResult<Self> {
let (input, _version) = records::HEADER::read(input)?;
let (input, [mod_time, acc_time]) = records::BGNLIB::read(input)?;
let (input, name) = records::LIBNAME::skip_and_read(input)?;
let (input, (uu, dbu)) = records::UNITS::skip_and_read(input)?;
Ok((input, FileHeader{
mod_time: mod_time,
acc_time: acc_time,
name: name,
user_units_per_db_unit: uu,
meters_per_db_unit: dbu,
}))
}
/// Write the header to a input
///
/// Args:
/// input: input to write to
///
/// Returns:
/// number of bytes written
///
pub fn write<W: Write>(&self, ww: &mut W) -> OResult {
let mut size = 0;
size += records::HEADER::write(ww, &600)?;
size += records::BGNLIB::write(ww, &[self.mod_time, self.acc_time])?;
size += records::LIBNAME::write(ww, &self.name)?;
size += records::UNITS::write(ww, &(self.user_units_per_db_unit, self.meters_per_db_unit))?;
Ok(size)
}
}
///
/// Scan through a GDS file, building a table of
/// {b'structure_name': byte_offset}.
/// The intent of this function is to enable random access
/// and/or partial (structure-by-structure) reads.
///
/// Args:
/// input: Seekable input to read from. Should be positioned
/// before the first structure record, but possibly
/// already past the file header.
///
pub fn scan_structs(input: &[u8]) -> IResult<HashMap::<Vec<u8>, usize>> {
let input_size = input.len();
let mut positions = HashMap::new();
let (mut input, mut header) = RecordHeader::read(input)?;
while header.tag != records::RTAG_ENDLIB {
(input, _) = take_bytes(input, header.data_size)?;
if header.tag == records::RTAG_BGNSTR {
let name;
(input, name) = records::STRNAME::read(input)?;
if positions.contains_key(&name) {
return fail(input, format!("Duplicate structure name: {:?}", name));
}
let position = input_size - input.len();
positions.insert(name, position);
}
(input, header) = RecordHeader::read(input)?;
}
Ok((input, positions))
}
#[derive(Debug, Clone)]
pub struct Cell {
name: Vec<u8>,
boundaries: Vec<elements::Boundary>,
paths: Vec<elements::Path>,
nodes: Vec<elements::Node>,
boxes: Vec<elements::GDSBox>,
texts: Vec<elements::Text>,
refs: Vec<elements::Reference>,
}
impl Cell {
/// Build an empty cell
pub fn new(name: Vec<u8>) -> Self {
Cell{
name: name,
boundaries: Vec::new(),
paths: Vec::new(),
nodes: Vec::new(),
boxes: Vec::new(),
texts: Vec::new(),
refs: Vec::new(),
}
}
/// Skip to the next structure and attempt to read it.
///
/// Args:
/// input: Seekable input to read from.
///
/// Returns:
/// (name, elements) if a structure was found.
/// None if no structure was found before the end of the library.
///
pub fn read(input: &[u8]) -> IResult<Option<Cell>> {
let (input, success) = records::BGNSTR::skip_past(input)?;
if !success {
return Ok((input, None))
}
let (input, name) = records::STRNAME::read(input)?;
let mut cell = Cell::new(name);
let (input, _) = cell.read_elements(input)?;
Ok((input, Some(cell)))
}
/// Read elements from the input until an ENDSTR
/// record is encountered. The ENDSTR record is also
/// consumed.
///
/// Args:
/// input: Seekable input to read from.
///
/// Returns:
/// List of element objects.
///
pub fn read_elements<'a>(&mut self, input: &'a [u8]) -> IResult<'a, ()> {
let (mut input, mut header) = RecordHeader::read(input)?;
while header.tag != records::RTAG_ENDSTR {
match header.tag {
records::RTAG_BOUNDARY => {
let boundary;
(input, _) = records::BOUNDARY::read(input)?;
(input, boundary) = elements::Boundary::read(input)?;
self.boundaries.push(boundary);
},
records::RTAG_PATH => {
let path;
(input, _) = records::PATH::read(input)?;
(input, path) = elements::Path::read(input)?;
self.paths.push(path);
},
records::RTAG_NODE => {
let node;
(input, _) = records::NODE::read(input)?;
(input, node) = elements::Node::read(input)?;
self.nodes.push(node);
},
records::RTAG_BOX => {
let gds_box;
(input, _) = records::BOX::read(input)?;
(input, gds_box) = elements::GDSBox::read(input)?;
self.boxes.push(gds_box);
},
records::RTAG_TEXT => {
let txt;
(input, _) = records::TEXT::read(input)?;
(input, txt) = elements::Text::read(input)?;
self.texts.push(txt);
},
records::RTAG_SREF => {
let sref;
(input, _) = records::SREF::read(input)?;
(input, sref) = elements::Reference::read(input)?;
self.refs.push(sref);
},
records::RTAG_AREF => {
let aref;
(input, _) = records::AREF::read(input)?;
(input, aref) = elements::Reference::read(input)?;
self.refs.push(aref);
},
_ => {
// don't care, skip
(input, _) = take_bytes(input, header.data_size)?;
}
}
(input, header) = RecordHeader::read(input)?;
}
Ok((input, ()))
}
///
/// Write a structure to the provided input.
///
/// Args:
/// name: Structure name (ascii-encoded).
/// elements: List of Elements containing the geometry and text in this struct.
/// cre_time: Creation time (optional).
/// mod_time: Modification time (optional).
///
/// Return:
/// Number of bytes written
///
pub fn write<W: Write>(
&self,
ww: &mut W,
cre_time: Option<[i16; 6]>,
mod_time: Option<[i16; 6]>,
) -> OResult {
let mut size = 0;
size += records::BGNSTR::write(ww, &[cre_time.unwrap_or(DEFAULT_DATE),
mod_time.unwrap_or(DEFAULT_DATE)])?;
size += records::STRNAME::write(ww, &self.name)?;
size += self.write_elements(ww)?;
size += records::ENDSTR::write(ww, &())?;
Ok(size)
}
pub fn write_elements<W: Write>(&self, ww: &mut W) -> OResult {
let mut size = 0;
for boundary in &self.boundaries {
size += boundary.write(ww)?;
}
for path in &self.paths {
size += path.write(ww)?;
}
for node in &self.nodes {
size += node.write(ww)?;
}
for gds_box in &self.boxes {
size += gds_box.write(ww)?;
}
for text in &self.texts {
size += text.write(ww)?;
}
for reference in &self.refs {
size += reference.write(ww)?;
}
Ok(size)
}
}
/*
///
/// Scan through a GDS file, building a table of instance counts
/// `{b'structure_name': {b'ref_name': count}}`.
///
/// This is intended to provide a fast overview of the file's
/// contents without performing a full read of all elements.
///
/// Args:
/// input: Seekable input to read from. Should be positioned
/// before the first structure record, but possibly
/// already past the file header.
///
pub fn scan_hierarchy(input: &[u8]) -> IResult<HashMap::<Vec<u8>, HashMap::<Vec<u8>, u32>>> {
let mut structures = HashMap::new();
let mut ref_name = None;
let mut ref_count = None;
let (mut input, mut header) = RecordHeader::read(input)?;
let mut cur_structure = HashMap::new();
while header.tag != records::RTAG_ENDLIB {
match header.tag {
records::RTAG_BGNSTR => {
(input, _) = take_bytes(input, header.data_size)?;
let result = records::STRNAME::read(input)?;
input = result.0;
let name = result.1;
if structures.contains_key(&name) {
return fail(input, format!("Duplicate structure name: {:?}", name));
}
let mut cur_structure = HashMap::new();
structures.insert(name, cur_structure);
ref_name = None;
ref_count = None;
},
records::RTAG_SNAME => {
let result = records::SNAME::read_data(input, header.data_size)?;
input = result.0;
ref_name = Some(result.1);
},
records::RTAG_COLROW => {
let result = records::COLROW::read_data(input, header.data_size)?;
input = result.0;
let (col, row) = (result.1[0], result.1[1]);
ref_count = Some((col * row) as u32);
},
records::RTAG_ENDEL => {
*cur_structure.entry(ref_name.unwrap()).or_insert(0) += ref_count.unwrap_or(1);
},
_ => {
(input, _) = take_bytes(input, header.data_size)?;
},
}
(input, header) = RecordHeader::read(input)?;
}
Ok((input, structures))
}
*/
/*
pub fn count_ref(input: &[u8]) -> IResult<Option((Vec<u8>, u32))> {
let (input, found_struc) = records::BGNSTR.skip_past(input)?;
if !found_struc {
return Ok((input, None))
}
let mut cur_structure = HashMap::new();
let (input, name) = records::STRNAME::read(input)?;
if structures.contains_key(&name) {
return fail(input, format!("Duplicate structure name: {:?}", name));
}
let (mut input, mut header) = RecordHeader::read(input)?;
while header.tag != records::RTAG_ENDSTR {
let mut ref_name = None;
let mut ref_count = None;
while header.tag != records::RTAG_ENDEL {
match header.tag {
records::RTAG_SNAME => {
let result = records::SNAME::read_data(input1, header.data_size)?;
input1 = result.0;
ref_name = Some(result.1);
},
records::RTAG_COLROW => {
let result = records::COLROW::read_data(input1, header.data_size)?;
input1 = result.0;
let (col, row) = (result.1[0], result.1[1]);
ref_count = Some((col * row) as u32);
},
_ => {
(input1, _) = take_bytes(input1, header.data_size)?;
},
}
(input1, header) = RecordHeader::read(input1)?;
}
// got ENDEL, update count for this reference
*cur_structure.entry(ref_name.unwrap()).or_insert(0) += ref_count.unwrap_or(1);
(input1, header) = RecordHeader::read(input1)?;
}
structures.insert(name, cur_structure);
(input, header) = RecordHeader::read(input1)?;
}
*/

View File

@ -1,393 +0,0 @@
///
/// Generic record-level read/write functionality.
///
use std::io::Write;
use std::convert::TryInto;
use byteorder::{ByteOrder, BigEndian};
use crate::basic::{pack_datetime, pack_bitarray, pack_ascii, pack_int2, pack_int4, pack_real8}; #[warn(unused_imports)]
use crate::basic::{parse_datetime, parse_bitarray, parse_ascii, parse_int2, parse_int4, parse_real8}; #[warn(unused_imports)]
use crate::basic::{OResult, IResult, fail, parse_u16, take_bytes};
use crate::records;
//#[no_mangle]
//pub extern "C" fn write_record_header(
#[repr(C)]
pub struct RecordHeader {
pub tag: u16,
pub data_size: u16,
}
impl RecordHeader {
pub fn read(input: &[u8]) -> IResult<RecordHeader> {
let (input, size) = parse_u16(input)?;
let (input, tag) = parse_u16(input)?;
Ok((input, RecordHeader{tag:tag, data_size:size - 4}))
}
pub fn pack_into(&self) -> [u8; 4] {
assert!(self.data_size < 0xffff - 4, "Record too big!");
let vals = [self.data_size, self.tag];
let mut buf = [0x77; 4];
BigEndian::write_u16_into(&vals, &mut buf);
buf
}
pub fn write<W: Write>(&self, ww: &mut W) -> OResult {
let bytes = self.pack_into();
ww.write(&bytes)
}
}
pub trait RecordData {
type BareData;
type InData : ?Sized;
type ByteData : AsRef<[u8]>;
fn read(input: &[u8], size: u16) -> IResult<Self::BareData>;
fn pack_into(buf: &mut [u8], data: &Self::InData);
//fn size(data: &Self::BareData) -> u16;
fn pack(data: &Self::InData) -> Self::ByteData;
}
pub trait Record<RData: RecordData> {
fn tag() -> u16;
fn expected_size() -> Option<u16>;
fn check_size(actual_size: u16) -> Result<(), String> {
match Self::expected_size() {
Some(size) => if size == actual_size {
Ok(())
} else {
Err(format!("Expected record size {}, got {}", size, actual_size))
},
None => Ok(()),
}
}
fn read_header(input: &[u8]) -> IResult<RecordHeader> {
RecordHeader::read(input)
}
fn write_header<W: Write>(ww: &mut W, data_size: u16) -> OResult {
RecordHeader{tag: Self::tag(), data_size: data_size}.write(ww)
}
fn read_data(input: &[u8], size: u16) -> IResult<RData::BareData> {
RData::read(input, size)
}
fn pack_data(buf: &mut [u8], data: &RData::InData) {
RData::pack_into(buf, data)
}
///
/// Skip to the end of the next occurence of this record.
///
/// Return:
/// True if the record was encountered and skipped.
/// False if the end of the library was reached.
///
fn skip_past(input: &[u8]) -> IResult<bool> {
let original_input = input;
let (mut input, mut header) = RecordHeader::read(input)?;
while header.tag != Self::tag() {
(input, _) = take_bytes(input, header.data_size)?;
if header.tag == records::RTAG_ENDLIB {
return Ok((original_input, false))
}
(input, header) = RecordHeader::read(input)?;
}
(input, _) = take_bytes(input, header.data_size)?;
Ok((input, true))
}
fn skip_and_read(input: &[u8]) -> IResult<RData::BareData> {
let (mut input, mut header) = RecordHeader::read(input)?;
while header.tag != Self::tag() {
(input, _) = take_bytes(input, header.data_size)?;
(input, header) = RecordHeader::read(input)?;
}
let (input, data) = Self::read_data(input, header.data_size)?;
Ok((input, data))
}
fn expect_header(input: &[u8]) -> IResult<u16> {
let (input, header) = RecordHeader::read(input)?;
if header.tag != Self::tag() {
fail(input, format!("Unexpected record! Got tag 0x{:04x}, expected 0x{:04x}", header.tag, Self::tag()))
} else {
Ok((input, header.data_size))
}
}
fn read(input: &[u8]) -> IResult<RData::BareData> {
let (input, size) = Self::expect_header(input)?;
Self::check_size(size).unwrap();
let (input, data) = Self::read_data(input, size)?;
Ok((input, data))
}
fn write<W: Write>(ww: &mut W, data: &RData::InData) -> OResult {
let packed_data = RData::pack(data);
let data_bytes = packed_data.as_ref();
let len: u16 = data_bytes.len().try_into().expect("Record longer than max size (u16)!");
let mut size = 0;
size += Self::write_header(ww, len)?;
size += ww.write(data_bytes)?;
Ok(size)
}
}
pub struct BitArray;
impl RecordData for BitArray {
type BareData = [bool; 16];
type InData = [bool; 16];
type ByteData = [u8; 2];
fn read(input: &[u8], size: u16) -> IResult<Self::BareData> {
assert!(size == 2);
parse_bitarray(input)
}
fn pack_into(buf: &mut [u8], data: &Self::InData) {
pack_bitarray(buf, data);
}
fn pack(data: &Self::InData) -> Self::ByteData {
let mut buf = [0; 2];
Self::pack_into(&mut buf, data);
buf
}
}
pub struct Int2;
impl RecordData for Int2 {
type BareData = i16;
type InData = i16;
type ByteData = [u8; 2];
fn read(input: &[u8], size: u16) -> IResult<Self::BareData> {
assert!(size == 2);
parse_int2(input)
}
fn pack_into(buf: &mut [u8], data: &Self::InData) {
pack_int2(buf, *data)
}
fn pack(data: &Self::InData) -> Self::ByteData {
let mut buf = [0; 2];
Self::pack_into(&mut buf, data);
buf
}
}
pub struct Int4;
impl RecordData for Int4 {
type BareData = i32;
type InData = i32;
type ByteData = [u8; 4];
fn read(input: &[u8], size: u16) -> IResult<Self::BareData> {
assert!(size == 4);
parse_int4(input)
}
fn pack_into(buf: &mut [u8], data: &Self::InData) {
pack_int4(buf, *data)
}
fn pack(data: &Self::InData) -> Self::ByteData {
let mut buf = [0; 4];
Self::pack_into(&mut buf, data);
buf
}
}
pub struct Int2Array;
impl RecordData for Int2Array {
type BareData = Vec<i16>;
type InData = [i16];
type ByteData = Vec<u8>;
fn read(input: &[u8], size: u16) -> IResult<Self::BareData> {
assert!(size % 2 == 0, "Record must contain an integer quantity of integers");
let mut buf = Vec::with_capacity(size as usize / 2);
let mut input = input;
for ii in 0..buf.len() {
(input, buf[ii]) = parse_int2(input)?;
}
Ok((input, buf))
}
fn pack_into(buf: &mut [u8], data: &Self::InData) {
BigEndian::write_i16_into(&data, buf)
}
fn pack(data: &Self::InData) -> Self::ByteData {
let mut buf = Vec::with_capacity(data.len() * 2);
Self::pack_into(&mut buf, data);
buf
}
}
pub struct Int4Array;
impl RecordData for Int4Array {
type BareData = Vec<i32>;
type InData = [i32];
type ByteData = Vec<u8>;
fn read(input: &[u8], size: u16) -> IResult<Self::BareData> {
assert!(size % 4 == 0, "Record must contain an integer quantity of integers");
let mut buf = Vec::with_capacity(size as usize / 4);
let mut input = input;
for ii in 0..buf.len() {
(input, buf[ii]) = parse_int4(input)?;
}
Ok((input, buf))
}
fn pack_into(buf: &mut [u8], data: &Self::InData) {
BigEndian::write_i32_into(&data, buf)
}
fn pack(data: &Self::InData) -> Self::ByteData {
let mut buf = Vec::with_capacity(data.len() * 4);
Self::pack_into(&mut buf, data);
buf
}
}
pub struct Real8;
impl RecordData for Real8 {
type BareData = f64;
type InData = f64;
type ByteData = [u8; 8];
fn read(input: &[u8], size: u16) -> IResult<Self::BareData> {
assert!(size == 8);
parse_real8(input)
}
fn pack_into(buf: &mut [u8], data: &Self::InData) {
pack_real8(buf, *data).expect(&format!("Float {0} too big for Real8", data))
}
fn pack(data: &Self::InData) -> Self::ByteData {
let mut buf = [0; 8];
Self::pack_into(&mut buf, data);
buf
}
}
pub struct Real8Pair;
impl RecordData for Real8Pair {
type BareData = (f64, f64);
type InData = (f64, f64);
type ByteData = [u8; 2 * 8];
fn read(input: &[u8], size: u16) -> IResult<Self::BareData> {
assert!(size == 2 * 8);
let (input, data0) = parse_real8(input)?;
let (input, data1) = parse_real8(input)?;
Ok((input, (data0, data1)))
}
fn pack_into(buf: &mut [u8], data: &Self::InData) {
pack_real8(&mut buf[8 * 0..], data.0).expect(&format!("Float.0 {0} too big for Real8", data.0));
pack_real8(&mut buf[8 * 1..], data.1).expect(&format!("Float.1 {0} too big for Real8", data.1));
}
fn pack(data: &Self::InData) -> Self::ByteData {
let mut buf = [0; 2 * 8];
Self::pack_into(&mut buf, data);
buf
}
//fn write<W: Write>(ww: &mut W, data: &Self::BareData) -> OResult {
// let mut buf = [u8; 2 * 6 * 2];
// Self::pack_into(&mut buf, data)
//}
}
pub struct ASCII;
impl RecordData for ASCII {
type BareData = Vec<u8>;
type InData = [u8];
type ByteData = Vec<u8>;
fn read(input: &[u8], size: u16) -> IResult<Self::BareData> {
parse_ascii(input, size)
}
fn pack_into(buf: &mut [u8], data: &Self::InData) {
pack_ascii(buf, data);
}
fn pack(data: &Self::InData) -> Self::ByteData {
let mut buf = Vec::with_capacity(data.len() * 4);
Self::pack_into(&mut buf, data);
buf
}
}
pub struct DateTimePair;
impl RecordData for DateTimePair {
type BareData = [[i16; 6]; 2];
type InData = [[i16; 6]; 2];
type ByteData = [u8; 2 * 6 * 2];
fn read(input: &[u8], size: u16) -> IResult<Self::BareData> {
assert!(size == 2 * 6 * 2);
let (input, data0) = parse_datetime(input)?;
let (input, data1) = parse_datetime(input)?;
Ok((input, [data0, data1]))
}
fn pack_into(buf: &mut [u8], data: &Self::InData) {
pack_datetime(&mut buf[6 * 2 * 0..], &data[0]);
pack_datetime(&mut buf[6 * 2 * 1..], &data[1]);
}
fn pack(data: &Self::InData) -> Self::ByteData {
let mut buf = [0; 2 * 6 * 2];
Self::pack_into(&mut buf, data);
buf
}
//fn write<W: Write>(ww: &mut W, data: &Self::BareData) -> OResult {
// let mut buf = [u8; 2 * 6 * 2];
// Self::pack_into(&mut buf, data)
//}
}
pub struct Empty;
impl RecordData for Empty {
type BareData = ();
type InData = ();
type ByteData = [u8; 0];
fn read(input: &[u8], size: u16) -> IResult<Self::BareData> {
assert!(size == 0);
Ok((input, ()))
}
fn pack_into(_buf: &mut [u8], _data: &Self::InData) {
}
fn pack(_data: &Self::InData) -> Self::ByteData {
[]
}
//fn write<W: Write>(ww: &mut W, data: &Self::BareData) {
//}
}

View File

@ -1,547 +0,0 @@
///
/// Record type and tag definitions
///
use crate::record::{Record, Int2, Int4, Int2Array, Int4Array, Real8, Real8Pair, DateTimePair, BitArray, ASCII, Empty};
//use std::io::Write;
// record tags
pub const RTAG_HEADER: u16 = 0x0002;
pub const RTAG_BGNLIB: u16 = 0x0102;
pub const RTAG_LIBNAME: u16 = 0x0206;
pub const RTAG_UNITS: u16 = 0x0305; // (user_units_per_db_unit, db_units_per_meter)
pub const RTAG_ENDLIB: u16 = 0x0400;
pub const RTAG_BGNSTR: u16 = 0x0502;
pub const RTAG_STRNAME: u16 = 0x0606;
pub const RTAG_ENDSTR: u16 = 0x0700;
pub const RTAG_BOUNDARY: u16 = 0x0800;
pub const RTAG_PATH: u16 = 0x0900;
pub const RTAG_SREF: u16 = 0x0a00;
pub const RTAG_AREF: u16 = 0x0b00;
pub const RTAG_TEXT: u16 = 0x0c00;
pub const RTAG_LAYER: u16 = 0x0d02;
pub const RTAG_DATATYPE: u16 = 0x0e02;
pub const RTAG_WIDTH: u16 = 0x0f03;
pub const RTAG_XY: u16 = 0x1003;
pub const RTAG_ENDEL: u16 = 0x1100;
pub const RTAG_SNAME: u16 = 0x1206;
pub const RTAG_COLROW: u16 = 0x1302;
pub const RTAG_NODE: u16 = 0x1500;
pub const RTAG_TEXTTYPE: u16 = 0x1602;
pub const RTAG_PRESENTATION: u16 = 0x1701;
pub const RTAG_SPACING: u16 = 0x1802; // unused; not sure about 02
pub const RTAG_STRING: u16 = 0x1906;
pub const RTAG_STRANS: u16 = 0x1a01;
pub const RTAG_MAG: u16 = 0x1b05;
pub const RTAG_ANGLE: u16 = 0x1c05;
pub const RTAG_UINTEGER: u16 = 0x1d02; // unused; not sure about 02
pub const RTAG_USTRING: u16 = 0x1e06; // unused; not sure about 06
pub const RTAG_REFLIBS: u16 = 0x1f06;
pub const RTAG_FONTS: u16 = 0x2006;
pub const RTAG_PATHTYPE: u16 = 0x2102;
pub const RTAG_GENERATIONS: u16 = 0x2202;
pub const RTAG_ATTRTABLE: u16 = 0x2306;
pub const RTAG_STYPTABLE: u16 = 0x2406; // unused; not sure about 06
pub const RTAG_STRTYPE: u16 = 0x2502; // unused
pub const RTAG_ELFLAGS: u16 = 0x2601;
pub const RTAG_ELKEY: u16 = 0x2703; // unused
pub const RTAG_LINKTYPE: u16 = 0x2803; // unused
pub const RTAG_LINKKEYS: u16 = 0x2903; // unused
pub const RTAG_NODETYPE: u16 = 0x2a02;
pub const RTAG_PROPATTR: u16 = 0x2b02;
pub const RTAG_PROPVALUE: u16 = 0x2c06;
pub const RTAG_BOX: u16 = 0x2d00;
pub const RTAG_BOXTYPE: u16 = 0x2e02;
pub const RTAG_PLEX: u16 = 0x2f03;
pub const RTAG_BGNEXTN: u16 = 0x3003;
pub const RTAG_ENDEXTN: u16 = 0x3103;
pub const RTAG_TAPENUM: u16 = 0x3202;
pub const RTAG_TAPECODE: u16 = 0x3302;
pub const RTAG_STRCLASS: u16 = 0x3401;
pub const RTAG_RESERVED: u16 = 0x3503;
pub const RTAG_FORMAT: u16 = 0x3602;
pub const RTAG_MASK: u16 = 0x3706; // list of Layers and dtypes
pub const RTAG_ENDMASKS: u16 = 0x3800; // end of MASKS records
pub const RTAG_LIBDIRSIZE: u16 = 0x3902;
pub const RTAG_SRFNAME: u16 = 0x3a06;
pub const RTAG_LIBSECUR: u16 = 0x3b02;
pub const RTAG_BORDER: u16 = 0x3c00;
pub const RTAG_SOFTFENCE: u16 = 0x3d00;
pub const RTAG_HARDFENCE: u16 = 0x3f00;
pub const RTAG_SOFTWIRE: u16 = 0x3f00;
pub const RTAG_HARDWIRE: u16 = 0x4000;
pub const RTAG_PATHPORT: u16 = 0x4100;
pub const RTAG_NODEPORT: u16 = 0x4200;
pub const RTAG_USERCONSTRAINT: u16 = 0x4300;
pub const RTAG_SPACERERROR: u16 = 0x4400;
pub const RTAG_CONTACT: u16 = 0x4500;
/*
// data types
pub const DATA_TYPE_NONE: u16 = 0x00;
pub const DATA_TYPE_BIT: u16 = 0x01;
pub const DATA_TYPE_INT16: u16 = 0x02;
pub const DATA_TYPE_INT32: u16 = 0x03;
pub const DATA_TYPE_REAL32: u16 = 0x04;
pub const DATA_TYPE_REAL64: u16 = 0x05;
pub const DATA_TYPE_STR: u16 = 0x06;
pub const MAX_DATA_SIZE: usize = 8;
/// Returns the size of the given data type in bytes.
pub fn data_size(t: u16) -> Option<u16> {
match t {
x if x == DATA_TYPE_NONE => 0,
x if x == DATA_TYPE_BIT => 2,
x if x == DATA_TYPE_INT16 => 2,
x if x == DATA_TYPE_INT32 => 4,
x if x == DATA_TYPE_REAL32 => 4,
x if x == DATA_TYPE_REAL64 => 8,
_ => 0
}
*/
pub struct HEADER;
impl Record<Int2> for HEADER {
fn tag() -> u16 { RTAG_HEADER }
fn expected_size() -> Option<u16> { Some(2) }
}
//impl Record<Int2> for HEADER;
pub struct BGNLIB;
impl Record<DateTimePair> for BGNLIB {
fn tag() -> u16 { RTAG_BGNLIB }
fn expected_size() -> Option<u16> { Some(2 * 6) }
}
pub struct LIBNAME;
impl Record<ASCII> for LIBNAME {
fn tag() -> u16 { RTAG_LIBNAME }
fn expected_size() -> Option<u16> { None }
}
pub struct UNITS;
impl Record<Real8Pair> for UNITS {
// (user_units_per_db_unit, db_units_per_meter)
fn tag() -> u16 { RTAG_UNITS }
fn expected_size() -> Option<u16> { Some(2 * 8) }
}
pub struct ENDLIB;
impl Record<Empty> for ENDLIB {
fn tag() -> u16 { RTAG_ENDLIB }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct BGNSTR;
impl Record<DateTimePair> for BGNSTR {
fn tag() -> u16 { RTAG_BGNSTR }
fn expected_size() -> Option<u16> { Some(2 * 6) }
}
pub struct STRNAME;
impl Record<ASCII> for STRNAME {
fn tag() -> u16 { RTAG_STRNAME }
fn expected_size() -> Option<u16> { Some(2 * 6) }
}
pub struct ENDSTR;
impl Record<Empty> for ENDSTR {
fn tag() -> u16 { RTAG_ENDSTR }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct BOUNDARY;
impl Record<Empty> for BOUNDARY {
fn tag() -> u16 { RTAG_BOUNDARY }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct PATH;
impl Record<Empty> for PATH {
fn tag() -> u16 { RTAG_PATH }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct SREF;
impl Record<Empty> for SREF {
fn tag() -> u16 { RTAG_SREF }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct AREF;
impl Record<Empty> for AREF {
fn tag() -> u16 { RTAG_AREF }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct TEXT;
impl Record<Empty> for TEXT {
fn tag() -> u16 { RTAG_TEXT }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct LAYER;
impl Record<Int2> for LAYER {
fn tag() -> u16 { RTAG_LAYER }
fn expected_size() -> Option<u16> { Some(2) }
}
pub struct DATATYPE;
impl Record<Int2> for DATATYPE {
fn tag() -> u16 { RTAG_DATATYPE }
fn expected_size() -> Option<u16> { Some(2) }
}
pub struct WIDTH;
impl Record<Int4> for WIDTH {
fn tag() -> u16 { RTAG_WIDTH }
fn expected_size() -> Option<u16> { Some(4) }
}
pub struct XY;
impl Record<Int4Array> for XY {
fn tag() -> u16 { RTAG_XY }
fn expected_size() -> Option<u16> { None }
}
pub struct ENDEL;
impl Record<Empty> for ENDEL {
fn tag() -> u16 { RTAG_ENDEL }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct SNAME;
impl Record<ASCII> for SNAME {
fn tag() -> u16 { RTAG_SNAME }
fn expected_size() -> Option<u16> { None }
}
pub struct COLROW;
impl Record<Int2Array> for COLROW {
fn tag() -> u16 { RTAG_COLROW }
fn expected_size() -> Option<u16> { Some(4) }
}
pub struct NODE;
impl Record<Empty> for NODE {
fn tag() -> u16 { RTAG_NODE }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct TEXTTYPE;
impl Record<Int2> for TEXTTYPE {
fn tag() -> u16 { RTAG_TEXTTYPE }
fn expected_size() -> Option<u16> { Some(2) }
}
pub struct PRESENTATION;
impl Record<BitArray> for PRESENTATION {
fn tag() -> u16 { RTAG_PRESENTATION }
fn expected_size() -> Option<u16> { Some(2) }
}
pub struct SPACING;
impl Record<Int2> for SPACING {
fn tag() -> u16 { RTAG_SPACING }
fn expected_size() -> Option<u16> { Some(2) }
}
pub struct STRING;
impl Record<ASCII> for STRING {
fn tag() -> u16 { RTAG_STRING }
fn expected_size() -> Option<u16> { None }
}
pub struct STRANS;
impl Record<BitArray> for STRANS {
fn tag() -> u16 { RTAG_STRANS }
fn expected_size() -> Option<u16> { Some(2) }
}
pub struct MAG;
impl Record<Real8> for MAG {
fn tag() -> u16 { RTAG_MAG }
fn expected_size() -> Option<u16> { Some(8) }
}
pub struct ANGLE;
impl Record<Real8> for ANGLE {
fn tag() -> u16 { RTAG_ANGLE }
fn expected_size() -> Option<u16> { Some(8) }
}
pub struct UINTEGER;
impl Record<Int2> for UINTEGER {
fn tag() -> u16 { RTAG_UINTEGER }
fn expected_size() -> Option<u16> { Some(2) }
}
pub struct USTRING;
impl Record<ASCII> for USTRING {
fn tag() -> u16 { RTAG_USTRING }
fn expected_size() -> Option<u16> { None }
}
pub struct REFLIBS;
impl Record<ASCII> for REFLIBS {
fn tag() -> u16 { RTAG_REFLIBS }
fn expected_size() -> Option<u16> { None }
}
impl REFLIBS {
pub fn check_size(actual_size: usize) -> Result<(), String> {
if actual_size % 44 == 0 {
Ok(())
} else {
Err(format!("Expected record size divisible by 44, got {}", actual_size))
}
}
}
pub struct FONTS;
impl Record<ASCII> for FONTS {
fn tag() -> u16 { RTAG_FONTS }
fn expected_size() -> Option<u16> { None }
}
impl FONTS {
pub fn check_size(actual_size: usize) -> Result<(), String> {
if actual_size % 44 == 0 {
Ok(())
} else {
Err(format!("Expected record size divisible by 44, got {}", actual_size))
}
}
}
pub struct PATHTYPE;
impl Record<Int2> for PATHTYPE {
fn tag() -> u16 { RTAG_PATHTYPE }
fn expected_size() -> Option<u16> { Some(2) }
}
pub struct GENERATIONS;
impl Record<Int2> for GENERATIONS {
fn tag() -> u16 { RTAG_GENERATIONS }
fn expected_size() -> Option<u16> { Some(2) }
}
pub struct ATTRTABLE;
impl Record<ASCII> for ATTRTABLE {
fn tag() -> u16 { RTAG_ATTRTABLE }
fn expected_size() -> Option<u16> { None }
}
impl ATTRTABLE {
pub fn check_size(actual_size: usize) -> Result<(), String> {
if actual_size % 44 == 0 {
Ok(())
} else {
Err(format!("Expected record size divisible by 44, got {}", actual_size))
}
}
}
pub struct STYPTABLE;
impl Record<ASCII> for STYPTABLE {
fn tag() -> u16 { RTAG_STYPTABLE }
fn expected_size() -> Option<u16> { None }
}
pub struct STRTYPE;
impl Record<Int2> for STRTYPE {
fn tag() -> u16 { RTAG_STRTYPE }
fn expected_size() -> Option<u16> { None }
}
pub struct ELFLAGS;
impl Record<BitArray> for ELFLAGS {
fn tag() -> u16 { RTAG_ELFLAGS }
fn expected_size() -> Option<u16> { Some(2) }
}
pub struct ELKEY;
impl Record<Int2> for ELKEY {
fn tag() -> u16 { RTAG_ELKEY }
fn expected_size() -> Option<u16> { Some(2) }
}
pub struct LINKTYPE;
impl Record<Int2> for LINKTYPE {
fn tag() -> u16 { RTAG_LINKTYPE }
fn expected_size() -> Option<u16> { Some(2) }
}
pub struct LINKKEYS;
impl Record<Int2> for LINKKEYS {
fn tag() -> u16 { RTAG_LINKKEYS }
fn expected_size() -> Option<u16> { Some(2) }
}
pub struct NODETYPE;
impl Record<Int2> for NODETYPE {
fn tag() -> u16 { RTAG_NODETYPE }
fn expected_size() -> Option<u16> { Some(2) }
}
pub struct PROPATTR;
impl Record<Int2> for PROPATTR {
fn tag() -> u16 { RTAG_PROPATTR }
fn expected_size() -> Option<u16> { Some(2) }
}
pub struct PROPVALUE;
impl Record<ASCII> for PROPVALUE {
fn tag() -> u16 { RTAG_PROPVALUE }
fn expected_size() -> Option<u16> { Some(2) }
}
pub struct BOX;
impl Record<Empty> for BOX {
fn tag() -> u16 { RTAG_BOX }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct BOXTYPE;
impl Record<Int2> for BOXTYPE {
fn tag() -> u16 { RTAG_BOXTYPE }
fn expected_size() -> Option<u16> { Some(2) }
}
pub struct PLEX;
impl Record<Int4> for PLEX {
fn tag() -> u16 { RTAG_PLEX }
fn expected_size() -> Option<u16> { Some(4) }
}
pub struct BGNEXTN;
impl Record<Int4> for BGNEXTN {
fn tag() -> u16 { RTAG_BGNEXTN }
fn expected_size() -> Option<u16> { Some(4) }
}
pub struct ENDEXTN;
impl Record<Int4> for ENDEXTN {
fn tag() -> u16 { RTAG_ENDEXTN }
fn expected_size() -> Option<u16> { Some(4) }
}
pub struct TAPENUM;
impl Record<Int2> for TAPENUM {
fn tag() -> u16 { RTAG_TAPENUM }
fn expected_size() -> Option<u16> { Some(2) }
}
pub struct TAPECODE;
impl Record<Int2Array> for TAPECODE {
fn tag() -> u16 { RTAG_TAPECODE }
fn expected_size() -> Option<u16> { Some(2 * 6) }
}
pub struct STRCLASS;
impl Record<Int2> for STRCLASS {
fn tag() -> u16 { RTAG_STRCLASS }
fn expected_size() -> Option<u16> { Some(2) }
}
pub struct RESERVED;
impl Record<Int2Array> for RESERVED {
fn tag() -> u16 { RTAG_RESERVED }
fn expected_size() -> Option<u16> { Some(2) }
}
pub struct FORMAT;
impl Record<Int2> for FORMAT {
fn tag() -> u16 { RTAG_FORMAT }
fn expected_size() -> Option<u16> { Some(2) }
}
pub struct MASK;
impl Record<ASCII> for MASK {
fn tag() -> u16 { RTAG_MASK }
fn expected_size() -> Option<u16> { None }
}
/// End of MASKS records
pub struct ENDMASKS;
impl Record<Empty> for ENDMASKS {
fn tag() -> u16 { RTAG_ENDMASKS }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct LIBDIRSIZE;
impl Record<Int2> for LIBDIRSIZE {
fn tag() -> u16 { RTAG_LIBDIRSIZE }
fn expected_size() -> Option<u16> { Some(2) }
}
pub struct SRFNAME;
impl Record<ASCII> for SRFNAME {
fn tag() -> u16 { RTAG_SRFNAME }
fn expected_size() -> Option<u16> { None }
}
pub struct LIBSECUR;
impl Record<Int2> for LIBSECUR {
fn tag() -> u16 { RTAG_LIBSECUR }
fn expected_size() -> Option<u16> { Some(2) }
}
pub struct BORDER;
impl Record<Empty> for BORDER {
fn tag() -> u16 { RTAG_BORDER }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct SOFTFENCE;
impl Record<Empty> for SOFTFENCE {
fn tag() -> u16 { RTAG_SOFTFENCE }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct HARDFENCE;
impl Record<Empty> for HARDFENCE {
fn tag() -> u16 { RTAG_HARDFENCE }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct SOFTWIRE;
impl Record<Empty> for SOFTWIRE {
fn tag() -> u16 { RTAG_SOFTWIRE }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct HARDWIRE;
impl Record<Empty> for HARDWIRE {
fn tag() -> u16 { RTAG_HARDWIRE }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct PATHPORT;
impl Record<Empty> for PATHPORT {
fn tag() -> u16 { RTAG_PATHPORT }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct NODEPORT;
impl Record<Empty> for NODEPORT {
fn tag() -> u16 { RTAG_NODEPORT }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct USERCONSTRAINT;
impl Record<Empty> for USERCONSTRAINT {
fn tag() -> u16 { RTAG_USERCONSTRAINT }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct SPACERERROR;
impl Record<Empty> for SPACERERROR {
fn tag() -> u16 { RTAG_SPACERERROR }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct CONTACT;
impl Record<Empty> for CONTACT {
fn tag() -> u16 { RTAG_CONTACT }
fn expected_size() -> Option<u16> { Some(0) }
}