fdfd_tools/meanas/fdfd/waveguide_2d.py
2020-02-19 18:42:06 -08:00

738 lines
29 KiB
Python

"""
Operators and helper functions for waveguides with unchanging cross-section.
The propagation direction is chosen to be along the z axis, and all fields
are given an implicit z-dependence of the form `exp(-1 * wavenumber * z)`.
As the z-dependence is known, all the functions in this file assume a 2D grid
(i.e. `dxes = [[[dx_e[0], dx_e[1], ...], [dy_e[0], ...]], [[dx_h[0], ...], [dy_h[0], ...]]]`).
===============
Consider Maxwell's equations in continuous space, in the frequency domain. Assuming
a structure with some (x, y) cross-section extending uniformly into the z dimension,
with a diagonal $\\epsilon$ tensor, we have
$$
\\begin{aligned}
\\nabla \\times \\vec{E}(x, y, z) &= -\\imath \\omega \\mu \\vec{H} \\\\
\\nabla \\times \\vec{H}(x, y, z) &= \\imath \\omega \\epsilon \\vec{E} \\\\
\\vec{E}(x,y,z) = (\\vec{E}_t(x, y) + E_z(x, y)\\vec{z}) e^{-\\gamma z} \\\\
\\vec{H}(x,y,z) = (\\vec{H}_t(x, y) + H_z(x, y)\\vec{z}) e^{-\\gamma z} \\\\
\\end{aligned}
$$
Expanding the first two equations into vector components, we get
$$
\\begin{aligned}
-\\imath \\omega \\mu_{xx} H_x &= \\partial_y E_z - \\partial_z E_y \\\\
-\\imath \\omega \\mu_{yy} H_y &= \\partial_z E_x - \\partial_x E_z \\\\
-\\imath \\omega \\mu_{zz} H_z &= \\partial_x E_y - \\partial_y E_x \\\\
\\imath \\omega \\epsilon_{xx} E_x &= \\partial_y H_z - \\partial_z H_y \\\\
\\imath \\omega \\epsilon_{yy} E_y &= \\partial_z H_x - \\partial_x H_z \\\\
\\imath \\omega \\epsilon_{zz} E_z &= \\partial_x H_y - \\partial_y H_x \\\\
\\end{aligned}
$$
Substituting in our expressions for $\\vec{E}$, $\\vec{H}$ and discretizing:
$$
\\begin{aligned}
-\\imath \\omega \\mu_{xx} H_x &= \\tilde{\\partial}_y E_z + \\gamma E_y \\\\
-\\imath \\omega \\mu_{yy} H_y &= -\\gamma E_x - \\tilde{\\partial}_x E_z \\\\
-\\imath \\omega \\mu_{zz} H_z &= \\tilde{\\partial}_x E_y - \\tilde{\\partial}_y E_x \\\\
\\imath \\omega \\epsilon_{xx} E_x &= \\hat{\\partial}_y H_z + \\gamma H_y \\\\
\\imath \\omega \\epsilon_{yy} E_y &= -\\gamma H_x - \\hat{\\partial}_x H_z \\\\
\\imath \\omega \\epsilon_{zz} E_z &= \\hat{\\partial}_x H_y - \\hat{\\partial}_y H_x \\\\
\\end{aligned}
$$
Rewrite the last three equations as
$$
\\begin{aligned}
\\gamma H_y &= \\imath \\omega \\epsilon_{xx} E_x - \\hat{\\partial}_y H_z \\\\
\\gamma H_x &= -\\imath \\omega \\epsilon_{yy} E_y - \\hat{\\partial}_x H_z \\\\
\\imath \\omega E_z &= \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_x H_y - \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_y H_x \\\\
\\end{aligned}
$$
Now apply $\\gamma \\tilde{\\partial}_x$ to the last equation,
then substitute in for $\\gamma H_x$ and $\\gamma H_y$:
$$
\\begin{aligned}
\\gamma \\tilde{\\partial}_x \\imath \\omega E_z &= \\gamma \\tilde{\\partial}_x \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_x H_y
- \\gamma \\tilde{\\partial}_x \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_y H_x \\\\
&= \\tilde{\\partial}_x \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_x ( \\imath \\omega \\epsilon_{xx} E_x - \\hat{\\partial}_y H_z)
- \\tilde{\\partial}_x \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_y (-\\imath \\omega \\epsilon_{yy} E_y - \\hat{\\partial}_x H_z) \\\\
&= \\tilde{\\partial}_x \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_x ( \\imath \\omega \\epsilon_{xx} E_x)
- \\tilde{\\partial}_x \\frac{1}{\\epsilon_{zz}} \\hat{\\partial}_y (-\\imath \\omega \\epsilon_{yy} E_y) \\\\
\\gamma \\tilde{\\partial}_x E_z &= \\tilde{\\partial}_x \\frac{1}{\\epsilon_zz} \\hat{\\partial}_x (\\epsilon_{xx} E_x)
\\tilde{\\partial}_x \\frac{1}{\\epsilon_zz} \\hat{\\partial}_y (\\epsilon_{yy} E_y) \\\\
\\end{aligned}
$$
With a similar approach (but using $\\gamma \\tilde{\\partial}_y$ instead), we can get
$$
\\begin{aligned}
\\gamma \\tilde{\\partial}_y E_z &= \\tilde{\\partial}_y \\frac{1}{\\epsilon_zz} \\hat{\\partial}_x (\\epsilon_{xx} E_x)
\\tilde{\\partial}_y \\frac{1}{\\epsilon_zz} \\hat{\\partial}_y (\\epsilon_{yy} E_y) \\\\
\\end{aligned}
$$
We can combine this equation for $\\gamma \\tilde{\\partial}_y E_z$ with
the unused $\\imath \\omega \\mu_{xx} H_z$ and $\\imath \\omega \\mu_{yy} H_y$ equations to get
$$
\\begin{aligned}
-\\imath \\omega \\mu_{xx} \\gamma H_x &= \\gamma^2 E_y + \\tilde{\\partial}_y (
\\tilde{\\partial}_x \\frac{1}{\\epsilon_zz} \\hat{\\partial}_x (\\epsilon_{xx} E_x)
+ \\tilde{\\partial}_x \\frac{1}{\\epsilon_zz} \\hat{\\partial}_y (\\epsilon_{yy} E_y)
) \\\\
-\\imath \\omega \\mu_{yy} \\gamma H_y &= -\\gamma^2 E_x - \\tilde{\\partial}_x (
\\tilde{\\partial}_y \\frac{1}{\\epsilon_zz} \\hat{\\partial}_x (\\epsilon_{xx} E_x)
+ \\tilde{\\partial}_y \\frac{1}{\\epsilon_zz} \\hat{\\partial}_y (\\epsilon_{yy} E_y)
)\\\\
\\end{aligned}
$$
However, based on our rewritten equation for $\\gamma H_x$ and the so-far unused
equation for $\\imath \\omega \\mu_{zz} H_z$ we can also write
$$
\\begin{aligned}
-\\imath \\omega \\mu_{xx} (\\gamma H_x) &= -\\imath \\omega \\mu_{xx} (-\\imath \\omega \\epsilon_{yy} E_y - \\hat{\\partial}_x H_z) \\\\
&= -\\omega^2 \\mu_{xx} \\epsilon_{yy} E_y
-\\imath \\omega \\mu_{xx} \\hat{\\partial}_x (
\\frac{1}{-\\imath \\omega \\mu_{zz}} (\\tilde{\\partial}_x E_y - \\tilde{\\partial}_y E_x)) \\\\
&= -\\omega^2 \\mu_{xx} \\epsilon_{yy} E_y
+\\mu_{xx} \\hat{\\partial}_x \\frac{1}{\\mu_{zz}} (\\tilde{\\partial}_x E_y - \\tilde{\\partial}_y E_x) \\\\
\\end{aligned}
$$
and, similarly,
$$
\\begin{aligned}
-\\imath \\omega \\mu_{yy} (\\gamma H_y) &= -\\omega^2 \\mu_{yy} \\epsilon_{xx} E_x
+\\mu_{yy} \\hat{\\partial}_y \\frac{1}{\\mu_{zz}} (\\tilde{\\partial}_x E_y - \\tilde{\\partial}_y E_x) \\\\
\\end{aligned}
$$
Using these, we can construct the eigenvalue problem
$$ \\beta^2 \\begin{bmatrix} E_x \\\\
E_y \\end{bmatrix} =
(\\omega^2 \\begin{bmatrix} \\mu_{yy} \\epsilon_{xx} & 0 \\\\
0 & \\mu_{xx} \\epsilon_{yy} \\end{bmatrix} +
\\begin{bmatrix} -\\mu_{yy} \\hat{\\partial}_y \\\\
\\mu_{xx} \\hat{\\partial}_x \\end{bmatrix} \\mu_{zz}^{-1}
\\begin{bmatrix} -\\tilde{\\partial}_y & \\tilde{\\partial}_x \\end{bmatrix} +
\\begin{bmatrix} \\tilde{\\partial}_x \\\\
\\tilde{\\partial}_y \\end{bmatrix} \\epsilon_{zz}^{-1}
\\begin{bmatrix} \\hat{\\partial}_x \\epsilon_{xx} & \\hat{\\partial}_y \\epsilon_{yy} \\end{bmatrix})
\\begin{bmatrix} E_x \\\\
E_y \\end{bmatrix}
$$
An equivalent eigenvalue problem can be formed using the $H_x$ and $H_y$ fields, if those are more convenient.
Note that $E_z$ was never discretized, so $\\gamma$ and $\\beta$ will need adjustment
to account for numerical dispersion if the result is introduced into a space with a discretized z-axis.
"""
# TODO update module docs
from typing import List, Tuple
import numpy
from numpy.linalg import norm
import scipy.sparse as sparse
from ..fdmath.operators import deriv_forward, deriv_back, curl_forward, curl_back, cross
from ..fdmath import vec, unvec, dx_lists_t, fdfield_t, vfdfield_t
from ..eigensolvers import signed_eigensolve, rayleigh_quotient_iteration
from . import operators
__author__ = 'Jan Petykiewicz'
def operator_e(omega: complex,
dxes: dx_lists_t,
epsilon: vfdfield_t,
mu: vfdfield_t = None,
) -> sparse.spmatrix:
"""
Waveguide operator of the form
omega**2 * mu * epsilon +
mu * [[-Dy], [Dx]] / mu * [-Dy, Dx] +
[[Dx], [Dy]] / epsilon * [Dx, Dy] * epsilon
for use with a field vector of the form `cat([E_x, E_y])`.
More precisely, the operator is
$$
\\omega^2 \\begin{bmatrix} \\mu_{yy} \\epsilon_{xx} & 0 \\\\
0 & \\mu_{xx} \\epsilon_{yy} \\end{bmatrix} +
\\begin{bmatrix} -\\mu_{yy} \\hat{\\partial}_y \\\\
\\mu_{xx} \\hat{\\partial}_x \\end{bmatrix} \\mu_{zz}^{-1}
\\begin{bmatrix} -\\tilde{\\partial}_y & \\tilde{\\partial}_x \\end{bmatrix} +
\\begin{bmatrix} \\tilde{\\partial}_x \\\\
\\tilde{\\partial}_y \\end{bmatrix} \\epsilon_{zz}^{-1}
\\begin{bmatrix} \\hat{\\partial}_x \\epsilon_{xx} & \\hat{\\partial}_y \\epsilon_{yy} \\end{bmatrix}
$$
$\\tilde{\\partial}_x$ and $\\hat{\\partial}_x$ are the forward and backward derivatives along x,
and each $\\epsilon_{xx}$, $\\mu_{yy}$, etc. is a diagonal matrix containing the vectorized material
property distribution.
This operator can be used to form an eigenvalue problem of the form
`operator_e(...) @ [E_x, E_y] = wavenumber**2 * [E_x, E_y]`
which can then be solved for the eigenmodes of the system (an `exp(-i * wavenumber * z)`
z-dependence is assumed for the fields).
Args:
omega: The angular frequency of the system.
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
epsilon: Vectorized dielectric constant grid
mu: Vectorized magnetic permeability grid (default 1 everywhere)
Returns:
Sparse matrix representation of the operator.
"""
if numpy.any(numpy.equal(mu, None)):
mu = numpy.ones_like(epsilon)
Dfx, Dfy = deriv_forward(dxes[0])
Dbx, Dby = deriv_back(dxes[1])
eps_parts = numpy.split(epsilon, 3)
eps_xy = sparse.diags(numpy.hstack((eps_parts[0], eps_parts[1])))
eps_z_inv = sparse.diags(1 / eps_parts[2])
mu_parts = numpy.split(mu, 3)
mu_yx = sparse.diags(numpy.hstack((mu_parts[1], mu_parts[0])))
mu_z_inv = sparse.diags(1 / mu_parts[2])
op = omega * omega * mu_yx @ eps_xy + \
mu_yx @ sparse.vstack((-Dby, Dbx)) @ mu_z_inv @ sparse.hstack((-Dfy, Dfx)) + \
sparse.vstack((Dfx, Dfy)) @ eps_z_inv @ sparse.hstack((Dbx, Dby)) @ eps_xy
return op
def operator_h(omega: complex,
dxes: dx_lists_t,
epsilon: vfdfield_t,
mu: vfdfield_t = None,
) -> sparse.spmatrix:
"""
Waveguide operator of the form
omega**2 * epsilon * mu +
epsilon * [[-Dy], [Dx]] / epsilon * [-Dy, Dx] +
[[Dx], [Dy]] / mu * [Dx, Dy] * mu
for use with a field vector of the form `cat([H_x, H_y])`.
More precisely, the operator is
$$
\\omega^2 \\begin{bmatrix} \\epsilon_{yy} \\mu_{xx} & 0 \\\\
0 & \\epsilon_{xx} \\mu_{yy} \\end{bmatrix} +
\\begin{bmatrix} -\\epsilon_{yy} \\tilde{\\partial}_y \\\\
\\epsilon_{xx} \\tilde{\\partial}_x \\end{bmatrix} \\epsilon_{zz}^{-1}
\\begin{bmatrix} -\\hat{\\partial}_y & \\hat{\\partial}_x \\end{bmatrix} +
\\begin{bmatrix} \\hat{\\partial}_x \\\\
\\hat{\\partial}_y \\end{bmatrix} \\mu_{zz}^{-1}
\\begin{bmatrix} \\tilde{\\partial}_x \\mu_{xx} & \\tilde{\\partial}_y \\mu_{yy} \\end{bmatrix}
$$
$\\tilde{\\partial}_x$ and $\\hat{\\partial}_x$ are the forward and backward derivatives along x,
and each $\\epsilon_{xx}$, $\\mu_{yy}$, etc. is a diagonal matrix containing the vectorized material
property distribution.
This operator can be used to form an eigenvalue problem of the form
`operator_h(...) @ [H_x, H_y] = wavenumber**2 * [H_x, H_y]`
which can then be solved for the eigenmodes of the system (an `exp(-i * wavenumber * z)`
z-dependence is assumed for the fields).
Args:
omega: The angular frequency of the system.
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
epsilon: Vectorized dielectric constant grid
mu: Vectorized magnetic permeability grid (default 1 everywhere)
Returns:
Sparse matrix representation of the operator.
"""
if numpy.any(numpy.equal(mu, None)):
mu = numpy.ones_like(epsilon)
Dfx, Dfy = operators.deriv_forward(dxes[0])
Dbx, Dby = operators.deriv_back(dxes[1])
eps_parts = numpy.split(epsilon, 3)
eps_yx = sparse.diags(numpy.hstack((eps_parts[1], eps_parts[0])))
eps_z_inv = sparse.diags(1 / eps_parts[2])
mu_parts = numpy.split(mu, 3)
mu_xy = sparse.diags(numpy.hstack((mu_parts[0], mu_parts[1])))
mu_z_inv = sparse.diags(1 / mu_parts[2])
op = omega * omega * eps_yx @ mu_xy + \
eps_yx @ sparse.vstack((-Dfy, Dfx)) @ eps_z_inv @ sparse.hstack((-Dby, Dbx)) + \
sparse.vstack((Dbx, Dby)) @ mu_z_inv @ sparse.hstack((Dfx, Dfy)) @ mu_xy
return op
def normalized_fields_e(e_xy: numpy.ndarray,
wavenumber: complex,
omega: complex,
dxes: dx_lists_t,
epsilon: vfdfield_t,
mu: vfdfield_t = None,
prop_phase: float = 0,
) -> Tuple[vfdfield_t, vfdfield_t]:
"""
Given a vector `e_xy` containing the vectorized E_x and E_y fields,
returns normalized, vectorized E and H fields for the system.
Args:
e_xy: Vector containing E_x and E_y fields
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`.
It should satisfy `operator_e() @ e_xy == wavenumber**2 * e_xy`
omega: The angular frequency of the system
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
epsilon: Vectorized dielectric constant grid
mu: Vectorized magnetic permeability grid (default 1 everywhere)
prop_phase: Phase shift `(dz * corrected_wavenumber)` over 1 cell in propagation direction.
Default 0 (continuous propagation direction, i.e. dz->0).
Returns:
`(e, h)`, where each field is vectorized, normalized,
and contains all three vector components.
"""
e = exy2e(wavenumber=wavenumber, dxes=dxes, epsilon=epsilon) @ e_xy
h = exy2h(wavenumber=wavenumber, omega=omega, dxes=dxes, epsilon=epsilon, mu=mu) @ e_xy
e_norm, h_norm = _normalized_fields(e=e, h=h, omega=omega, dxes=dxes, epsilon=epsilon,
mu=mu, prop_phase=prop_phase)
return e_norm, h_norm
def normalized_fields_h(h_xy: numpy.ndarray,
wavenumber: complex,
omega: complex,
dxes: dx_lists_t,
epsilon: vfdfield_t,
mu: vfdfield_t = None,
prop_phase: float = 0,
) -> Tuple[vfdfield_t, vfdfield_t]:
"""
Given a vector `h_xy` containing the vectorized H_x and H_y fields,
returns normalized, vectorized E and H fields for the system.
Args:
h_xy: Vector containing H_x and H_y fields
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`.
It should satisfy `operator_h() @ h_xy == wavenumber**2 * h_xy`
omega: The angular frequency of the system
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
epsilon: Vectorized dielectric constant grid
mu: Vectorized magnetic permeability grid (default 1 everywhere)
prop_phase: Phase shift `(dz * corrected_wavenumber)` over 1 cell in propagation direction.
Default 0 (continuous propagation direction, i.e. dz->0).
Returns:
`(e, h)`, where each field is vectorized, normalized,
and contains all three vector components.
"""
e = hxy2e(wavenumber=wavenumber, omega=omega, dxes=dxes, epsilon=epsilon, mu=mu) @ h_xy
h = hxy2h(wavenumber=wavenumber, dxes=dxes, mu=mu) @ h_xy
e_norm, h_norm = _normalized_fields(e=e, h=h, omega=omega, dxes=dxes, epsilon=epsilon,
mu=mu, prop_phase=prop_phase)
return e_norm, h_norm
def _normalized_fields(e: numpy.ndarray,
h: numpy.ndarray,
omega: complex,
dxes: dx_lists_t,
epsilon: vfdfield_t,
mu: vfdfield_t = None,
prop_phase: float = 0,
) -> Tuple[vfdfield_t, vfdfield_t]:
# TODO documentation
shape = [s.size for s in dxes[0]]
dxes_real = [[numpy.real(d) for d in numpy.meshgrid(*dxes[v], indexing='ij')] for v in (0, 1)]
E = unvec(e, shape)
H = unvec(h, shape)
# Find time-averaged Sz and normalize to it
# H phase is adjusted by a half-cell forward shift for Yee cell, and 1-cell reverse shift for Poynting
phase = numpy.exp(-1j * -prop_phase / 2)
Sz_a = E[0] * numpy.conj(H[1] * phase) * dxes_real[0][1] * dxes_real[1][0]
Sz_b = E[1] * numpy.conj(H[0] * phase) * dxes_real[0][0] * dxes_real[1][1]
Sz_tavg = numpy.real(Sz_a.sum() - Sz_b.sum()) * 0.5 # 0.5 since E, H are assumed to be peak (not RMS) amplitudes
assert Sz_tavg > 0, 'Found a mode propagating in the wrong direction! Sz_tavg={}'.format(Sz_tavg)
energy = epsilon * e.conj() * e
norm_amplitude = 1 / numpy.sqrt(Sz_tavg)
norm_angle = -numpy.angle(e[energy.argmax()]) # Will randomly add a negative sign when mode is symmetric
# Try to break symmetry to assign a consistent sign [experimental TODO]
E_weighted = unvec(e * energy * numpy.exp(1j * norm_angle), shape)
sign = numpy.sign(E_weighted[:, :max(shape[0]//2, 1), :max(shape[1]//2, 1)].real.sum())
norm_factor = sign * norm_amplitude * numpy.exp(1j * norm_angle)
e *= norm_factor
h *= norm_factor
return e, h
def exy2h(wavenumber: complex,
omega: complex,
dxes: dx_lists_t,
epsilon: vfdfield_t,
mu: vfdfield_t = None
) -> sparse.spmatrix:
"""
Operator which transforms the vector `e_xy` containing the vectorized E_x and E_y fields,
into a vectorized H containing all three H components
Args:
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`.
It should satisfy `operator_e() @ e_xy == wavenumber**2 * e_xy`
omega: The angular frequency of the system
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
epsilon: Vectorized dielectric constant grid
mu: Vectorized magnetic permeability grid (default 1 everywhere)
Returns:
Sparse matrix representing the operator.
"""
e2hop = e2h(wavenumber=wavenumber, omega=omega, dxes=dxes, mu=mu)
return e2hop @ exy2e(wavenumber=wavenumber, dxes=dxes, epsilon=epsilon)
def hxy2e(wavenumber: complex,
omega: complex,
dxes: dx_lists_t,
epsilon: vfdfield_t,
mu: vfdfield_t = None
) -> sparse.spmatrix:
"""
Operator which transforms the vector `h_xy` containing the vectorized H_x and H_y fields,
into a vectorized E containing all three E components
Args:
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`.
It should satisfy `operator_h() @ h_xy == wavenumber**2 * h_xy`
omega: The angular frequency of the system
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
epsilon: Vectorized dielectric constant grid
mu: Vectorized magnetic permeability grid (default 1 everywhere)
Returns:
Sparse matrix representing the operator.
"""
h2eop = h2e(wavenumber=wavenumber, omega=omega, dxes=dxes, epsilon=epsilon)
return h2eop @ hxy2h(wavenumber=wavenumber, dxes=dxes, mu=mu)
def hxy2h(wavenumber: complex,
dxes: dx_lists_t,
mu: vfdfield_t = None
) -> sparse.spmatrix:
"""
Operator which transforms the vector `h_xy` containing the vectorized H_x and H_y fields,
into a vectorized H containing all three H components
Args:
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`.
It should satisfy `operator_h() @ h_xy == wavenumber**2 * h_xy`
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
mu: Vectorized magnetic permeability grid (default 1 everywhere)
Returns:
Sparse matrix representing the operator.
"""
Dfx, Dfy = deriv_forward(dxes[0])
hxy2hz = sparse.hstack((Dfx, Dfy)) / (1j * wavenumber)
if not numpy.any(numpy.equal(mu, None)):
mu_parts = numpy.split(mu, 3)
mu_xy = sparse.diags(numpy.hstack((mu_parts[0], mu_parts[1])))
mu_z_inv = sparse.diags(1 / mu_parts[2])
hxy2hz = mu_z_inv @ hxy2hz @ mu_xy
n_pts = dxes[1][0].size * dxes[1][1].size
op = sparse.vstack((sparse.eye(2 * n_pts),
hxy2hz))
return op
def exy2e(wavenumber: complex,
dxes: dx_lists_t,
epsilon: vfdfield_t,
) -> sparse.spmatrix:
"""
Operator which transforms the vector `e_xy` containing the vectorized E_x and E_y fields,
into a vectorized E containing all three E components
Args:
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`
It should satisfy `operator_e() @ e_xy == wavenumber**2 * e_xy`
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
epsilon: Vectorized dielectric constant grid
Returns:
Sparse matrix representing the operator.
"""
Dbx, Dby = deriv_back(dxes[1])
exy2ez = sparse.hstack((Dbx, Dby)) / (1j * wavenumber)
if not numpy.any(numpy.equal(epsilon, None)):
epsilon_parts = numpy.split(epsilon, 3)
epsilon_xy = sparse.diags(numpy.hstack((epsilon_parts[0], epsilon_parts[1])))
epsilon_z_inv = sparse.diags(1 / epsilon_parts[2])
exy2ez = epsilon_z_inv @ exy2ez @ epsilon_xy
n_pts = dxes[0][0].size * dxes[0][1].size
op = sparse.vstack((sparse.eye(2 * n_pts),
exy2ez))
return op
def e2h(wavenumber: complex,
omega: complex,
dxes: dx_lists_t,
mu: vfdfield_t = None
) -> sparse.spmatrix:
"""
Returns an operator which, when applied to a vectorized E eigenfield, produces
the vectorized H eigenfield.
Args:
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`
omega: The angular frequency of the system
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
mu: Vectorized magnetic permeability grid (default 1 everywhere)
Returns:
Sparse matrix representation of the operator.
"""
op = curl_e(wavenumber, dxes) / (-1j * omega)
if not numpy.any(numpy.equal(mu, None)):
op = sparse.diags(1 / mu) @ op
return op
def h2e(wavenumber: complex,
omega: complex,
dxes: dx_lists_t,
epsilon: vfdfield_t
) -> sparse.spmatrix:
"""
Returns an operator which, when applied to a vectorized H eigenfield, produces
the vectorized E eigenfield.
Args:
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`
omega: The angular frequency of the system
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
epsilon: Vectorized dielectric constant grid
Returns:
Sparse matrix representation of the operator.
"""
op = sparse.diags(1 / (1j * omega * epsilon)) @ curl_h(wavenumber, dxes)
return op
def curl_e(wavenumber: complex, dxes: dx_lists_t) -> sparse.spmatrix:
"""
Discretized curl operator for use with the waveguide E field.
Args:
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
Return:
Sparse matrix representation of the operator.
"""
n = 1
for d in dxes[0]:
n *= len(d)
Bz = -1j * wavenumber * sparse.eye(n)
Dfx, Dfy = deriv_forward(dxes[0])
return cross([Dfx, Dfy, Bz])
def curl_h(wavenumber: complex, dxes: dx_lists_t) -> sparse.spmatrix:
"""
Discretized curl operator for use with the waveguide H field.
Args:
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
Return:
Sparse matrix representation of the operator.
"""
n = 1
for d in dxes[1]:
n *= len(d)
Bz = -1j * wavenumber * sparse.eye(n)
Dbx, Dby = deriv_back(dxes[1])
return cross([Dbx, Dby, Bz])
def h_err(h: vfdfield_t,
wavenumber: complex,
omega: complex,
dxes: dx_lists_t,
epsilon: vfdfield_t,
mu: vfdfield_t = None
) -> float:
"""
Calculates the relative error in the H field
Args:
h: Vectorized H field
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`
omega: The angular frequency of the system
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
epsilon: Vectorized dielectric constant grid
mu: Vectorized magnetic permeability grid (default 1 everywhere)
Returns:
Relative error `norm(A_h @ h) / norm(h)`.
"""
ce = curl_e(wavenumber, dxes)
ch = curl_h(wavenumber, dxes)
eps_inv = sparse.diags(1 / epsilon)
if numpy.any(numpy.equal(mu, None)):
op = ce @ eps_inv @ ch @ h - omega ** 2 * h
else:
op = ce @ eps_inv @ ch @ h - omega ** 2 * (mu * h)
return norm(op) / norm(h)
def e_err(e: vfdfield_t,
wavenumber: complex,
omega: complex,
dxes: dx_lists_t,
epsilon: vfdfield_t,
mu: vfdfield_t = None
) -> float:
"""
Calculates the relative error in the E field
Args:
e: Vectorized E field
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`
omega: The angular frequency of the system
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
epsilon: Vectorized dielectric constant grid
mu: Vectorized magnetic permeability grid (default 1 everywhere)
Returns:
Relative error `norm(A_e @ e) / norm(e)`.
"""
ce = curl_e(wavenumber, dxes)
ch = curl_h(wavenumber, dxes)
if numpy.any(numpy.equal(mu, None)):
op = ch @ ce @ e - omega ** 2 * (epsilon * e)
else:
mu_inv = sparse.diags(1 / mu)
op = ch @ mu_inv @ ce @ e - omega ** 2 * (epsilon * e)
return norm(op) / norm(e)
def solve_modes(mode_numbers: List[int],
omega: complex,
dxes: dx_lists_t,
epsilon: vfdfield_t,
mu: vfdfield_t = None,
mode_margin: int = 2,
) -> Tuple[List[vfdfield_t], List[complex]]:
"""
Given a 2D region, attempts to solve for the eigenmode with the specified mode numbers.
Args:
mode_numbers: List of 0-indexed mode numbers to solve for
omega: Angular frequency of the simulation
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types`
epsilon: Dielectric constant
mu: Magnetic permeability (default 1 everywhere)
mode_margin: The eigensolver will actually solve for `(max(mode_number) + mode_margin)`
modes, but only return the target mode. Increasing this value can improve the solver's
ability to find the correct mode. Default 2.
Returns:
(e_xys, wavenumbers)
"""
'''
Solve for the largest-magnitude eigenvalue of the real operator
'''
dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes]
A_r = operator_e(numpy.real(omega), dxes_real, numpy.real(epsilon), numpy.real(mu))
eigvals, eigvecs = signed_eigensolve(A_r, max(mode_numbers) + mode_margin)
e_xys = eigvecs[:, -(numpy.array(mode_numbers) + 1)]
'''
Now solve for the eigenvector of the full operator, using the real operator's
eigenvector as an initial guess for Rayleigh quotient iteration.
'''
A = operator_e(omega, dxes, epsilon, mu)
for nn in range(len(mode_numbers)):
eigvals[nn], e_xys[:, nn] = rayleigh_quotient_iteration(A, e_xys[:, nn])
# Calculate the wave-vector (force the real part to be positive)
wavenumbers = numpy.sqrt(eigvals)
wavenumbers *= numpy.sign(numpy.real(wavenumbers))
return e_xys, wavenumbers
def solve_mode(mode_number: int,
*args,
**kwargs
) -> Tuple[vfdfield_t, complex]:
"""
Wrapper around `solve_modes()` that solves for a single mode.
Args:
mode_number: 0-indexed mode number to solve for
*args: passed to `solve_modes()`
**kwargs: passed to `solve_modes()`
Returns:
(e_xy, wavenumber)
"""
e_xys, wavenumbers = solve_modes(mode_numbers=[mode_number], *args, **kwargs)
return e_xys[:, 0], wavenumbers[0]