fdfd_tools/fdfd_tools/solvers.py

119 lines
3.4 KiB
Python

"""
Solvers for FDFD problems.
"""
from typing import List, Callable, Dict, Any
import logging
import numpy
from numpy.linalg import norm
import scipy.sparse.linalg
from . import operators
logger = logging.getLogger(__name__)
def _scipy_qmr(A: scipy.sparse.csr_matrix,
b: numpy.ndarray,
**kwargs
) -> numpy.ndarray:
"""
Wrapper for scipy.sparse.linalg.qmr
:param A: Sparse matrix
:param b: Right-hand-side vector
:param kwargs: Passed as **kwargs to the wrapped function
:return: Guess for solution (returned even if didn't converge)
"""
'''
Report on our progress
'''
iter = 0
def log_residual(xk):
nonlocal iter
iter += 1
if iter % 100 == 0:
logger.info('Solver residual at iteration {} : {}'.format(iter, norm(A @ xk - b)))
if 'callback' in kwargs:
def augmented_callback(xk):
log_residual(xk)
kwargs['callback'](xk)
kwargs['callback'] = augmented_callback
else:
kwargs['callback'] = log_residual
'''
Run the actual solve
'''
x, _ = scipy.sparse.linalg.qmr(A, b, **kwargs)
return x
def generic(omega: complex,
dxes: List[List[numpy.ndarray]],
J: numpy.ndarray,
epsilon: numpy.ndarray,
mu: numpy.ndarray = None,
pec: numpy.ndarray = None,
pmc: numpy.ndarray = None,
adjoint: bool = False,
matrix_solver: Callable[..., numpy.ndarray] = _scipy_qmr,
matrix_solver_opts: Dict[str, Any] = None,
) -> numpy.ndarray:
"""
Conjugate gradient FDFD solver using CSR sparse matrices.
All ndarray arguments should be 1D array, as returned by fdfd_tools.vec().
:param omega: Complex frequency to solve at.
:param dxes: [[dx_e, dy_e, dz_e], [dx_h, dy_h, dz_h]] (complex cell sizes)
:param J: Electric current distribution (at E-field locations)
:param epsilon: Dielectric constant distribution (at E-field locations)
:param mu: Magnetic permeability distribution (at H-field locations)
:param pec: Perfect electric conductor distribution
(at E-field locations; non-zero value indicates PEC is present)
:param pmc: Perfect magnetic conductor distribution
(at H-field locations; non-zero value indicates PMC is present)
:param adjoint: If true, solves the adjoint problem.
:param matrix_solver: Called as matrix_solver(A, b, **matrix_solver_opts) -> x
Where A: scipy.sparse.csr_matrix
b: numpy.ndarray
x: numpy.ndarray
Default is a wrapped version of scipy.sparse.linalg.qmr()
which doesn't return convergence info and logs the residual
every 100 iterations.
:param matrix_solver_opts: Passed as kwargs to matrix_solver(...)
:return: E-field which solves the system.
"""
if matrix_solver_opts is None:
matrix_solver_opts = dict()
b0 = -1j * omega * J
A0 = operators.e_full(omega, dxes, epsilon=epsilon, mu=mu, pec=pec, pmc=pmc)
Pl, Pr = operators.e_full_preconditioners(dxes)
if adjoint:
A = (Pl @ A0 @ Pr).H
b = Pr.H @ b0
else:
A = Pl @ A0 @ Pr
b = Pl @ b0
x = matrix_solver(A.tocsr(), b, **matrix_solver_opts)
if adjoint:
x0 = Pl.H @ x
else:
x0 = Pr @ x
return x0