add all files
This commit is contained in:
commit
ed77450c80
3
.gitignore
vendored
Normal file
3
.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
*.pyc
|
||||||
|
__pycache__
|
||||||
|
*.idea
|
17
README.md
Normal file
17
README.md
Normal file
@ -0,0 +1,17 @@
|
|||||||
|
# float_raster README
|
||||||
|
|
||||||
|
float_raster is a Python module for accurately drawing polygons onto non-uniform rectangular grids
|
||||||
|
|
||||||
|
float_raster calculates pixel values with float64 precision and is capable of drawing on grids
|
||||||
|
with variable pixel widths and heights.
|
||||||
|
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
|
||||||
|
Requirements:
|
||||||
|
* python 3 (written and tested with 3.5)
|
||||||
|
* numpy
|
||||||
|
|
||||||
|
Install with pip, via git:
|
||||||
|
|
||||||
|
>pip install --upgrade git+https://mpxd.net/gogs/jan/float_raster.git
|
172
float_raster.py
Normal file
172
float_raster.py
Normal file
@ -0,0 +1,172 @@
|
|||||||
|
"""
|
||||||
|
Module for rasterizing polygons, with float-precision anti-aliasing on
|
||||||
|
a non-uniform rectangular grid.
|
||||||
|
|
||||||
|
See the documentation for raster(...) for details.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import numpy
|
||||||
|
from numpy import r_, c_, logical_and, diff, floor, ceil, ones, zeros, vstack, hstack,\
|
||||||
|
full_like, newaxis
|
||||||
|
|
||||||
|
__author__ = 'Jan Petykiewicz'
|
||||||
|
|
||||||
|
|
||||||
|
def raster(poly_xy: numpy.ndarray,
|
||||||
|
grid_x: numpy.ndarray,
|
||||||
|
grid_y: numpy.ndarray
|
||||||
|
) -> numpy.ndarray:
|
||||||
|
"""
|
||||||
|
Draws a polygon onto a 2D grid of pixels, setting pixel values equal to the fraction of the
|
||||||
|
pixel area covered by the polygon. This implementation is written for accuracy and works with
|
||||||
|
double precision, in contrast to most other implementations which are written for speed and
|
||||||
|
usually only allow for 256 (and often fewer) possible pixel values without performing (very
|
||||||
|
slow) super-sampling.
|
||||||
|
|
||||||
|
:param poly_xy: 2xN ndarray containing x,y coordinates for each point in the polygon
|
||||||
|
:param grid_x: x-coordinates for the edges of each pixel (ie, the leftmost two columns span
|
||||||
|
x=grid_x[0] to x=grid_x[1] and x=grid_x[1] to x=grid_x[2])
|
||||||
|
:param grid_y: y-coordinates for the edges of each pixel (see grid_x)
|
||||||
|
:return: 2D ndarray with pixel values in the range [0, 1] containing the anti-aliased polygon
|
||||||
|
"""
|
||||||
|
poly_xy = numpy.array(poly_xy)
|
||||||
|
grid_x = numpy.array(grid_x)
|
||||||
|
grid_y = numpy.array(grid_y)
|
||||||
|
|
||||||
|
if poly_xy.shape[0] != 2:
|
||||||
|
raise Exception('poly_xy must be 2xN')
|
||||||
|
if grid_x.size < 1 or grid_y.size < 1:
|
||||||
|
raise Exception('Grid must contain at least one full pixel')
|
||||||
|
|
||||||
|
num_xy_px = numpy.array([grid_x.size, grid_y.size]) - 1
|
||||||
|
|
||||||
|
min_bounds = floor(poly_xy.min(axis=1))
|
||||||
|
max_bounds = ceil(poly_xy.max(axis=1))
|
||||||
|
|
||||||
|
keep_x = logical_and(numpy.greater_equal(grid_x, min_bounds[0]),
|
||||||
|
numpy.less_equal(grid_x, max_bounds[0]))
|
||||||
|
keep_y = logical_and(numpy.greater_equal(grid_y, min_bounds[1]),
|
||||||
|
numpy.less_equal(grid_y, max_bounds[1]))
|
||||||
|
|
||||||
|
if not (keep_x.any() and keep_y.any()): # polygon doesn't overlap grid
|
||||||
|
return zeros(num_xy_px)
|
||||||
|
|
||||||
|
y_seg_xs = hstack((min_bounds[0], grid_x[keep_x], max_bounds[0])).T
|
||||||
|
x_seg_ys = hstack((min_bounds[1], grid_y[keep_y], max_bounds[1])).T
|
||||||
|
|
||||||
|
num_poly_vertices = poly_xy.shape[1]
|
||||||
|
|
||||||
|
# ## Calculate intersections
|
||||||
|
xy1b = numpy.roll(poly_xy, -1, axis=1)
|
||||||
|
|
||||||
|
xi1 = poly_xy[0, :, newaxis]
|
||||||
|
yi1 = poly_xy[1, :, newaxis]
|
||||||
|
xf1 = xy1b[0, :, newaxis]
|
||||||
|
yf1 = xy1b[1, :, newaxis]
|
||||||
|
|
||||||
|
xi2 = hstack((full_like(x_seg_ys, min_bounds[0]), y_seg_xs))
|
||||||
|
xf2 = hstack((full_like(x_seg_ys, max_bounds[0]), y_seg_xs))
|
||||||
|
yi2 = hstack((x_seg_ys, full_like(y_seg_xs, min_bounds[0])))
|
||||||
|
yf2 = hstack((x_seg_ys, full_like(y_seg_xs, max_bounds[1])))
|
||||||
|
|
||||||
|
dxi = xi1 - xi2
|
||||||
|
dyi = yi1 - yi2
|
||||||
|
dx1 = xf1 - xi1
|
||||||
|
dx2 = xf2 - xi2
|
||||||
|
dy1 = yf1 - yi1
|
||||||
|
dy2 = yf2 - yi2
|
||||||
|
|
||||||
|
numerator_a = dx2 * dyi - dy2 * dxi
|
||||||
|
numerator_b = dx1 * dyi - dy1 * dxi
|
||||||
|
denominator = dy2 * dx1 - dx2 * dy1
|
||||||
|
|
||||||
|
# Avoid warnings since we may multiply eg. NaN*False
|
||||||
|
with numpy.errstate(invalid='ignore', divide='ignore'):
|
||||||
|
u_a = numerator_a / denominator
|
||||||
|
u_b = numerator_b / denominator
|
||||||
|
|
||||||
|
# Find the adjacency matrix A of intersecting lines.
|
||||||
|
int_x = xi1 + dx1 * u_a
|
||||||
|
int_y = yi1 + dy1 * u_a
|
||||||
|
int_b = logical_and.reduce((u_a >= 0, u_a <= 1, u_b >= 0, u_b <= 1))
|
||||||
|
|
||||||
|
# Arrange output.
|
||||||
|
int_adjacency_matrix = int_b
|
||||||
|
int_matrix_x = int_x * int_b
|
||||||
|
int_matrix_y = int_y * int_b
|
||||||
|
int_normalized_distance_1to2 = u_a
|
||||||
|
|
||||||
|
# ## Insert intersection points as vertices
|
||||||
|
# If new points fall outside the window, shrink them back onto it
|
||||||
|
int_matrix_x = int_matrix_x.clip(grid_x[0], grid_x[-1])
|
||||||
|
int_matrix_y = int_matrix_y.clip(grid_y[0], grid_y[-1])
|
||||||
|
|
||||||
|
# sort intersections based on distance from first vertex, to add in order
|
||||||
|
sortix = int_normalized_distance_1to2.argsort(axis=1)
|
||||||
|
sortix_paired = (numpy.arange(num_poly_vertices)[:, newaxis], sortix)
|
||||||
|
assert(int_normalized_distance_1to2.shape[0] == num_poly_vertices)
|
||||||
|
|
||||||
|
# Use sortix to sort adjacency matrix and the intersection (x, y) coordinates,
|
||||||
|
# and vstack the original points on top of the top row
|
||||||
|
xs = vstack((poly_xy[0, :], int_matrix_x[sortix_paired].T))
|
||||||
|
ys = vstack((poly_xy[1, :], int_matrix_y[sortix_paired].T))
|
||||||
|
has_intersection = r_[ones((1, poly_xy.shape[1]), dtype=bool),
|
||||||
|
int_adjacency_matrix[sortix_paired].T]
|
||||||
|
|
||||||
|
# Now use has_intersection to index the intersection coordinates, thus creating a 2-column
|
||||||
|
# array which holds the [[x, y], ...] for the polygon with added vertices at pixel-boundary
|
||||||
|
# intersections
|
||||||
|
poly_xy_xy = c_[xs.T[has_intersection.T], ys.T[has_intersection.T]]
|
||||||
|
|
||||||
|
# Remove points outside the window (these will only be original points)
|
||||||
|
# Since the boundaries of the window are also pixel boundaries, this just
|
||||||
|
# makes the polygon boundary proceed along the window edge
|
||||||
|
inside_window = logical_and.reduce((poly_xy_xy[:, 1] <= grid_y[-1],
|
||||||
|
poly_xy_xy[:, 1] >= grid_y[0],
|
||||||
|
poly_xy_xy[:, 0] <= grid_x[-1],
|
||||||
|
poly_xy_xy[:, 0] >= grid_x[0]))
|
||||||
|
poly_xy_xy = poly_xy_xy[inside_window, :]
|
||||||
|
|
||||||
|
# Remove consecutive duplicate entries
|
||||||
|
consecutive = diff(poly_xy_xy, axis=0).any(axis=1) # use any() as !=0
|
||||||
|
poly_xy_xy = poly_xy_xy[r_[True, consecutive], :]
|
||||||
|
|
||||||
|
# If the shape fell completely outside our area, just return a blank grid
|
||||||
|
if poly_xy_xy.size == 0:
|
||||||
|
# for matlab:
|
||||||
|
# rg = array.array('d', numpy.nditer(zeros(num_xy_px), order='F'))
|
||||||
|
# return rg
|
||||||
|
return zeros(num_xy_px)
|
||||||
|
|
||||||
|
# ## Calculate area, cover
|
||||||
|
# Calculate segment cover, area, and corresponding pixel's subscripts
|
||||||
|
poly = vstack((poly_xy_xy,
|
||||||
|
poly_xy_xy[0, :]))
|
||||||
|
endpoint_avg = (poly[:-1, :] + poly[1:, :]) / 2
|
||||||
|
|
||||||
|
# Remove segments along the right,top edges
|
||||||
|
# (they correspond to outside pixels, but couldn't be removed until now
|
||||||
|
# because poly_xy stores points, not segments, and the edge points are needed
|
||||||
|
# when creating endpoint_avg)
|
||||||
|
non_edge = numpy.logical_and(numpy.less(endpoint_avg[:, 0], grid_x[-1]),
|
||||||
|
numpy.less(endpoint_avg[:, 1], grid_y[-1]))
|
||||||
|
|
||||||
|
x_sub = numpy.digitize(endpoint_avg[non_edge, 0], grid_x) - 1
|
||||||
|
y_sub = numpy.digitize(endpoint_avg[non_edge, 1], grid_y) - 1
|
||||||
|
|
||||||
|
cover = diff(poly[:, 1], axis=0)[non_edge] / diff(grid_y)[y_sub]
|
||||||
|
area = (endpoint_avg[non_edge, 0] - grid_x[x_sub]) * cover / diff(grid_x)[x_sub]
|
||||||
|
|
||||||
|
hist_range = [[0, num_xy_px[0]], [0, num_xy_px[1]]]
|
||||||
|
poly_grid = numpy.histogram2d(x_sub, y_sub, bins=num_xy_px, range=hist_range, weights=-area)[0]
|
||||||
|
cover_grid = numpy.histogram2d(x_sub, y_sub, bins=num_xy_px, range=hist_range, weights=cover)[0]
|
||||||
|
|
||||||
|
poly_grid += cover_grid.cumsum(axis=0)
|
||||||
|
|
||||||
|
# do other stuff for dealing with multiple polygons?
|
||||||
|
|
||||||
|
# # deal with the user inputting the vertices in the wrong order
|
||||||
|
# if poly_grid.sum() < 0:
|
||||||
|
# poly_grid = -poly_grid
|
||||||
|
|
||||||
|
return poly_grid
|
13
setup.py
Normal file
13
setup.py
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
|
||||||
|
from distutils.core import setup
|
||||||
|
|
||||||
|
setup(name='float_raster',
|
||||||
|
version='0.1',
|
||||||
|
description='High-precision anti-aliasing polygon rasterizer',
|
||||||
|
author='Jan Petykiewicz',
|
||||||
|
author_email='anewusername@gmail.com',
|
||||||
|
url='https://mpxd.net/gogs/jan/float_raster',
|
||||||
|
packages=['float_raster'],
|
||||||
|
)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user