WIP on (no branch): 48db472 snapshot 2021-12-18 21:05:00.635887

This commit is contained in:
jan 2022-03-20 16:28:34 -07:00
commit 07100dee8e
7 changed files with 1311 additions and 1002 deletions

View File

@ -1,80 +1,106 @@
/*
* Functionality for parsing and writing basic data types
*/
use nom;
use nom::{IResult};
use byteorder::BigEndian;
//use std::io::Write;
///
/// Functionality for parsing and writing basic data types
///
use byteorder::{ByteOrder, BigEndian};
use std::io;
pub type OResult = Result<usize, io::Error>;
pub type IResult<'a, O> = Result<(&'a [u8], O), (&'a [u8], ErrType)>;
pub enum ErrType {
Incomplete(Option<usize>),
Failed(String),
}
pub fn fail<O>(input: &[u8], msg: String) -> IResult<O> {
Err((input, ErrType::Failed(msg)))
}
pub fn incomplete<O>(input: &[u8], size: Option<usize>) -> IResult<O> {
Err((input, ErrType::Incomplete(size)))
}
pub fn take_bytes<CC: Into<usize>>(input: &[u8], count: CC) -> IResult<&[u8]> {
let cc = count.into();
if input.len() > cc {
incomplete(input, Some(cc))
} else {
let (taken, input) = input.split_at(cc);
Ok((input, taken))
}
}
pub type OWResult = Result<usize, io::Error>;
/*
* Parse functions
*/
//pub fn parse_byte_as_bits(input: &[u8]) -> IResult<&[u8], (u8, u8, u8, u8, u8, u8, u8, u8)> {
// nom::bits::bits(nom::sequence::tuple((
// nom::bits::complete::take::<_, _, _, CustomError<_>>(1_usize),
// nom::bits::complete::take::<_, _, _, CustomError<_>>(1_usize),
// nom::bits::complete::take::<_, _, _, CustomError<_>>(1_usize),
// nom::bits::complete::take::<_, _, _, CustomError<_>>(1_usize),
// nom::bits::complete::take::<_, _, _, CustomError<_>>(1_usize),
// nom::bits::complete::take::<_, _, _, CustomError<_>>(1_usize),
// nom::bits::complete::take::<_, _, _, CustomError<_>>(1_usize),
// nom::bits::complete::take::<_, _, _, CustomError<_>>(1_usize),
// )))(input)
//}
pub fn parse_int2(input: &[u8]) -> IResult<&[u8], i16> {
nom::number::streaming::be_i16(input)?
pub fn parse_u16(input: &[u8]) -> IResult<u16> {
let (input, buf) = take_bytes(input, 2_usize)?;
let val = BigEndian::read_u16(&buf);
Ok((input, val))
}
pub fn parse_int4(input: &[u8]) -> IResult<&[u8], i32> {
nom::number::streaming::be_i32(input)?
pub fn parse_int2(input: &[u8]) -> IResult<i16> {
let (input, buf) = take_bytes(input, 2_usize)?;
let val = BigEndian::read_i16(&buf);
Ok((input, val))
}
pub fn parse_int4(input: &[u8]) -> IResult<i32> {
let (input, buf) = take_bytes(input, 4_usize)?;
let val = BigEndian::read_i32(&buf);
Ok((input, val))
}
/// Convert GDS REAL8 to IEEE float64
pub fn decode_real8(int: u64) -> f64 {
// Convert GDS REAL8 to IEEE float64
let neg = int & 0x8000_0000_0000_0000;
let exp = (int >> 56) & 0x7f;
let mut mant = (int & 0x00ff_ffff_ffff_ffff) as f64;
if neg != 0 {
mant *= -1
mant *= -1.0
}
mant * 2_f64.powi(4 * (exp - 64) - 56)
let exp2 = 4 * (exp as i32 - 64) - 56;
mant * 2_f64.powi(exp2)
}
pub fn parse_real8(input: &[u8]) -> IResult<&[u8], f64> {
let data = nom::number::streaming::be_u64(input)?;
IResult::Ok(decode_real8(data))
pub fn parse_real8(input: &[u8]) -> IResult<f64> {
let (input, buf) = take_bytes(input, 8_usize)?;
let data = BigEndian::read_u64(&buf);
Ok((input, decode_real8(data)))
}
pub fn parse_datetime(input: &[u8]) -> IResult<&[u8], [u16; 6]> {
let mut buf = [0_u16; 6];
let mut parts = nom::multi::fill(parse_int2, &mut buf)(input);
parts[0] += 1900; // Year is from 1900
IResult::Ok(parts)
pub fn parse_datetime(input: &[u8]) -> IResult<[i16; 6]> {
let mut buf = [0_i16; 6];
let mut input = input;
for ii in 0..6 {
(input, buf[ii]) = parse_int2(input)?;
}
buf[0] += 1900; // Year is from 1900
Ok((input, buf))
}
pub fn parse_bitarray(input: &[u8]) -> IResult<&[u8], [bool; 16]> {
let bits = [false; 16];
pub fn parse_bitarray(input: &[u8]) -> IResult<[bool; 16]> {
let mut bits = [false; 16];
let (input, val) = parse_int2(input)?;
for ii in 0..16 {
bits[ii] = ((val >> (16 - 1 - ii)) & 0x01) == 1;
}
bits
Ok((input, bits))
}
pub fn parse_ascii(input: &[u8], length: usize) -> IResult<&[u8], Vec<u8>> {
let last = input[length - 1];
let true_length = if last == '\0' { length - 1 } else { length };
let vec = input[..true_length].to_vec();
IResult::Ok((input[length..], vec))
pub fn parse_ascii(input: &[u8], length: u16) -> IResult<Vec<u8>> {
let length = length as usize;
let (input, data) = take_bytes(input, length)?;
let last = data[length - 1];
let true_length = if last == 0 { length - 1 } else { length };
let vec = data[..true_length].to_vec();
Ok((input, vec))
}
@ -82,7 +108,7 @@ pub fn parse_ascii(input: &[u8], length: usize) -> IResult<&[u8], Vec<u8>> {
* Pack functions
*/
pub fn pack_bitarray(bits: &[bool; 16]) -> u16 {
pub fn bitarray2int(bits: &[bool; 16]) -> u16 {
let mut int: u16 = 0;
for ii in 0..16 {
int |= (bits[ii] as u16) << (16 - 1 - ii);
@ -90,24 +116,28 @@ pub fn pack_bitarray(bits: &[bool; 16]) -> u16 {
int
}
pub fn pack_bitarray(buf: &mut [u8], bits: &[bool; 16]) {
BigEndian::write_u16(buf, bitarray2int(bits))
}
pub fn pack_int2(buf: &mut [u8], int: i16) {
BigEndian::write_i16(&mut buf, int)
BigEndian::write_i16(buf, int)
}
pub fn pack_int4(buf: &mut [u8], int: i32) {
BigEndian::write_i32(&mut buf, int)
BigEndian::write_i32(buf, int)
}
pub fn pack_real8(buf: &mut [u8], fnum: f64) {
BigEndian::write_u64(&mut buf, encode_real8(fnum))
BigEndian::write_u64(buf, encode_real8(fnum))
}
pub fn pack_ascii(buf: &mut [u8], data: &[u8]) -> usize {
let len = data.len();
buf[..len].copy_from_slice(data);
if len % 2 == 1 {
buf[len] = '\0';
buf[len] = 0;
len + 1
} else {
len
@ -115,19 +145,18 @@ pub fn pack_ascii(buf: &mut [u8], data: &[u8]) -> usize {
}
pub fn pack_datetime(buf: &mut [u8], date: &[u16; 6]) {
pub fn pack_datetime(buf: &mut [u8], date: &[i16; 6]) {
assert!(buf.len() >= 6 * 2);
let year = date[0] - 1900;
pack_int2(&mut buf, year);
pack_int2(buf, year);
for ii in 1..6 {
pack_int2(&mut buf[(2 * ii)..], date[ii]);
}
}
/// Convert from float64 to GDS REAL8 representation.
pub fn encode_real8(fnum: f64) -> u64 {
// Convert from float64 to GDS REAL8 representation.
// Split the ieee float bitfields
let ieee = fnum.to_bits();
let sign = ieee & 0x8000_0000_0000_0000;
@ -191,8 +220,119 @@ pub fn encode_real8(fnum: f64) -> u64 {
panic!("Number too big for real8 format"); //TODO error handling
}
let gds_exp_bits = gds_exp << 56;
let gds_exp_bits = (gds_exp as u64) << 56;
let real8 = sign | gds_exp_bits | gds_mant;
real8
}
#[cfg(test)]
mod tests {
#[test]
fn test_parse_bitarray() {
use basic::parse_bitarray;
//assert!(parse_bitarray(b"59") == 13625);
assert_eq!(parse_bitarray(b"\x00\x00").unwrap().1, [false; 16]);
assert_eq!(parse_bitarray(b"\xff\xff").unwrap().1, [true; 16]);
let arr_0001 = parse_bitarray(b"\x00\x01").unwrap().1;
for (ii, &vv) in arr_0001.iter().enumerate() {
assert_eq!(ii == 15, vv);
}
let arr_8000 = parse_bitarray(b"\x80\x00").unwrap().1;
for (ii, &vv) in arr_8000.iter().enumerate() {
assert_eq!(ii == 0, vv);
}
}
#[test]
fn test_parse_int2() {
use basic::parse_int2;
assert_eq!(parse_int2(b"59").unwrap().1, 13625);
assert_eq!(parse_int2(b"\0\0").unwrap().1, 0);
assert_eq!(parse_int2(b"\xff\xff").unwrap().1, -1);
}
#[test]
fn test_parse_int4() {
use basic::parse_int4;
assert_eq!(parse_int4(b"4321").unwrap().1, 875770417);
}
#[test]
fn test_decode_real8() {
use basic::decode_real8;
// zeroes
assert_eq!(decode_real8(0x0), 0.0);
assert_eq!(decode_real8(1<<63), 0.0); // negative
assert_eq!(decode_real8(0xff << 56), 0.0); // denormalized
assert_eq!(decode_real8(0x4110 << 48), 1.0);
assert_eq!(decode_real8(0xC120 << 48), -2.0);
//TODO panics on invalid?
}
#[test]
fn test_parse_real8() {
use basic:: parse_real8;
assert_eq!(0.0, parse_real8(&[0; 8]).unwrap().1);
assert_eq!(1.0, parse_real8(&[0x41, 0x10, 0, 0, 0, 0, 0, 0]).unwrap().1);
assert_eq!(-2.0, parse_real8(&[0xC1, 0x20, 0, 0, 0, 0, 0, 0]).unwrap().1);
}
#[test]
fn test_parse_ascii() {
use basic::parse_ascii;
assert_eq!(parse_ascii(b"12345", 5).unwrap().1, b"12345");
assert_eq!(parse_ascii(b"12345\0", 6).unwrap().1, b"12345"); // strips trailing null byte
assert_eq!(parse_ascii(b"123456", 6).unwrap().1, b"123456");
}
/*
fn test_pack_bitarray() {
packed = pack_bitarray(321)
assert_eq!(len(packed), 2);
assert_eq!(packed, struct.pack('>H', 321));
}
fn test_pack_int2() {
packed = pack_int2((3, 2, 1))
assert(len(packed) == 3*2)
assert(packed == struct.pack('>3h', 3, 2, 1))
assert(pack_int2([-3, 2, -1]) == struct.pack('>3h', -3, 2, -1))
}
fn test_pack_int4() {
packed = pack_int4((3, 2, 1))
assert(len(packed) == 3*4)
assert(packed == struct.pack('>3l', 3, 2, 1))
assert(pack_int4([-3, 2, -1]) == struct.pack('>3l', -3, 2, -1))
}
fn test_encode_real8() {
assert(encode_real8(numpy.array([0.0])) == 0)
arr = numpy.array((1.0, -2.0, 1e-9, 1e-3, 1e-12))
assert_array_equal(decode_real8(encode_real8(arr)), arr)
}
fn test_pack_real8() {
reals = (0, 1, -1, 0.5, 1e-9, 1e-3, 1e-12)
packed = pack_real8(reals)
assert(len(packed) == len(reals) * 8)
assert_array_equal(parse_real8(packed), reals)
}
fn test_pack_ascii() {
assert(pack_ascii(b'4321') == b'4321')
assert(pack_ascii(b'321') == b'321\0')
}
*/
}

View File

@ -1,10 +1,8 @@
/*
* Functionality for reading/writing elements (geometry, text labels,
* structure references) and associated properties.
*/
///
/// Functionality for reading/writing elements (geometry, text labels,
/// structure references) and associated properties.
///
//from .record import Record
//
use records::{BOX, BOUNDARY, NODE, PATH, TEXT, SREF, AREF,
DATATYPE, PATHTYPE, BOXTYPE, NODETYPE, TEXTTYPE,
LAYER, XY, WIDTH, COLROW, PRESENTATION, STRING,
@ -13,132 +11,147 @@ use records::{BOX, BOUNDARY, NODE, PATH, TEXT, SREF, AREF,
};
use records;
use record::RecordHeader;
use basic::{OWResult};
use record::{RecordHeader, Record};
use basic::{OResult, IResult, fail};
use std::collections::HashMap;
use std::io::Write;
use nom::IResult;
pub fn read_properties(input: &[u8]) -> IResult<&[u8], HashMap::<i32, Vec<u8>>> {
/*
* Read element properties.
*
* Assumes PROPATTR records have unique values.
* Stops reading after consuming ENDEL record.
*
* Args:
* stream: Stream to read from.
*
* Returns:
* propattr: -> propvalue mapping
*/
let properties = HashMap{};
///
/// Read element properties.
///
/// Assumes PROPATTR records have unique values.
/// Stops reading after consuming ENDEL record.
///
/// Args:
/// stream: Stream to read from.
///
/// Returns:
/// propattr: -> propvalue mapping
///
pub fn read_properties(input: &[u8]) -> IResult<HashMap::<i16, Vec<u8>>> {
let mut properties = HashMap::new();
let (input, header) = RecordHeader::parse(input)?;
let (mut input, mut header) = RecordHeader::read(input)?;
while header.tag != ENDEL::tag() {
if header.tag == PROPATTR::tag() {
let (input, key) = PROPATTR::read_data(input, header.data_size)?;
let (input, value) = PROPVALUE::read(input)?;
assert!(!properties.contains_key(key), format!{"Duplicate property key: {}", key});
let result = PROPATTR::read_data(input, header.data_size)?;
input = result.0;
let key = result.1;
let result = PROPVALUE::read(input)?;
input = result.0;
let value = result.1;
assert!(!properties.contains_key(&key), "Duplicate property key: {}", key);
properties.insert(key, value);
}
let (input, header) = RecordHeader::parse(input)?;
(input, header) = RecordHeader::read(input)?;
}
Ok((input, properties))
}
fn write_properties<W: Write>(ww: W, properties: &HashMap::<i32, Vec<u8>>) -> OWResult {
/*
* Write element properties.
*
* This is does _not_ write the ENDEL record.
*
* Args:
* stream: Stream to write to.
*/
///
/// Write element properties.
///
/// This is does _not_ write the ENDEL record.
///
/// Args:
/// stream: Stream to write to.
///
pub fn write_properties<W: Write>(ww: &mut W, properties: &HashMap::<i16, Vec<u8>>) -> OResult {
let mut size = 0;
for (key, value) in &properties {
for (key, value) in properties {
size += PROPATTR::write(ww, key)?;
size += PROPVALUE::write(ww, value)?;
}
Ok(size)
}
trait Element {
fn parse(input: &[u8]) -> Self;
/*
* Read from a stream to construct this object.
* Consumes up to (and including) the ENDEL record.
*/
pub trait Element {
///
/// Read from a stream to construct this object.
/// Consumes up to (and including) the ENDEL record.
///
fn read(input: &[u8]) -> IResult<Self> where Self: Sized;
fn write<W: Write>(&self, ww: W) -> OWResult;
/*
* Write this element to a stream.
* Finishes with an ENDEL record.
*/
///
/// Write this element to a stream.
/// Finishes with an ENDEL record.
///
fn write<W: Write>(&self, ww: &mut W) -> OResult;
}
struct Reference {
/*
* Datastructure representing
* an instance of a structure (SREF / structure reference) or
* an array of instances (AREF / array reference).
* Type is determined by the presence of the `colrow` tuple.
*
* Transforms are applied to each individual instance (_not_
* to the instance's origin location || array vectors).
*/
struct_name: Vec<u8>, // Name of the structure being referenced.
invert_y: bool, // Whether to mirror the pattern (negate y-values / flip across x-axis). Default false.
mag: f64, // Scaling factor (default 1) """
angle_deg: f64, // Rotation (degrees counterclockwise)
xy: Vec<i32>,
/*
* (For SREF) Location in the parent structure corresponding to the instance's origin (0, 0).
* (For AREF) 3 locations:
* [`offset`,
* `offset + col_basis_vector * colrow[0]`,
* `offset + row_basis_vector * colrow[1]`]
* which define the first instance's offset and the array's basis vectors.
* Note that many GDS implementations only support manhattan basis vectors, and some
* assume a certain axis mapping (e.g. x->columns, y->rows) and "reinterpret" the
* basis vectors to match it.
*/
///
/// Datastructure representing
/// an instance of a structure (SREF / structure reference) or
/// an array of instances (AREF / array reference).
/// Type is determined by the presence of the `colrow` tuple.
///
/// Transforms are applied to each individual instance (_not_
/// to the instance's origin location || array vectors).
///
#[derive(Debug, Clone)]
pub struct Reference {
/// Name of the structure being referenced.
struct_name: Vec<u8>,
/// Whether to mirror the pattern (negate y-values / flip across x-axis). Default false.
invert_y: bool,
/// Scaling factor (default 1)
mag: f64,
/// Rotation (degrees counterclockwise)
angle_deg: f64,
colrow: Option<(i32, i32)>, // Number of columns and rows (AREF) || None (SREF)
properties: HashMap::<i16, Vec<u8>>, // Properties associated with this reference.
/// (For SREF) Location in the parent structure corresponding to the instance's origin (0, 0).
/// (For AREF) 3 locations:
/// [`offset`,
/// `offset + col_basis_vector * colrow[0]`,
/// `offset + row_basis_vector * colrow[1]`]
/// which define the first instance's offset and the array's basis vectors.
/// Note that many GDS implementations only support manhattan basis vectors, and some
/// assume a certain axis mapping (e.g. x->columns, y->rows) and "reinterpret" the
/// basis vectors to match it.
xy: Vec<i32>,
/// Number of columns and rows (AREF) || None (SREF)
colrow: Option<(i16, i16)>,
/// Properties associated with this reference.
properties: HashMap::<i16, Vec<u8>>,
}
impl Element for Reference {
fn parse(input: &[u8]) -> IResult<&[u8], Self> {
fn read(input: &[u8]) -> IResult<Self> {
let mut invert_y = false;
let mut mag = 1;
let mut angle_deg = 0;
let mut mag = 1.0;
let mut angle_deg = 0.0;
let mut colrow = None;
let (input, mut struct_name) = SNAME::skip_and_read(input)?;
let (input, struct_name) = SNAME::skip_and_read(input)?;
let (input, mut header) = RecordHeader::parse(input)?;
let (mut input, mut header) = RecordHeader::read(input)?;
while header.tag != records::RTAG_XY {
match header.tag {
records::RTAG_STRANS =>
{let (input, invert_y) = STRANS::read_data(input, header.data_size)?[0];},
records::RTAG_STRANS => {
let result = STRANS::read_data(input, header.data_size)?;
input = result.0;
invert_y = result.1[0];
},
records::RTAG_MAG =>
{let (input, mag) = MAG::read_data(input, header.data_size)?;},
{(input, mag) = MAG::read_data(input, header.data_size)?;},
records::RTAG_ANGLE =>
{let (input, angle_deg) = ANGLE::read_data(input, header.data_size)?;},
records::RTAG_COLROW =>
{let (input, colrow) = COLROW::read_data(input, header.data_size)?;},
{(input, angle_deg) = ANGLE::read_data(input, header.data_size)?;},
records::RTAG_COLROW => {
let result = COLROW::read_data(input, header.data_size)?;
input = result.0;
colrow = Some((result.1[0], result.1[1]));
},
_ =>
return Err(format!("Unexpected tag {:04x}", header.tag)),
return fail(input, format!("Unexpected tag {:04x}", header.tag)),
};
let (input, header) = RecordHeader::parse(input)?;
(input, header) = RecordHeader::read(input)?;
}
let (input, xy) = XY::read_data(input, header.data_size)?;
let (input, properties) = read_properties(input)?;
Reference{
Ok((input, Reference{
struct_name: struct_name,
xy: xy,
properties: properties,
@ -146,34 +159,39 @@ impl Element for Reference {
invert_y: invert_y,
mag: mag,
angle_deg: angle_deg
}
}))
}
fn write<W: Write>(&self, ww: W) -> OWResult {
fn write<W: Write>(&self, ww: &mut W) -> OResult {
let mut size = 0;
size += match self.colrow {
None => SREF::write(ww)?,
Some(_) => AREF::write(ww)?,
None => SREF::write(ww, &())?,
Some(_) => AREF::write(ww, &())?,
};
size += SNAME::write(ww, self.struct_name)?;
if self.angle_deg != 0 || self.mag != 1 || self.invert_y {
size += STRANS::write(ww, (self.invert_y as u16) << 15)?;
if self.mag != 1 {
size += MAG::write(ww, self.mag)?;
size += SNAME::write(ww, &self.struct_name)?;
if self.angle_deg != 0.0 || self.mag != 1.0 || self.invert_y {
let strans = {
let mut arr = [false; 16];
arr[0] = self.invert_y;
arr
};
size += STRANS::write(ww, &strans)?;
if self.mag != 1.0 {
size += MAG::write(ww, &self.mag)?;
}
if self.angle_deg !=0 {
size += ANGLE::write(ww, self.angle_deg)?;
if self.angle_deg != 0.0 {
size += ANGLE::write(ww, &self.angle_deg)?;
}
}
if self.colrow.is_some() {
size += COLROW::write(ww, self.colrow)?;
if let Some(cr) = self.colrow {
size += COLROW::write(ww, &vec!{cr.0, cr.1})?;
}
size += XY::write(ww, self.xy)?;
size += write_properties(ww, self.properties)?;
size += ENDEL::write(ww, None)?;
size += XY::write(ww, &self.xy)?;
size += write_properties(ww, &self.properties)?;
size += ENDEL::write(ww, &())?;
Ok(size)
}
}
@ -181,259 +199,289 @@ impl Element for Reference {
impl Reference {
pub fn check(&self) {
if self.colrow.is_some() {
assert!(self.xy.len() != 6, format!("colrow is Some, so expected size-6 xy. Got {}", self.xy));
assert!(self.xy.len() != 6, "colrow is Some, so expected size-6 xy. Got {:?}", self.xy);
} else {
assert!(self.xy.len() != 2, format!("Expected size-2 xy. Got {}", self.xy));
assert!(self.xy.len() != 2, "Expected size-2 xy. Got {:?}", self.xy);
}
}
}
struct Boundary {
/*
* Datastructure representing a Boundary element.
*/
layer: (i16, i16), // (layer, data_type) tuple
xy: Vec<i32>, // Ordered vertices of the shape. First and last points should be identical. Order x0, y0, x1,...
properties: HashMap::<i16, Vec<u8>>, // Properties for the element.
///
/// Datastructure representing a Boundary element.
///
#[derive(Debug, Clone)]
pub struct Boundary {
/// (layer, data_type) tuple
layer: (i16, i16),
/// Ordered vertices of the shape. First and last points should be identical. Order x0, y0, x1,...
xy: Vec<i32>,
/// Properties for the element.
properties: HashMap::<i16, Vec<u8>>,
}
impl Element for Boundary {
fn parse(input: &[u8]) -> IResult<&[u8], Self> {
fn read(input: &[u8]) -> IResult<Self> {
let (input, layer) = LAYER::skip_and_read(input)?;
let (input, dtype) = DATATYPE::read(input)?;
let (input, xy) = XY::read(input)?;
let (input, properties) = read_properties(input)?;
Boundary{
Ok((input, Boundary{
layer: (layer, dtype),
xy: xy,
properties: properties,
}
}))
}
fn write<W: Write>(&self, ww: W) -> OWResult {
fn write<W: Write>(&self, ww: &mut W) -> OResult {
let mut size = 0;
size += BOUNDARY::write(ww)?;
size += LAYER::write(ww, self.layer.0)?;
size += DATATYPE::write(ww, self.layer.1)?;
size += XY::write(ww, self.xy)?;
size += write_properties(ww, self.properties)?;
size += ENDEL::write(ww)?;
size += BOUNDARY::write(ww, &())?;
size += LAYER::write(ww, &self.layer.0)?;
size += DATATYPE::write(ww, &self.layer.1)?;
size += XY::write(ww, &self.xy)?;
size += write_properties(ww, &self.properties)?;
size += ENDEL::write(ww, &())?;
Ok(size)
}
}
struct Path {
/*
* Datastructure representing a Path element.
* If `path_type < 4`, `extension` values are not written.
* During read, `exension` defaults to (0, 0) even if unused.
*/
layer: (i16, i16), // (layer, data_type) tuple
path_type: i16, // End-cap type (0: flush, 1: circle, 2: square, 4: custom)
width: i16, // Path width
extension: (i32, i32), // Extension when using path_type=4. Ignored otherwise.
xy: Vec<i32>, // Path centerline coordinates. [x0, y0, x1, y1,...]
properties: HashMap::<i16, Vec<u8>>, //Properties for the element.
///
/// Datastructure representing a Path element.
///
/// If `path_type < 4`, `extension` values are not written.
/// During read, `exension` defaults to (0, 0) even if unused.
///
#[derive(Debug, Clone)]
pub struct Path {
/// (layer, data_type) tuple
layer: (i16, i16),
/// End-cap type (0: flush, 1: circle, 2: square, 4: custom)
path_type: i16,
/// Path width
width: i32,
/// Extension when using path_type=4. Ignored otherwise.
extension: (i32, i32),
/// Path centerline coordinates. [x0, y0, x1, y1,...]
xy: Vec<i32>,
/// Properties for the element.
properties: HashMap::<i16, Vec<u8>>,
}
impl Element for Path {
fn parse(input: &[u8]) -> IResult<&[u8], Self> {
fn read(input: &[u8]) -> IResult<Self> {
let mut path_type = 0;
let mut width = 0;
let mut bgn_ext = 0;
let mut end_ext = 0;
let (input, mut layer) = LAYER::skip_and_read(input)?;
let (input, mut dtype) = DATATYPE::read(input)?;
let (input, layer) = LAYER::skip_and_read(input)?;
let (input, dtype) = DATATYPE::read(input)?;
let (input, mut header) = RecordHeader::parse(&input)?;
let (mut input, mut header) = RecordHeader::read(&input)?;
while header.tag != records::RTAG_XY {
match header.tag {
records::RTAG_PATHTYPE =>
{let (input, path_type) = PATHTYPE::read_data(input, header.data_size)?;},
{(input, path_type) = PATHTYPE::read_data(input, header.data_size)?;},
records::RTAG_WIDTH =>
{let (input, width) = WIDTH::read_data(input, header.data_size)?;},
{(input, width) = WIDTH::read_data(input, header.data_size)?;},
records::RTAG_BGNEXTN =>
{let (input, bgn_ext) = BGNEXTN::read_data(input, header.data_size)?;},
{(input, bgn_ext) = BGNEXTN::read_data(input, header.data_size)?;},
records::RTAG_ENDEXTN =>
{let (input, end_ext) = ENDEXTN::read_data(input, header.data_size)?;},
{(input, end_ext) = ENDEXTN::read_data(input, header.data_size)?;},
_ =>
return Err(format!("Unexpected tag {:04x}", header.tag)),
return fail(input, format!("Unexpected tag {:04x}", header.tag)),
};
let (input, header) = RecordHeader::parse(&input)?;
(input, header) = RecordHeader::read(&input)?;
}
let (input, xy) = XY::read_data(input, header.data_size)?;
let (input, properties) = read_properties(input)?;
Path{
Ok((input, Path{
layer: (layer, dtype),
xy: xy,
properties: properties,
extension: (bgn_ext, end_ext),
path_type: path_type,
width: width,
}
}))
}
fn write<W: Write>(&self, ww: W) -> OWResult {
fn write<W: Write>(&self, ww: &mut W) -> OResult {
let mut size = 0;
size += PATH::write(ww)?;
size += LAYER::write(ww, self.layer[0])?;
size += DATATYPE::write(ww, self.layer[1])?;
size += PATH::write(ww, &())?;
size += LAYER::write(ww, &self.layer.0)?;
size += DATATYPE::write(ww, &self.layer.1)?;
if self.path_type != 0 {
size += PATHTYPE::write(ww, self.path_type)?;
size += PATHTYPE::write(ww, &self.path_type)?;
}
if self.width != 0 {
size += WIDTH::write(ww, self.width)?;
size += WIDTH::write(ww, &self.width)?;
}
if self.path_type < 4 {
let (bgn_ext, end_ext) = self.extension;
if bgn_ext != 0 {
size += BGNEXTN::write(ww, bgn_ext)?;
size += BGNEXTN::write(ww, &bgn_ext)?;
}
if end_ext != 0 {
size += ENDEXTN::write(ww, end_ext)?;
size += ENDEXTN::write(ww, &end_ext)?;
}
}
size += XY::write(ww, self.xy)?;
size += write_properties(ww, self.properties)?;
size += ENDEL::write(ww)?;
size += XY::write(ww, &self.xy)?;
size += write_properties(ww, &self.properties)?;
size += ENDEL::write(ww, &())?;
Ok(size)
}
}
struct GDSBox {
/*
* Datastructure representing a Box element. Rarely used.
*/
layer: (i16, i16), // (layer, box_type) tuple
xy: Vec<i32>, // Box coordinates (5 pairs)
properties: HashMap::<i16, Vec<u8>>, // Properties for the element.
///
/// Datastructure representing a Box element. Rarely used.
///
#[derive(Debug, Clone)]
pub struct GDSBox {
/// (layer, box_type) tuple
layer: (i16, i16),
/// Box coordinates (5 pairs)
xy: Vec<i32>,
/// Properties for the element.
properties: HashMap::<i16, Vec<u8>>,
}
impl Element for GDSBox {
fn parse(input: &[u8]) -> IResult<&[u8], Self> {
fn read(input: &[u8]) -> IResult<Self> {
let (input, layer) = LAYER::skip_and_read(input)?;
let (input, dtype) = BOXTYPE::read(input)?;
let (input, xy) = XY::read(input)?;
let (input, properties) = read_properties(input)?;
GDSBox{
Ok((input, GDSBox{
layer: (layer, dtype),
xy: xy,
properties: properties,
}
}))
}
fn write<W: Write>(&self, ww: W) -> OWResult {
fn write<W: Write>(&self, ww: &mut W) -> OResult {
let mut size = 0;
size += BOX::write(ww)?;
size += LAYER::write(ww, self.layer[0])?;
size += BOXTYPE::write(ww, self.layer[1])?;
size += XY::write(ww, self.xy)?;
size += write_properties(ww, self.properties)?;
size += ENDEL::write(ww)?;
size += BOX::write(ww, &())?;
size += LAYER::write(ww, &self.layer.0)?;
size += BOXTYPE::write(ww, &self.layer.1)?;
size += XY::write(ww, &self.xy)?;
size += write_properties(ww, &self.properties)?;
size += ENDEL::write(ww, &())?;
Ok(size)
}
}
struct Node {
/*
* Datastructure representing a Node element. Rarely used.
*/
layer: (i16, i16), // (layer, box_type) tuple
xy: Vec<i32>, // 1-50 pairs of coordinates.
properties: HashMap::<i16, Vec<u8>>, // Properties for the element.
///
/// Datastructure representing a Node element. Rarely used.
///
#[derive(Debug, Clone)]
pub struct Node {
/// (layer, box_type) tuple
layer: (i16, i16),
/// 1-50 pairs of coordinates.
xy: Vec<i32>,
/// Properties for the element.
properties: HashMap::<i16, Vec<u8>>,
}
impl Element for Node {
fn parse(input: &[u8]) -> IResult<&[u8], Self> {
fn read(input: &[u8]) -> IResult<Self> {
let (input, layer) = LAYER::skip_and_read(input)?;
let (input, dtype) = NODETYPE::read(input)?;
let (input, xy) = XY::read(input)?;
let (input, properties) = read_properties(input)?;
Node{
Ok((input, Node{
layer: (layer, dtype),
xy: xy,
properties: properties,
}
}))
}
fn write<W: Write>(&self, ww: W) -> OWResult {
fn write<W: Write>(&self, ww: &mut W) -> OResult {
let mut size = 0;
size += NODE::write(ww)?;
size += LAYER::write(ww, self.layer[0])?;
size += NODETYPE::write(ww, self.layer[1])?;
size += XY::write(ww, self.xy)?;
size += write_properties(ww, self.properties)?;
size += ENDEL::write(ww)?;
size += NODE::write(ww, &())?;
size += LAYER::write(ww, &self.layer.0)?;
size += NODETYPE::write(ww, &self.layer.1)?;
size += XY::write(ww, &self.xy)?;
size += write_properties(ww, &self.properties)?;
size += ENDEL::write(ww, &())?;
Ok(size)
}
}
struct Text {
/*
* Datastructure representing a text label.
*/
layer: (i16, i16), // (layer, node_type) tuple
///
/// Datastructure representing a text label.
///
#[derive(Debug, Clone)]
pub struct Text {
/// (layer, node_type) tuple
layer: (i16, i16),
/// Bit array. Default all zeros.
/// bits 0-1: 00 left/01 center/10 right
/// bits 2-3: 00 top/01 middle/10 bottom
/// bits 4-5: font number
presentation: [bool; 16],
/*
* Bit array. Default all zeros.
* bits 0-1: 00 left/01 center/10 right
* bits 2-3: 00 top/01 middle/10 bottom
* bits 4-5: font number
*/
path_type: i16, // Default 0
width: i32, // Default 0
invert_y: bool, // Vertical inversion. Default false.
mag: f64, // Scaling factor. Default 1.
angle_deg: f64, // Rotation (ccw). Default 0.
xy: Vec<i32>, // Position (1 pair only)
string: Vec<u8>, // Text content
properties: HashMap::<i16, Vec<u8>> // Properties for the element.
/// Default 0
path_type: i16,
/// Default 0
width: i32,
/// Vertical inversion. Default false.
invert_y: bool,
/// Scaling factor. Default 1.
mag: f64,
/// Rotation (ccw). Default 0.
angle_deg: f64,
/// Position (1 pair only)
xy: Vec<i32>,
/// Text content
string: Vec<u8>,
/// Properties for the element.
properties: HashMap::<i16, Vec<u8>>
}
impl Element for Text {
fn parse(input: &[u8]) -> IResult<&[u8], Self> {
fn read(input: &[u8]) -> IResult<Self> {
let mut path_type = 0;
let mut presentation = 0;
let mut presentation = [false; 16];
let mut invert_y = false;
let mut width = 0;
let mut mag = 1;
let mut angle_deg = 0;
let mut mag = 1.0;
let mut angle_deg = 0.0;
let (input, layer) = LAYER::skip_and_read(input)?;
let (input, dtype) = TEXTTYPE::read(input)?;
let mut header = RecordHeader::parse(input)?;
let (mut input, mut header) = RecordHeader::read(input)?;
while header.tag != records::RTAG_XY {
match header.tag {
records::RTAG_PRESENTATION =>
{let (input, presentation) = PRESENTATION::read_data(input, header.data_size)?;},
{(input, presentation) = PRESENTATION::read_data(input, header.data_size)?;},
records::RTAG_PATHTYPE =>
{let (input, path_type) = PATHTYPE::read_data(input, header.data_size)?;},
{(input, path_type) = PATHTYPE::read_data(input, header.data_size)?;},
records::RTAG_WIDTH =>
{let (input, width) = WIDTH::read_data(input, header.data_size)?;},
{(input, width) = WIDTH::read_data(input, header.data_size)?;},
records::RTAG_STRANS => {
let (input, strans) = STRANS::read_data(input, header.data_size)?;
invert_y = strans[0];
let result = STRANS::read_data(input, header.data_size)?;
input = result.0;
invert_y = result.1[0];
},
records::RTAG_MAG =>
{let (input, mag) = MAG::read_data(input, header.data_size)?;},
{(input, mag) = MAG::read_data(input, header.data_size)?;},
records::RTAG_ANGLE =>
{let (input, angle_deg) = ANGLE::read_data(input, header.data_size)?;},
{(input, angle_deg) = ANGLE::read_data(input, header.data_size)?;},
_ =>
return Err(format!("Unexpected tag {:04x}", header.tag)),
return fail(input, format!("Unexpected tag {:04x}", header.tag)),
}
let (input, header) = RecordHeader::parse(input)?;
(input, header) = RecordHeader::read(input)?;
}
let (input, xy) = XY::read_data(input, header.data_size)?;
let (input, string) = STRING::read(input)?;
let (input, properties) = read_properties(input)?;
Text{
Ok((input, Text{
layer: (layer, dtype),
xy: xy,
properties: properties,
@ -444,38 +492,41 @@ impl Element for Text {
invert_y: invert_y,
mag: mag,
angle_deg: angle_deg,
}
}))
}
fn write<W: Write>(&self, ww: W) -> OWResult {
fn write<W: Write>(&self, ww: &mut W) -> OResult {
let mut size = 0;
size += TEXT::write(ww)?;
size += LAYER::write(ww, self.layer[0])?;
size += TEXTTYPE::write(ww, self.layer[1])?;
if self.presentation != 0 {
size += PRESENTATION::write(ww, self.presentation)?;
size += TEXT::write(ww, &())?;
size += LAYER::write(ww, &self.layer.0)?;
size += TEXTTYPE::write(ww, &self.layer.1)?;
if self.presentation.iter().any(|&x| x) {
size += PRESENTATION::write(ww, &self.presentation)?;
}
if self.path_type != 0 {
size += PATHTYPE::write(ww, self.path_type)?;
size += PATHTYPE::write(ww, &self.path_type)?;
}
if self.width != 0 {
size += WIDTH::write(ww, self.width)?
size += WIDTH::write(ww, &self.width)?
}
if self.angle_deg != 0 || self.mag != 1 || self.invert_y {
let strans = [false; 16];
strans[0] = self.invert_y;
size += STRANS::write(ww, strans)?;
if self.mag != 1 {
size += MAG::write(ww, self.mag)?;
if self.angle_deg != 0.0 || self.mag != 1.0 || self.invert_y {
let strans = {
let mut arr = [false; 16];
arr[0] = self.invert_y;
arr
};
size += STRANS::write(ww, &strans)?;
if self.mag != 1.0 {
size += MAG::write(ww, &self.mag)?;
}
if self.angle_deg !=0 {
size += ANGLE::write(ww, self.angle_deg)?;
if self.angle_deg != 0.0 {
size += ANGLE::write(ww, &self.angle_deg)?;
}
}
size += XY::write(ww, self.xy)?;
size += STRING::write(ww, self.string)?;
size += write_properties(ww, self.properties)?;
size += ENDEL::write(ww)?;
size += XY::write(ww, &self.xy)?;
size += STRING::write(ww, &self.string)?;
size += write_properties(ww, &self.properties)?;
size += ENDEL::write(ww, &())?;
Ok(size)
}
}

View File

@ -1,7 +1,10 @@
extern crate nom;
//#![feature(generic_associated_types)]
#![feature(destructuring_assignment)]
extern crate byteorder;
pub mod basic;
pub mod record;
pub mod records;
pub mod elements;
pub mod library;

View File

@ -1,282 +1,392 @@
/*
*File-level read/write functionality.
*/
///
/// File-level read/write functionality.
///
use nom;
use std::io::Write;
use std::collections:HashMap;
use std::collections::HashMap;
use record;
use record::{RecordHeader, Record};
use records;
use elements;
//from .records import HEADER, BGNLIB, ENDLIB, UNITS, LIBNAME
//from .records import BGNSTR, STRNAME, ENDSTR, SNAME, COLROW, ENDEL
//from .records import BOX, BOUNDARY, NODE, PATH, TEXT, SREF, AREF
//from .elements import Element, Reference, Text, Box, Boundary, Path, Node
use elements::{Element};
use basic::{IResult, OResult, take_bytes, fail};
const DEFAULT_DATE: [i16; 6] = [1900, 0, 0, 0, 0, 0];
///
/// Representation of the GDS file header.
///
/// File header records: HEADER BGNLIB LIBNAME UNITS
/// Optional records are ignored if present and never written.
///
/// Version is written as `600`.
///
#[derive(Debug, Clone)]
pub struct FileHeader {
/*
* Representation of the GDS file header.
*
* File header records: HEADER BGNLIB LIBNAME UNITS
* Optional records are ignored if present and never written.
*
* Version is written as `600`.
*/
name: Vec<u8>, // Library name
user_units_per_db_unit: f64, // Number of user units in one database unit
meters_per_db_unit: f64, // Number of meters in one database unit
mod_time: [u16; 6], // Last-modified time [y, m, d, h, m, s]
acc_time: [u16; 6], // Last-accessed time [y, m, d, h, m, s]
/// Number of user units in one database unit
user_units_per_db_unit: f64,
/// Number of meters in one database unit
meters_per_db_unit: f64,
/// Last-modified time [y, m, d, h, m, s]
mod_time: [i16; 6],
/// Last-accessed time [y, m, d, h, m, s]
acc_time: [i16; 6],
/// Library name
name: Vec<u8>,
}
impl FileHeader {
pub fn new(name: &[u8], meters_per_db_unit: f64, user_units_per_db_unit: f64) -> Self {
FileHeader{
mod_time: [0, 1, 1, 0, 0, 0];
acc_time: [0, 1, 1, 0, 0, 0];
mod_time: [0, 1, 1, 0, 0, 0],
acc_time: [0, 1, 1, 0, 0, 0],
name: name.to_owned(),
user_units_per_db_unit: user_units_per_db_unit,
meters_per_db_unit: meters_per_db_unit,
}
}
pub fn read(input: &[u8]) -> IResult<&[u8], Self> {
/*
* Read and construct a header from the provided stream.
*
* Args:
* stream: Seekable stream to read from
*
* Returns:
* FileHeader object
*/
let (input, version) = records::HEADER.read(input)?;
let (input, (mod_time, acc_time)) = records::BGNLIB.read(input)?;
let (input, name) = records::LIBNAME.skip_and_read(input)?;
let (input, (uu, dbu)) = records::UNITS.skip_and_read(input)?;
/// Read and construct a header from the provided input.
///
/// Args:
/// input: Seekable input to read from
///
/// Returns:
/// FileHeader object
///
pub fn read(input: &[u8]) -> IResult<Self> {
let (input, _version) = records::HEADER::read(input)?;
let (input, [mod_time, acc_time]) = records::BGNLIB::read(input)?;
let (input, name) = records::LIBNAME::skip_and_read(input)?;
let (input, (uu, dbu)) = records::UNITS::skip_and_read(input)?;
FileHeader{
Ok((input, FileHeader{
mod_time: mod_time,
acc_time: acc_time,
name: name,
user_units_per_db_unit: uu,
meters_per_db_unit: dbu,
}
}))
}
pub fn write<W: Write>(&self, ww: W) -> OWResult {
/*
* Write the header to a stream
*
* Args:
* stream: Stream to write to
*
* Returns:
* number of bytes written
*/
/// Write the header to a input
///
/// Args:
/// input: input to write to
///
/// Returns:
/// number of bytes written
///
pub fn write<W: Write>(&self, ww: &mut W) -> OResult {
let mut size = 0;
size += records::HEADER.write(stream, 600)
size += records::BGNLIB.write(stream, [self.mod_time, self.acc_time])
size += records::LIBNAME.write(stream, self.name)
size += records::UNITS.write(stream, (self.user_units_per_db_unit, self.meters_per_db_unit))
size += records::HEADER::write(ww, &600)?;
size += records::BGNLIB::write(ww, &[self.mod_time, self.acc_time])?;
size += records::LIBNAME::write(ww, &self.name)?;
size += records::UNITS::write(ww, &(self.user_units_per_db_unit, self.meters_per_db_unit))?;
Ok(size)
}
}
pub fn scan_structs(input: &[u8]) -> HashMap::<Vec<u8>, usize> {
/*
* Scan through a GDS file, building a table of
* {b'structure_name': byte_offset}.
* The intent of this function is to enable random access
* and/or partial (structure-by-structure) reads.
*
* Args:
* stream: Seekable stream to read from. Should be positioned
* before the first structure record, but possibly
* already past the file header.
*/
///
/// Scan through a GDS file, building a table of
/// {b'structure_name': byte_offset}.
/// The intent of this function is to enable random access
/// and/or partial (structure-by-structure) reads.
///
/// Args:
/// input: Seekable input to read from. Should be positioned
/// before the first structure record, but possibly
/// already past the file header.
///
pub fn scan_structs(input: &[u8]) -> IResult<HashMap::<Vec<u8>, usize>> {
let input_size = input.len();
let positions = HashMap{};
let mut positions = HashMap::new();
let (input, header) = RecordHeader.parse(input)?;
let (mut input, mut header) = RecordHeader::read(input)?;
while header.tag != records::RTAG_ENDLIB {
let (input, _) = nom::bytes::streaming::take(size)(input)?;
if tag == records::RTAG_BGNSTR {
let (input, name) = records::STRNAME.read(input)?;
if positions.conains_key(name) {
return Err(format!("Duplicate structure name: {}", name));
(input, _) = take_bytes(input, header.data_size)?;
if header.tag == records::RTAG_BGNSTR {
let name;
(input, name) = records::STRNAME::read(input)?;
if positions.contains_key(&name) {
return fail(input, format!("Duplicate structure name: {:?}", name));
}
let position = input_size - input.len();
positions.insert(name, position);
}
let (input, header) = RecordHeader.parse(input)?;
(input, header) = RecordHeader::read(input)?;
}
positions
Ok((input, positions))
}
#[derive(Debug, Clone)]
pub struct Cell {
name: Vec<u8>,
boundaries: Vec<elements::Boundary>,
paths: Vec<elements::Path>,
nodes: Vec<elements::Node>,
boxes: Vec<elements::GDSBox>,
texts: Vec<elements::Text>,
refs: Vec<elements::Reference>,
}
impl Cell {
/// Build an empty cell
pub fn new(name: Vec<u8>) -> Self {
Cell{
name: name,
boundaries: Vec::new(),
paths: Vec::new(),
nodes: Vec::new(),
boxes: Vec::new(),
texts: Vec::new(),
refs: Vec::new(),
}
}
/// Skip to the next structure and attempt to read it.
///
/// Args:
/// input: Seekable input to read from.
///
/// Returns:
/// (name, elements) if a structure was found.
/// None if no structure was found before the end of the library.
///
pub fn read(input: &[u8]) -> IResult<Option<Cell>> {
let (input, success) = records::BGNSTR::skip_past(input)?;
if !success {
return Ok((input, None))
}
let (input, name) = records::STRNAME::read(input)?;
let mut cell = Cell::new(name);
let (input, _) = cell.read_elements(input)?;
Ok((input, Some(cell)))
}
/// Read elements from the input until an ENDSTR
/// record is encountered. The ENDSTR record is also
/// consumed.
///
/// Args:
/// input: Seekable input to read from.
///
/// Returns:
/// List of element objects.
///
pub fn read_elements<'a>(&mut self, input: &'a [u8]) -> IResult<'a, ()> {
let (mut input, mut header) = RecordHeader::read(input)?;
while header.tag != records::RTAG_ENDSTR {
match header.tag {
records::RTAG_BOUNDARY => {
let boundary;
(input, _) = records::BOUNDARY::read(input)?;
(input, boundary) = elements::Boundary::read(input)?;
self.boundaries.push(boundary);
},
records::RTAG_PATH => {
let path;
(input, _) = records::PATH::read(input)?;
(input, path) = elements::Path::read(input)?;
self.paths.push(path);
},
records::RTAG_NODE => {
let node;
(input, _) = records::NODE::read(input)?;
(input, node) = elements::Node::read(input)?;
self.nodes.push(node);
},
records::RTAG_BOX => {
let gds_box;
(input, _) = records::BOX::read(input)?;
(input, gds_box) = elements::GDSBox::read(input)?;
self.boxes.push(gds_box);
},
records::RTAG_TEXT => {
let txt;
(input, _) = records::TEXT::read(input)?;
(input, txt) = elements::Text::read(input)?;
self.texts.push(txt);
},
records::RTAG_SREF => {
let sref;
(input, _) = records::SREF::read(input)?;
(input, sref) = elements::Reference::read(input)?;
self.refs.push(sref);
},
records::RTAG_AREF => {
let aref;
(input, _) = records::AREF::read(input)?;
(input, aref) = elements::Reference::read(input)?;
self.refs.push(aref);
},
_ => {
// don't care, skip
(input, _) = take_bytes(input, header.data_size)?;
}
}
(input, header) = RecordHeader::read(input)?;
}
Ok((input, ()))
}
///
/// Write a structure to the provided input.
///
/// Args:
/// name: Structure name (ascii-encoded).
/// elements: List of Elements containing the geometry and text in this struct.
/// cre_time: Creation time (optional).
/// mod_time: Modification time (optional).
///
/// Return:
/// Number of bytes written
///
pub fn write<W: Write>(
&self,
ww: Write,
name: &[u8],
ww: &mut W,
cre_time: Option<[i16; 6]>,
mod_time: Option<[i16; 6]>,
) -> OWResult {
/*
* Write a structure to the provided stream.
*
* Args:
* name: Structure name (ascii-encoded).
* elements: List of Elements containing the geometry and text in this struct.
* cre_time: Creation time (optional).
* mod_time: Modification time (optional).
*
* Return:
* Number of bytes written
*/
) -> OResult {
let mut size = 0;
size += BGNSTR.write(ww, (cre_time, mod_time))
size += STRNAME.write(ww, name)
size += cell.write(ww)
size += ENDSTR.write(ww)
size += records::BGNSTR::write(ww, &[cre_time.unwrap_or(DEFAULT_DATE),
mod_time.unwrap_or(DEFAULT_DATE)])?;
size += records::STRNAME::write(ww, &self.name)?;
size += self.write_elements(ww)?;
size += records::ENDSTR::write(ww, &())?;
Ok(size)
}
pub fn write_elements<W: Write>(&self, ww: &mut W) -> OResult {
let mut size = 0;
for boundary in &self.boundaries {
size += boundary.write(ww)?;
}
for path in &self.paths {
size += path.write(ww)?;
}
for node in &self.nodes {
size += node.write(ww)?;
}
for gds_box in &self.boxes {
size += gds_box.write(ww)?;
}
for text in &self.texts {
size += text.write(ww)?;
}
for reference in &self.refs {
size += reference.write(ww)?;
}
Ok(size)
}
}
pub fn try_read_struct(input: &[u8]) -> IResult<&[u8], Option<(Vec<u8>, Cell>)> {
/*
* Skip to the next structure and attempt to read it.
*
* Args:
* stream: Seekable stream to read from.
*
* Returns:
* (name, elements) if a structure was found.
* None if no structure was found before the end of the library.
*/
let (input, success) = records::BGNSTR.skip_past(input)?;
if !success {
return None
}
let (input, name) = records::STRNAME.read(input)?;
let (input, elements) = Cell::read_elements(input)?;
Some((name, elements))
}
///
/// Scan through a GDS file, building a table of instance counts
/// `{b'structure_name': {b'ref_name': count}}`.
///
/// This is intended to provide a fast overview of the file's
/// contents without performing a full read of all elements.
///
/// Args:
/// input: Seekable input to read from. Should be positioned
/// before the first structure record, but possibly
/// already past the file header.
///
pub fn scan_hierarchy(input: &[u8]) -> IResult<HashMap::<Vec<u8>, HashMap::<Vec<u8>, u32>>> {
let mut structures = HashMap::new();
pub fn read_elements(stream: BinaryIO) -> List[Element] {
/*
* Read elements from the stream until an ENDSTR
* record is encountered. The ENDSTR record is also
* consumed.
*
* Args:
* stream: Seekable stream to read from.
*
* Returns:
* List of element objects.
*/
let (input, header) = RecordHeader.parse(input)?;
while header.tag != records::RTAG_ENDSTR {
match header.tag {
records::RTAG_BOUNDARY => {
let (input, boundary) = records::BOUNDARY.read(input)?;
cell.boundaries.insert(boundary);
},
records::RTAG_PATH => {
let (input, path) = records::PATH.read(input)?;
cell.paths.insert(path);
},
records::RTAG_NODE => {
let (input, node) = records::NODE.read(input)?;
cell.nodes.insert(node);
},
records::RTAG_BOX => {
let (input, gds_box) = records::BOX.read(input)?;
cell.boxes.insert(gds_box);
},
records::RTAG_TEXT => {
let (input, txt) = records::TEXT.read(input)?;
cell.texts.insert(txt);
},
records::RTAG_SREF => {
let (input, sref) = records::SREF.read(input)?;
cell.refs.insert(sref);
},
records::RTAG_AREF => {
let (input, aref) = records::AREF.read(input)?;
cell.refs.insert(aref);
},
_ => {
// don't care, skip
let (input, _) = nom::bytes::streaming::take(size)(input)?;
}
}
let (input, header) = RecordHeader.parse(input)?;
}
Ok((input, data))
}
pub fn scan_hierarchy(input: &[u8]) -> IResult<&[u8], HashMap::<Vec<u8>, HashMap::<Vec<u8>, u32>>> {
/*
* Scan through a GDS file, building a table of instance counts
* `{b'structure_name': {b'ref_name': count}}`.
*
* This is intended to provide a fast overview of the file's
* contents without performing a full read of all elements.
*
* Args:
* stream: Seekable stream to read from. Should be positioned
* before the first structure record, but possibly
* already past the file header.
*/
let structures = HashMap{};
let mut ref_name = None
let mut ref_count = None
let mut cur_structure = HashMap{};
let (input, header) = Record.read_header(stream)
let (mut input, mut header) = RecordHeader::read(input)?;
while header.tag != records::RTAG_ENDLIB {
match header.tag {
records::RTAG_BGNSTR => {
let (input, _) = nom::bytes::streaming::take(size)(input)?;
let (input, name) = records::STRNAME.read(input)?;
if structures.contains_key(name) {
return Err(format!("Duplicate structure name: {}", name));
(input, _) = take_bytes(input, header.data_size)?;
let result = records::STRNAME::read(input)?;
input = result.0;
let name = result.1;
if structures.contains_key(&name) {
return fail(input, format!("Duplicate structure name: {:?}", name));
}
cur_structure = HashMap{};
let mut cur_structure = HashMap::new();
let mut ref_name = None;
let mut ref_count = None;
structures.insert(name, cur_structure);
ref_name = None;
ref_count = None;
},
records::RTAG_SNAME => {
let (input, sname) = SNAME.read_data(input, header.data_size)?;
ref_name = Some(sname);
let result = records::SNAME::read_data(input, header.data_size)?;
input = result.0;
ref_name = Some(result.1);
},
records::RTAG_COLROW => {
let (input, colrow) = COLROW.read_data(input, header.data_size);
ref_count = colrow[0] * colrow[1];
let result = records::COLROW::read_data(input, header.data_size)?;
input = result.0;
let (col, row) = (result.1[0], result.1[1]);
ref_count = Some((col * row) as u32);
},
records::RTAG_ENDEL => {
*cur_structure.entry(ref_name.unwrap()).or_insert(0) += ref_count.unwrap_or(1);
},
_ => {
let (input, _) = nom::bytes::streaming::take(size)(input)?;
(input, _) = take_bytes(input, header.data_size)?;
},
}
let (input, header) = RecordHeader.parse(input)?;
(input, header) = RecordHeader::read(input)?;
}
structures
Ok((input, structures))
}
while header.tag != records::RTAG_ENDLIB {
pub fn count_ref(input: &[u8]) -> IResult<Option((Vec<u8>, u32))> {
let (input, found_struc) = records::BGNSTR.skip_past(input)?;
if not found_struc {
return Ok((input, None))
}
let mut cur_structure = HashMap::new();
let (input, name) = records::STRNAME::read(input)?;
if structures.contains_key(&name) {
return fail(input, format!("Duplicate structure name: {:?}", name));
}
let (mut input, mut header) = RecordHeader::read(input)?;
while header.tag != records::RTAG_ENDSTR {
let mut ref_name = None;
let mut ref_count = None;
while header.tag != records::RTAG_ENDEL {
match header.tag {
records::RTAG_SNAME => {
let result = records::SNAME::read_data(input1, header.data_size)?;
input1 = result.0;
ref_name = Some(result.1);
},
records::RTAG_COLROW => {
let result = records::COLROW::read_data(input1, header.data_size)?;
input1 = result.0;
let (col, row) = (result.1[0], result.1[1]);
ref_count = Some((col * row) as u32);
},
_ => {
(input1, _) = take_bytes(input1, header.data_size)?;
},
}
(input1, header) = RecordHeader::read(input1)?;
}
// got ENDEL, update count for this reference
*cur_structure.entry(ref_name.unwrap()).or_insert(0) += ref_count.unwrap_or(1);
(input1, header) = RecordHeader::read(input1)?;
}
structures.insert(name, cur_structure);
(input, header) = RecordHeader::read(input1)?;
}

View File

@ -1,18 +1,15 @@
/*
* Generic record-level read/write functionality.
*/
use nom::IResult;
///
/// Generic record-level read/write functionality.
///
use std::io::Write;
use byteorder::BigEndian;
use std::convert::TryInto;
use byteorder::{ByteOrder, BigEndian};
use basic::{pack_datetime, pack_bitarray, pack_ascii, pack_int2, pack_int4, pack_real8}; #[warn(unused_imports)]
use basic::{parse_datetime, parse_bitarray, parse_ascii, parse_int2, parse_int4, parse_real8}; #[warn(unused_imports)]
use basic::{OWResult};
use basic::{OResult, IResult, fail, parse_u16, take_bytes};
use records;
//from .basic import parse_int2, parse_int4, parse_real8, parse_datetime, parse_bitarray
//from .basic import pack_int2, pack_int4, pack_real8, pack_datetime, pack_bitarray
//from .basic import parse_ascii, read
//#[no_mangle]
@ -26,37 +23,45 @@ pub struct RecordHeader {
}
impl RecordHeader {
pub fn parse(input: &[u8]) -> IResult<&[u8], RecordHeader> {
let (_, size) = nom::number::streaming::be_u16(input[0..])?;
let (_, tag) = nom::number::streaming::be_u16(input[2..])?;
Ok((input[4..], RecordHeader{tag:tag, data_size:size - 4}))
pub fn read(input: &[u8]) -> IResult<RecordHeader> {
let (input, size) = parse_u16(input)?;
let (input, tag) = parse_u16(input)?;
Ok((input, RecordHeader{tag:tag, data_size:size - 4}))
}
pub fn pack(self) -> [u8; 4] {
assert!(self.size < 0xffff - 4, "Record too big!");
let vals = [self.size, self.tag];
pub fn pack_into(&self) -> [u8; 4] {
assert!(self.data_size < 0xffff - 4, "Record too big!");
let vals = [self.data_size, self.tag];
let mut buf = [0x77; 4];
BigEndian::write_u16_into(&vals, &mut buf);
buf
}
pub fn write<W: Write>(&self, ww: W) -> OWResult {
let bytes = self.pack();
ww.write(bytes)
pub fn write<W: Write>(&self, ww: &mut W) -> OResult {
let bytes = self.pack_into();
ww.write(&bytes)
}
}
pub trait Record {
fn tag() -> u32;
fn expected_size() -> Option<usize>;
pub trait RecordData {
type BareData;
type InData : ?Sized;
type ByteData : AsRef<[u8]>;
//fn parse_data(input: &[u8], size: usize) -> IResult<&[u8], Self>;
fn read(input: &[u8], size: u16) -> IResult<Self::BareData>;
fn pack_into(buf: &mut [u8], data: &Self::InData);
//fn size(data: &Self::BareData) -> u16;
fn pack(data: &Self::InData) -> Self::ByteData;
}
impl Record {
pub fn check_size(&self, actual_size: usize) -> Result<(), &str> {
match self.expected_size() {
pub trait Record<RData: RecordData> {
fn tag() -> u16;
fn expected_size() -> Option<u16>;
fn check_size(actual_size: u16) -> Result<(), String> {
match Self::expected_size() {
Some(size) => if size == actual_size {
Ok(())
} else {
@ -66,154 +71,323 @@ impl Record {
}
}
pub fn parse_header(input: &[u8]) -> IResult<&[u8], RecordHeader> {
RecordHeader::parse(input)
fn read_header(input: &[u8]) -> IResult<RecordHeader> {
RecordHeader::read(input)
}
pub fn write_header<W: Write>(ww: W, data_size: usize) -> OWResult {
RecordHeader{tag: Self.tag(), size: data_size}.write(ww)
fn write_header<W: Write>(ww: &mut W, data_size: u16) -> OResult {
RecordHeader{tag: Self::tag(), data_size: data_size}.write(ww)
}
pub fn skip_past(input: &[u8]) -> IResult<&[u8], bool> {
/*
* Skip to the end of the next occurence of this record.
*
* Return:
* True if the record was encountered and skipped.
* False if the end of the library was reached.
*/
let (input, header) = RecordHeader::parse(input)?;
while header.tag != Self.tag() {
let (input, _) = nom::bytes::streaming::take(header.size)?;
fn read_data(input: &[u8], size: u16) -> IResult<RData::BareData> {
RData::read(input, size)
}
fn pack_data(buf: &mut [u8], data: &RData::InData) {
RData::pack_into(buf, data)
}
///
/// Skip to the end of the next occurence of this record.
///
/// Return:
/// True if the record was encountered and skipped.
/// False if the end of the library was reached.
///
fn skip_past(input: &[u8]) -> IResult<bool> {
let original_input = input;
let (mut input, mut header) = RecordHeader::read(input)?;
while header.tag != Self::tag() {
(input, _) = take_bytes(input, header.data_size)?;
if header.tag == records::RTAG_ENDLIB {
return Ok((input, false))
return Ok((original_input, false))
}
let (input, header) = RecordHeader::parse(input)?;
(input, header) = RecordHeader::read(input)?;
}
let (input, _) = nom::bytes::streaming::take(header.size)?;
(input, _) = take_bytes(input, header.data_size)?;
Ok((input, true))
}
/*
pub fn skip_and_read(input: &[u8]) -> IResult<&[u8], bool>{
size, tag = Record.read_header(stream)
while tag != cls.tag{
stream.seek(size, io.SEEK_CUR)
size, tag = Record.read_header(stream)
fn skip_and_read(input: &[u8]) -> IResult<RData::BareData> {
let (mut input, mut header) = RecordHeader::read(input)?;
while header.tag != Self::tag() {
(input, _) = take_bytes(input, header.data_size)?;
(input, header) = RecordHeader::read(input)?;
}
data = cls.read_data(stream, size)
return data
let (input, data) = Self::read_data(input, header.data_size)?;
Ok((input, data))
}
def read(cls: Type[R], stream: BinaryIO){
size = expect_record(stream, cls.tag)
data = cls.read_data(stream, size)
return data
fn expect_header(input: &[u8]) -> IResult<u16> {
let (input, header) = RecordHeader::read(input)?;
if header.tag != Self::tag() {
fail(input, format!("Unexpected record! Got tag 0x{:04x}, expected 0x{:04x}", header.tag, Self::tag()))
} else {
Ok((input, header.data_size))
}
}
def write(cls, stream: BinaryIO, data) -> int {
data_bytes = cls.pack_data(data)
b = cls.write_header(stream, len(data_bytes))
b += stream.write(data_bytes)
return b
fn read(input: &[u8]) -> IResult<RData::BareData> {
let (input, size) = Self::expect_header(input)?;
Self::check_size(size).unwrap();
let (input, data) = Self::read_data(input, size)?;
Ok((input, data))
}
fn write<W: Write>(ww: &mut W, data: &RData::InData) -> OResult {
let packed_data = RData::pack(data);
let data_bytes = packed_data.as_ref();
let len: u16 = data_bytes.len().try_into().expect("Record longer than max size (u16)!");
let mut size = 0;
size += Self::write_header(ww, len)?;
size += ww.write(data_bytes)?;
Ok(size)
}
*/
}
pub struct BitArray;
impl RecordData for BitArray {
type BareData = [bool; 16];
type InData = [bool; 16];
type ByteData = [u8; 2];
pub trait BitArray {
fn parse_data(input: &[u8]) -> IResult<&[u8], [bool; 16]> {
fn read(input: &[u8], size: u16) -> IResult<Self::BareData> {
assert!(size == 2);
parse_bitarray(input)
}
fn pack_data(buf: &mut [u8], vals: &[bool; 16]) {
pack_bitarray(&mut buf, vals)
fn pack_into(buf: &mut [u8], data: &Self::InData) {
pack_bitarray(buf, data);
}
fn pack(data: &Self::InData) -> Self::ByteData {
let mut buf = [0; 2];
Self::pack_into(&mut buf, data);
buf
}
}
pub trait Int2 {
fn parse_data(input: &[u8]) -> IResult<&[u8], i16> {
pub struct Int2;
impl RecordData for Int2 {
type BareData = i16;
type InData = i16;
type ByteData = [u8; 2];
fn read(input: &[u8], size: u16) -> IResult<Self::BareData> {
assert!(size == 2);
parse_int2(input)
}
fn pack_data(buf: &mut [u8], val: i16) {
pack_int2(&mut buf, val)
fn pack_into(buf: &mut [u8], data: &Self::InData) {
pack_int2(buf, *data)
}
fn pack(data: &Self::InData) -> Self::ByteData {
let mut buf = [0; 2];
Self::pack_into(&mut buf, data);
buf
}
}
pub trait Int4 {
fn parse_data(input: &[u8]) -> IResult<&[u8], i32> {
pub struct Int4;
impl RecordData for Int4 {
type BareData = i32;
type InData = i32;
type ByteData = [u8; 4];
fn read(input: &[u8], size: u16) -> IResult<Self::BareData> {
assert!(size == 4);
parse_int4(input)
}
fn pack_data(buf: &mut [u8], val: i32) {
pack_int4(&mut buf, val)
fn pack_into(buf: &mut [u8], data: &Self::InData) {
pack_int4(buf, *data)
}
fn pack(data: &Self::InData) -> Self::ByteData {
let mut buf = [0; 4];
Self::pack_into(&mut buf, data);
buf
}
}
pub trait Int2Array {
fn parse_data(input: &[u8], size: usize) -> IResult<&[u8], Vec<i16>> {
pub struct Int2Array;
impl RecordData for Int2Array {
type BareData = Vec<i16>;
type InData = [i16];
type ByteData = Vec<u8>;
fn read(input: &[u8], size: u16) -> IResult<Self::BareData> {
assert!(size % 2 == 0, "Record must contain an integer quantity of integers");
nom::multi::count(parse_int2, size / 2)(input)
let mut buf = Vec::with_capacity(size as usize / 2);
let mut input = input;
for ii in 0..buf.len() {
(input, buf[ii]) = parse_int2(input)?;
}
Ok((input, buf))
}
fn pack_data(buf: &mut [u8], vals: &[i16]) {
BigEndian::write_i16_into(&vals, &mut buf)
fn pack_into(buf: &mut [u8], data: &Self::InData) {
BigEndian::write_i16_into(&data, buf)
}
fn pack(data: &Self::InData) -> Self::ByteData {
let mut buf = Vec::with_capacity(data.len() * 2);
Self::pack_into(&mut buf, data);
buf
}
}
pub struct Int4Array;
impl RecordData for Int4Array {
type BareData = Vec<i32>;
type InData = [i32];
type ByteData = Vec<u8>;
pub trait Int4Array {
fn parse_data(input: &[u8], size: usize) -> IResult<&[u8], Vec<i32>> {
fn read(input: &[u8], size: u16) -> IResult<Self::BareData> {
assert!(size % 4 == 0, "Record must contain an integer quantity of integers");
nom::multi::count(parse_int4, size / 4)(input)
let mut buf = Vec::with_capacity(size as usize / 4);
let mut input = input;
for ii in 0..buf.len() {
(input, buf[ii]) = parse_int4(input)?;
}
Ok((input, buf))
}
fn pack_data(buf: &mut [u8], vals: &[i32]) {
BigEndian::write_i32_into(&vals, &mut buf)
fn pack_into(buf: &mut [u8], data: &Self::InData) {
BigEndian::write_i32_into(&data, buf)
}
fn pack(data: &Self::InData) -> Self::ByteData {
let mut buf = Vec::with_capacity(data.len() * 4);
Self::pack_into(&mut buf, data);
buf
}
}
pub trait Real8 {
fn parse_data(input: &[u8]) -> IResult<&[u8], f64> {
pub struct Real8;
impl RecordData for Real8 {
type BareData = f64;
type InData = f64;
type ByteData = [u8; 8];
fn read(input: &[u8], size: u16) -> IResult<Self::BareData> {
assert!(size == 8);
parse_real8(input)
}
fn pack_data(buf: &mut [u8], val: f64) {
pack_real8(&mut buf, val)
fn pack_into(buf: &mut [u8], data: &Self::InData) {
pack_real8(buf, *data)
}
fn pack(data: &Self::InData) -> Self::ByteData {
let mut buf = [0; 8];
Self::pack_into(&mut buf, data);
buf
}
}
pub trait ASCII {
fn parse_data(input: &[u8]) -> IResult<&[u8], Vec<u8>> {
parse_ascii(input)
pub struct Real8Pair;
impl RecordData for Real8Pair {
type BareData = (f64, f64);
type InData = (f64, f64);
type ByteData = [u8; 2 * 8];
fn read(input: &[u8], size: u16) -> IResult<Self::BareData> {
assert!(size == 2 * 8);
let (input, data0) = parse_real8(input)?;
let (input, data1) = parse_real8(input)?;
Ok((input, (data0, data1)))
}
fn pack_data(buf: &mut [u8], data: &[u8]) {
pack_ascii(&mut buf, data)
fn pack_into(buf: &mut [u8], data: &Self::InData) {
pack_real8(&mut buf[8 * 0..], data.0);
pack_real8(&mut buf[8 * 1..], data.1);
}
fn pack(data: &Self::InData) -> Self::ByteData {
let mut buf = [0; 2 * 8];
Self::pack_into(&mut buf, data);
buf
}
//fn write<W: Write>(ww: &mut W, data: &Self::BareData) -> OResult {
// let mut buf = [u8; 2 * 6 * 2];
// Self::pack_into(&mut buf, data)
//}
}
pub struct ASCII;
impl RecordData for ASCII {
type BareData = Vec<u8>;
type InData = [u8];
type ByteData = Vec<u8>;
fn read(input: &[u8], size: u16) -> IResult<Self::BareData> {
parse_ascii(input, size)
}
fn pack_into(buf: &mut [u8], data: &Self::InData) {
pack_ascii(buf, data);
}
fn pack(data: &Self::InData) -> Self::ByteData {
let mut buf = Vec::with_capacity(data.len() * 4);
Self::pack_into(&mut buf, data);
buf
}
}
pub trait DateTime {
fn parse_data(input: &[u8]) -> IResult<&[u8], [u16; 6]> {
parse_datetime(input)
pub struct DateTimePair;
impl RecordData for DateTimePair {
type BareData = [[i16; 6]; 2];
type InData = [[i16; 6]; 2];
type ByteData = [u8; 2 * 6 * 2];
fn read(input: &[u8], size: u16) -> IResult<Self::BareData> {
assert!(size == 2 * 6 * 2);
let (input, data0) = parse_datetime(input)?;
let (input, data1) = parse_datetime(input)?;
Ok((input, [data0, data1]))
}
fn pack_data(buf: &mut [u8], data: [u16; 6]) {
pack_datetime(&mut buf, data)
fn pack_into(buf: &mut [u8], data: &Self::InData) {
pack_datetime(&mut buf[6 * 2 * 0..], &data[0]);
pack_datetime(&mut buf[6 * 2 * 1..], &data[1]);
}
fn pack(data: &Self::InData) -> Self::ByteData {
let mut buf = [0; 2 * 6 * 2];
Self::pack_into(&mut buf, data);
buf
}
//fn write<W: Write>(ww: &mut W, data: &Self::BareData) -> OResult {
// let mut buf = [u8; 2 * 6 * 2];
// Self::pack_into(&mut buf, data)
//}
}
impl<DTR: DateTime + Record> DTR {
fn skip_and_read(input: &[u8]) -> IResult<&[u8], [DTR; 2]> {
let mut header = Self.read_header(input)?;
while header.tag != Self.tag() {
nom::bytes::streaming::take(header.data_size)?;
header = Self.read_header(input)?;
pub struct Empty;
impl RecordData for Empty {
type BareData = ();
type InData = ();
type ByteData = [u8; 0];
fn read(input: &[u8], size: u16) -> IResult<Self::BareData> {
assert!(size == 0);
Ok((input, ()))
}
assert!(header.data_size == 6 * 2);
let data0 = Self.read_data(&input)?;
let data1 = Self.read_data(&input)?;
Ok([data0, data1])
fn pack_into(_buf: &mut [u8], _data: &Self::InData) {
}
fn pack(_data: &Self::InData) -> Self::ByteData {
[]
}
//fn write<W: Write>(ww: &mut W, data: &Self::BareData) {
//}
}

View File

@ -1,9 +1,8 @@
/*
* Record type and tag definitions
*/
///
/// Record type and tag definitions
///
use record::{Record, Int2, Int4, Int2Array, Int4Array, Real8, DateTime, BitArray, ASCII};
//use basic::{OWResult};
use record::{Record, Int2, Int4, Int2Array, Int4Array, Real8, Real8Pair, DateTimePair, BitArray, ASCII, Empty};
//use std::io::Write;
@ -91,7 +90,7 @@ pub const DATA_TYPE_STR: u16 = 0x06;
pub const MAX_DATA_SIZE: usize = 8;
/// Returns the size of the given data type in bytes.
pub fn data_size(t: u16) -> usize {
pub fn data_size(t: u16) -> Option<u16> {
match t {
x if x == DATA_TYPE_NONE => 0,
x if x == DATA_TYPE_BIT => 2,
@ -103,215 +102,195 @@ pub fn data_size(t: u16) -> usize {
}
*/
pub struct HEADER {}
impl Record for HEADER {
pub struct HEADER;
impl Record<Int2> for HEADER {
fn tag() -> u16 { RTAG_HEADER }
fn expected_size() -> usize { Some(2) }
fn expected_size() -> Option<u16> { Some(2) }
}
impl Int2 for HEADER {}
//impl Record<Int2> for HEADER;
pub struct BGNLIB {}
impl Record for BGNLIB {
pub struct BGNLIB;
impl Record<DateTimePair> for BGNLIB {
fn tag() -> u16 { RTAG_BGNLIB }
fn expected_size() -> usize { Some(2 * 6) }
fn expected_size() -> Option<u16> { Some(2 * 6) }
}
impl DateTime for BGNLIB {}
pub struct LIBNAME {}
impl Record for LIBNAME {
pub struct LIBNAME;
impl Record<ASCII> for LIBNAME {
fn tag() -> u16 { RTAG_LIBNAME }
fn expected_size() -> usize { None }
fn expected_size() -> Option<u16> { None }
}
impl ASCII for LIBNAME {}
pub struct UNITS {}
impl Record for UNITS {
pub struct UNITS;
impl Record<Real8Pair> for UNITS {
// (user_units_per_db_unit, db_units_per_meter)
fn tag() -> u16 { RTAG_UNITS }
fn expected_size() -> usize { Some(2 * 8) }
fn expected_size() -> Option<u16> { Some(2 * 8) }
}
impl Real8 for UNITS {}
pub struct ENDLIB {}
impl Record for ENDLIB {
pub struct ENDLIB;
impl Record<Empty> for ENDLIB {
fn tag() -> u16 { RTAG_ENDLIB }
fn expected_size() -> usize { Some(0) }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct BGNSTR {}
impl Record for BGNSTR {
pub struct BGNSTR;
impl Record<DateTimePair> for BGNSTR {
fn tag() -> u16 { RTAG_BGNSTR }
fn expected_size() -> usize { Some(2 * 6) }
fn expected_size() -> Option<u16> { Some(2 * 6) }
}
impl DateTime for ENDLIB {}
pub struct STRNAME {}
impl Record for STRNAME {
pub struct STRNAME;
impl Record<ASCII> for STRNAME {
fn tag() -> u16 { RTAG_STRNAME }
fn expected_size() -> usize { Some(2 * 6) }
fn expected_size() -> Option<u16> { Some(2 * 6) }
}
impl ASCII for STRNAME {}
pub struct ENDSTR {}
impl Record for ENDSTR {
pub struct ENDSTR;
impl Record<Empty> for ENDSTR {
fn tag() -> u16 { RTAG_ENDSTR }
fn expected_size() -> usize { Some(0) }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct BOUNDARY {}
impl Record for BOUNDARY {
pub struct BOUNDARY;
impl Record<Empty> for BOUNDARY {
fn tag() -> u16 { RTAG_BOUNDARY }
fn expected_size() -> usize { Some(0) }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct PATH {}
impl Record for PATH {
pub struct PATH;
impl Record<Empty> for PATH {
fn tag() -> u16 { RTAG_PATH }
fn expected_size() -> usize { Some(0) }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct SREF {}
impl Record for SREF {
pub struct SREF;
impl Record<Empty> for SREF {
fn tag() -> u16 { RTAG_SREF }
fn expected_size() -> usize { Some(0) }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct AREF {}
impl Record for AREF {
pub struct AREF;
impl Record<Empty> for AREF {
fn tag() -> u16 { RTAG_AREF }
fn expected_size() -> usize { Some(0) }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct TEXT {}
impl Record for TEXT {
pub struct TEXT;
impl Record<Empty> for TEXT {
fn tag() -> u16 { RTAG_TEXT }
fn expected_size() -> usize { Some(0) }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct LAYER {}
impl Record for LAYER {
pub struct LAYER;
impl Record<Int2> for LAYER {
fn tag() -> u16 { RTAG_LAYER }
fn expected_size() -> usize { Some(2) }
fn expected_size() -> Option<u16> { Some(2) }
}
impl Int2 for LAYER {}
pub struct DATATYPE {}
impl Record for DATATYPE {
pub struct DATATYPE;
impl Record<Int2> for DATATYPE {
fn tag() -> u16 { RTAG_DATATYPE }
fn expected_size() -> usize { Some(2) }
fn expected_size() -> Option<u16> { Some(2) }
}
impl Int2 for DATATYPE {}
pub struct WIDTH {}
impl Record for WIDTH {
pub struct WIDTH;
impl Record<Int4> for WIDTH {
fn tag() -> u16 { RTAG_WIDTH }
fn expected_size() -> usize { Some(4) }
fn expected_size() -> Option<u16> { Some(4) }
}
impl Int4 for WIDTH {}
pub struct XY {}
impl Record for XY {
pub struct XY;
impl Record<Int4Array> for XY {
fn tag() -> u16 { RTAG_XY }
fn expected_size() -> usize { None }
fn expected_size() -> Option<u16> { None }
}
impl Int4Array for XY {}
pub struct ENDEL {}
impl Record for ENDEL {
pub struct ENDEL;
impl Record<Empty> for ENDEL {
fn tag() -> u16 { RTAG_ENDEL }
fn expected_size() -> usize { Some(0) }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct SNAME {}
impl Record for SNAME {
pub struct SNAME;
impl Record<ASCII> for SNAME {
fn tag() -> u16 { RTAG_SNAME }
fn expected_size() -> usize { None }
fn expected_size() -> Option<u16> { None }
}
impl ASCII for SNAME {}
pub struct COLROW {}
impl Record for COLROW {
pub struct COLROW;
impl Record<Int2Array> for COLROW {
fn tag() -> u16 { RTAG_COLROW }
fn expected_size() -> usize { Some(4) }
fn expected_size() -> Option<u16> { Some(4) }
}
impl Int2Array for COLROW {}
pub struct NODE {}
impl Record for NODE {
pub struct NODE;
impl Record<Empty> for NODE {
fn tag() -> u16 { RTAG_NODE }
fn expected_size() -> usize { Some(0) }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct TEXTTYPE {}
impl Record for TEXTTYPE {
pub struct TEXTTYPE;
impl Record<Int2> for TEXTTYPE {
fn tag() -> u16 { RTAG_TEXTTYPE }
fn expected_size() -> usize { Some(2) }
fn expected_size() -> Option<u16> { Some(2) }
}
impl Int2 for TEXTTYPE {}
pub struct PRESENTATION {}
impl Record for PRESENTATION {
pub struct PRESENTATION;
impl Record<BitArray> for PRESENTATION {
fn tag() -> u16 { RTAG_PRESENTATION }
fn expected_size() -> usize { Some(2) }
fn expected_size() -> Option<u16> { Some(2) }
}
impl BitArray for PRESENTATION {}
pub struct SPACING {}
impl Record for SPACING {
pub struct SPACING;
impl Record<Int2> for SPACING {
fn tag() -> u16 { RTAG_SPACING }
fn expected_size() -> usize { Some(2) }
fn expected_size() -> Option<u16> { Some(2) }
}
impl Int2 for SPACING {}
pub struct STRING {}
impl Record for STRING {
pub struct STRING;
impl Record<ASCII> for STRING {
fn tag() -> u16 { RTAG_STRING }
fn expected_size() -> usize { None }
fn expected_size() -> Option<u16> { None }
}
impl ASCII for STRING {}
pub struct STRANS {}
impl Record for STRANS {
pub struct STRANS;
impl Record<BitArray> for STRANS {
fn tag() -> u16 { RTAG_STRANS }
fn expected_size() -> usize { Some(2) }
fn expected_size() -> Option<u16> { Some(2) }
}
impl BitArray for STRANS {}
pub struct MAG {}
impl Record for MAG {
pub struct MAG;
impl Record<Real8> for MAG {
fn tag() -> u16 { RTAG_MAG }
fn expected_size() -> usize { Some(8) }
fn expected_size() -> Option<u16> { Some(8) }
}
impl Real8 for MAG {}
pub struct ANGLE {}
impl Record for ANGLE {
pub struct ANGLE;
impl Record<Real8> for ANGLE {
fn tag() -> u16 { RTAG_ANGLE }
fn expected_size() -> usize { Some(8) }
fn expected_size() -> Option<u16> { Some(8) }
}
impl Real8 for ANGLE {}
pub struct UINTEGER {}
impl Record for UINTEGER {
pub struct UINTEGER;
impl Record<Int2> for UINTEGER {
fn tag() -> u16 { RTAG_UINTEGER }
fn expected_size() -> usize { Some(2) }
fn expected_size() -> Option<u16> { Some(2) }
}
impl Int2 for UINTEGER {}
pub struct USTRING {}
impl Record for USTRING {
pub struct USTRING;
impl Record<ASCII> for USTRING {
fn tag() -> u16 { RTAG_USTRING }
fn expected_size() -> usize { None }
fn expected_size() -> Option<u16> { None }
}
impl ASCII for USTRING {}
pub struct REFLIBS {}
impl Record for REFLIBS {
pub struct REFLIBS;
impl Record<ASCII> for REFLIBS {
fn tag() -> u16 { RTAG_REFLIBS }
fn expected_size() -> usize { None }
fn expected_size() -> Option<u16> { None }
}
impl REFLIBS {
fn check_size(&self, actual_size: usize) -> Result<(), &str> {
fn check_size(actual_size: usize) -> Result<(), String> {
if actual_size % 44 == 0 {
Ok(())
} else {
@ -319,15 +298,14 @@ impl REFLIBS {
}
}
}
impl ASCII for REFLIBS {}
pub struct FONTS {}
impl Record for FONTS {
pub struct FONTS;
impl Record<ASCII> for FONTS {
fn tag() -> u16 { RTAG_FONTS }
fn expected_size() -> usize { None }
fn expected_size() -> Option<u16> { None }
}
impl FONTS {
fn check_size(&self, actual_size: usize) -> Result<(), &str> {
fn check_size(actual_size: usize) -> Result<(), String> {
if actual_size % 44 == 0 {
Ok(())
} else {
@ -335,29 +313,26 @@ impl FONTS {
}
}
}
impl ASCII for FONTS {}
pub struct PATHTYPE {}
impl Record for PATHTYPE {
pub struct PATHTYPE;
impl Record<Int2> for PATHTYPE {
fn tag() -> u16 { RTAG_PATHTYPE }
fn expected_size() -> usize { Some(2) }
fn expected_size() -> Option<u16> { Some(2) }
}
impl Int2 for PATHTYPE {}
pub struct GENERATIONS {}
impl Record for GENERATIONS {
pub struct GENERATIONS;
impl Record<Int2> for GENERATIONS {
fn tag() -> u16 { RTAG_GENERATIONS }
fn expected_size() -> usize { Some(2) }
fn expected_size() -> Option<u16> { Some(2) }
}
impl Int2 for GENERATIONS {}
pub struct ATTRTABLE {}
impl Record for ATTRTABLE {
pub struct ATTRTABLE;
impl Record<ASCII> for ATTRTABLE {
fn tag() -> u16 { RTAG_ATTRTABLE }
fn expected_size() -> usize { None }
fn expected_size() -> Option<u16> { None }
}
impl ATTRTABLE {
fn check_size(&self, actual_size: usize) -> Result<(), &str> {
fn check_size(actual_size: usize) -> Result<(), String> {
if actual_size % 44 == 0 {
Ok(())
} else {
@ -365,231 +340,208 @@ impl ATTRTABLE {
}
}
}
impl ASCII for ATTRTABLE {}
pub struct STYPTABLE {}
impl Record for STYPTABLE {
pub struct STYPTABLE;
impl Record<ASCII> for STYPTABLE {
fn tag() -> u16 { RTAG_STYPTABLE }
fn expected_size() -> usize { None }
fn expected_size() -> Option<u16> { None }
}
impl ASCII for STYPTABLE {}
pub struct STRTYPE {}
impl Record for STRTYPE {
pub struct STRTYPE;
impl Record<Int2> for STRTYPE {
fn tag() -> u16 { RTAG_STRTYPE }
fn expected_size() -> usize { None }
fn expected_size() -> Option<u16> { None }
}
impl Int2 for STRTYPE {}
pub struct ELFLAGS {}
impl Record for ELFLAGS {
pub struct ELFLAGS;
impl Record<BitArray> for ELFLAGS {
fn tag() -> u16 { RTAG_ELFLAGS }
fn expected_size() -> usize { Some(2) }
fn expected_size() -> Option<u16> { Some(2) }
}
impl BitArray for ELFLAGS {}
pub struct ELKEY {}
impl Record for ELKEY {
pub struct ELKEY;
impl Record<Int2> for ELKEY {
fn tag() -> u16 { RTAG_ELKEY }
fn expected_size() -> usize { Some(2) }
fn expected_size() -> Option<u16> { Some(2) }
}
impl Int2 for ELKEY {}
pub struct LINKTYPE {}
impl Record for LINKTYPE {
pub struct LINKTYPE;
impl Record<Int2> for LINKTYPE {
fn tag() -> u16 { RTAG_LINKTYPE }
fn expected_size() -> usize { Some(2) }
fn expected_size() -> Option<u16> { Some(2) }
}
impl Int2 for LINKTYPE {}
pub struct LINKKEYS {}
impl Record for LINKKEYS {
pub struct LINKKEYS;
impl Record<Int2> for LINKKEYS {
fn tag() -> u16 { RTAG_LINKKEYS }
fn expected_size() -> usize { Some(2) }
fn expected_size() -> Option<u16> { Some(2) }
}
impl Int2 for LINKKEYS {}
pub struct NODETYPE {}
impl Record for NODETYPE {
pub struct NODETYPE;
impl Record<Int2> for NODETYPE {
fn tag() -> u16 { RTAG_NODETYPE }
fn expected_size() -> usize { Some(2) }
fn expected_size() -> Option<u16> { Some(2) }
}
impl Int2 for NODETYPE {}
pub struct PROPATTR {}
impl Record for PROPATTR {
pub struct PROPATTR;
impl Record<Int2> for PROPATTR {
fn tag() -> u16 { RTAG_PROPATTR }
fn expected_size() -> usize { Some(2) }
fn expected_size() -> Option<u16> { Some(2) }
}
impl Int2 for PROPATTR {}
pub struct PROPVALUE {}
impl Record for PROPVALUE {
pub struct PROPVALUE;
impl Record<ASCII> for PROPVALUE {
fn tag() -> u16 { RTAG_PROPVALUE }
fn expected_size() -> usize { Some(2) }
fn expected_size() -> Option<u16> { Some(2) }
}
impl ASCII for PROPVALUE {}
pub struct BOX {}
impl Record for BOX {
pub struct BOX;
impl Record<Empty> for BOX {
fn tag() -> u16 { RTAG_BOX }
fn expected_size() -> usize { Some(0) }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct BOXTYPE {}
impl Record for BOXTYPE {
pub struct BOXTYPE;
impl Record<Int2> for BOXTYPE {
fn tag() -> u16 { RTAG_BOXTYPE }
fn expected_size() -> usize { Some(2) }
fn expected_size() -> Option<u16> { Some(2) }
}
impl Int2 for BOXTYPE {}
pub struct PLEX {}
impl Record for PLEX {
pub struct PLEX;
impl Record<Int4> for PLEX {
fn tag() -> u16 { RTAG_PLEX }
fn expected_size() -> usize { Some(4) }
fn expected_size() -> Option<u16> { Some(4) }
}
impl Int4 for PLEX {}
pub struct BGNEXTN {}
impl Record for BGNEXTN {
pub struct BGNEXTN;
impl Record<Int4> for BGNEXTN {
fn tag() -> u16 { RTAG_BGNEXTN }
fn expected_size() -> usize { Some(4) }
fn expected_size() -> Option<u16> { Some(4) }
}
impl Int4 for BGNEXTN {}
pub struct ENDEXTN {}
impl Record for ENDEXTN {
pub struct ENDEXTN;
impl Record<Int4> for ENDEXTN {
fn tag() -> u16 { RTAG_ENDEXTN }
fn expected_size() -> usize { Some(4) }
fn expected_size() -> Option<u16> { Some(4) }
}
impl Int4 for ENDEXTN {}
pub struct TAPENUM {}
impl Record for TAPENUM {
pub struct TAPENUM;
impl Record<Int2> for TAPENUM {
fn tag() -> u16 { RTAG_TAPENUM }
fn expected_size() -> usize { Some(2) }
fn expected_size() -> Option<u16> { Some(2) }
}
impl Int2 for TAPENUM {}
pub struct TAPECODE {}
impl Record for TAPECODE {
pub struct TAPECODE;
impl Record<Int2Array> for TAPECODE {
fn tag() -> u16 { RTAG_TAPECODE }
fn expected_size() -> usize { Some(2 * 6) }
fn expected_size() -> Option<u16> { Some(2 * 6) }
}
impl Int2Array for TAPECODE {}
pub struct STRCLASS {}
impl Record for STRCLASS {
pub struct STRCLASS;
impl Record<Int2> for STRCLASS {
fn tag() -> u16 { RTAG_STRCLASS }
fn expected_size() -> usize { Some(2) }
fn expected_size() -> Option<u16> { Some(2) }
}
impl Int2 for STRCLASS {}
pub struct RESERVED {}
impl Record for RESERVED {
pub struct RESERVED;
impl Record<Int2Array> for RESERVED {
fn tag() -> u16 { RTAG_RESERVED }
fn expected_size() -> usize { Some(2) }
fn expected_size() -> Option<u16> { Some(2) }
}
impl Int2Array for RESERVED {}
pub struct FORMAT {}
impl Record for FORMAT {
pub struct FORMAT;
impl Record<Int2> for FORMAT {
fn tag() -> u16 { RTAG_FORMAT }
fn expected_size() -> usize { Some(2) }
fn expected_size() -> Option<u16> { Some(2) }
}
impl Int2 for FORMAT {}
pub struct MASK {}
impl Record for MASK {
pub struct MASK;
impl Record<ASCII> for MASK {
fn tag() -> u16 { RTAG_MASK }
fn expected_size() -> usize { None }
fn expected_size() -> Option<u16> { None }
}
impl ASCII for MASK {}
pub struct ENDMASKS {}
impl Record for ENDMASKS {
// End of MASKS records
/// End of MASKS records
pub struct ENDMASKS;
impl Record<Empty> for ENDMASKS {
fn tag() -> u16 { RTAG_ENDMASKS }
fn expected_size() -> usize { Some(0) }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct LIBDIRSIZE {}
impl Record for LIBDIRSIZE {
pub struct LIBDIRSIZE;
impl Record<Int2> for LIBDIRSIZE {
fn tag() -> u16 { RTAG_LIBDIRSIZE }
fn expected_size() -> usize { Some(2) }
fn expected_size() -> Option<u16> { Some(2) }
}
impl Int2 for LIBDIRSIZE {}
pub struct SRFNAME {}
impl Record for SRFNAME {
pub struct SRFNAME;
impl Record<ASCII> for SRFNAME {
fn tag() -> u16 { RTAG_SRFNAME }
fn expected_size() -> usize { None }
fn expected_size() -> Option<u16> { None }
}
impl ASCII for SRFNAME {}
pub struct LIBSECUR {}
impl Record for LIBSECUR {
pub struct LIBSECUR;
impl Record<Int2> for LIBSECUR {
fn tag() -> u16 { RTAG_LIBSECUR }
fn expected_size() -> usize { Some(2) }
fn expected_size() -> Option<u16> { Some(2) }
}
impl Int2 for LIBSECUR {}
pub struct BORDER {}
impl Record for BORDER {
pub struct BORDER;
impl Record<Empty> for BORDER {
fn tag() -> u16 { RTAG_BORDER }
fn expected_size() -> usize { Some(0) }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct SOFTFENCE {}
impl Record for SOFTFENCE {
pub struct SOFTFENCE;
impl Record<Empty> for SOFTFENCE {
fn tag() -> u16 { RTAG_SOFTFENCE }
fn expected_size() -> usize { Some(0) }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct HARDFENCE {}
impl Record for HARDFENCE {
pub struct HARDFENCE;
impl Record<Empty> for HARDFENCE {
fn tag() -> u16 { RTAG_HARDFENCE }
fn expected_size() -> usize { Some(0) }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct SOFTWIRE {}
impl Record for SOFTWIRE {
pub struct SOFTWIRE;
impl Record<Empty> for SOFTWIRE {
fn tag() -> u16 { RTAG_SOFTWIRE }
fn expected_size() -> usize { Some(0) }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct HARDWIRE {}
impl Record for HARDWIRE {
pub struct HARDWIRE;
impl Record<Empty> for HARDWIRE {
fn tag() -> u16 { RTAG_HARDWIRE }
fn expected_size() -> usize { Some(0) }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct PATHPORT {}
impl Record for PATHPORT {
pub struct PATHPORT;
impl Record<Empty> for PATHPORT {
fn tag() -> u16 { RTAG_PATHPORT }
fn expected_size() -> usize { Some(0) }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct NODEPORT {}
impl Record for NODEPORT {
pub struct NODEPORT;
impl Record<Empty> for NODEPORT {
fn tag() -> u16 { RTAG_NODEPORT }
fn expected_size() -> usize { Some(0) }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct USERCONSTRAINT {}
impl Record for USERCONSTRAINT {
pub struct USERCONSTRAINT;
impl Record<Empty> for USERCONSTRAINT {
fn tag() -> u16 { RTAG_USERCONSTRAINT }
fn expected_size() -> usize { Some(0) }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct SPACERERROR {}
impl Record for SPACERERROR {
pub struct SPACERERROR;
impl Record<Empty> for SPACERERROR {
fn tag() -> u16 { RTAG_SPACERERROR }
fn expected_size() -> usize { Some(0) }
fn expected_size() -> Option<u16> { Some(0) }
}
pub struct CONTACT {}
impl Record for CONTACT {
pub struct CONTACT;
impl Record<Empty> for CONTACT {
fn tag() -> u16 { RTAG_CONTACT }
fn expected_size() -> usize { Some(0) }
fn expected_size() -> Option<u16> { Some(0) }
}

View File

@ -1,121 +0,0 @@
/*
import struct
import pytest # type: ignore
import numpy # type: ignore
from numpy.testing import assert_array_equal # type: ignore
from .basic import parse_bitarray, parse_int2, parse_int4, parse_real8, parse_ascii
from .basic import pack_bitarray, pack_int2, pack_int4, pack_real8, pack_ascii
from .basic import decode_real8, encode_real8
from .basic import KlamathError
def test_parse_bitarray():
assert(parse_bitarray(b'59') == 13625)
assert(parse_bitarray(b'\0\0') == 0)
assert(parse_bitarray(b'\xff\xff') == 65535)
# 4 bytes (too long)
with pytest.raises(KlamathError):
parse_bitarray(b'4321')
# empty data
with pytest.raises(KlamathError):
parse_bitarray(b'')
def test_parse_int2():
assert_array_equal(parse_int2(b'59\xff\xff\0\0'), (13625, -1, 0))
# odd length
with pytest.raises(KlamathError):
parse_int2(b'54321')
# empty data
with pytest.raises(KlamathError):
parse_int2(b'')
def test_parse_int4():
assert_array_equal(parse_int4(b'4321'), (875770417,))
# length % 4 != 0
with pytest.raises(KlamathError):
parse_int4(b'654321')
# empty data
with pytest.raises(KlamathError):
parse_int4(b'')
def test_decode_real8():
# zeroes
assert(decode_real8(numpy.array([0x0])) == 0)
assert(decode_real8(numpy.array([1<<63])) == 0) # negative
assert(decode_real8(numpy.array([0xff << 56])) == 0) # denormalized
assert(decode_real8(numpy.array([0x4110 << 48])) == 1.0)
assert(decode_real8(numpy.array([0xC120 << 48])) == -2.0)
def test_parse_real8():
packed = struct.pack('>3Q', 0x0, 0x4110_0000_0000_0000, 0xC120_0000_0000_0000)
assert_array_equal(parse_real8(packed), (0.0, 1.0, -2.0))
# length % 8 != 0
with pytest.raises(KlamathError):
parse_real8(b'0987654321')
# empty data
with pytest.raises(KlamathError):
parse_real8(b'')
def test_parse_ascii():
# empty data
with pytest.raises(KlamathError):
parse_ascii(b'')
assert(parse_ascii(b'12345') == b'12345')
assert(parse_ascii(b'12345\0') == b'12345') # strips trailing null byte
def test_pack_bitarray():
packed = pack_bitarray(321)
assert(len(packed) == 2)
assert(packed == struct.pack('>H', 321))
def test_pack_int2():
packed = pack_int2((3, 2, 1))
assert(len(packed) == 3*2)
assert(packed == struct.pack('>3h', 3, 2, 1))
assert(pack_int2([-3, 2, -1]) == struct.pack('>3h', -3, 2, -1))
def test_pack_int4():
packed = pack_int4((3, 2, 1))
assert(len(packed) == 3*4)
assert(packed == struct.pack('>3l', 3, 2, 1))
assert(pack_int4([-3, 2, -1]) == struct.pack('>3l', -3, 2, -1))
def test_encode_real8():
assert(encode_real8(numpy.array([0.0])) == 0)
arr = numpy.array((1.0, -2.0, 1e-9, 1e-3, 1e-12))
assert_array_equal(decode_real8(encode_real8(arr)), arr)
def test_pack_real8():
reals = (0, 1, -1, 0.5, 1e-9, 1e-3, 1e-12)
packed = pack_real8(reals)
assert(len(packed) == len(reals) * 8)
assert_array_equal(parse_real8(packed), reals)
def test_pack_ascii():
assert(pack_ascii(b'4321') == b'4321')
assert(pack_ascii(b'321') == b'321\0')
*/