95 lines
4.2 KiB
Python
95 lines
4.2 KiB
Python
"""
|
|
Basic discrete calculus for finite difference (fd) simulations.
|
|
|
|
This documentation and approach is roughly based on W.C. Chew's excellent
|
|
"Electromagnetic Theory on a Lattice" (doi:10.1063/1.355770),
|
|
which covers a superset of this material with similar notation and more detail.
|
|
|
|
|
|
Define the discrete forward derivative as
|
|
|
|
Dx_forward(f)[i] = (f[i + 1] - f[i]) / dx[i]
|
|
|
|
or
|
|
$$ [\\tilde{\\partial}_x f ]_{m + \\frac{1}{2}} = \\frac{1}{\\Delta_{x, m}} (f_{m + 1} - f_m) $$
|
|
|
|
Likewise, discrete reverse derivative is
|
|
|
|
Dx_back(f)[i] = (f[i] - f[i - 1]) / dx[i]
|
|
|
|
or
|
|
$$ [\\hat{\\partial}_x f ]_{m - \\frac{1}{2}} = \\frac{1}{\\Delta_{x, m}} (f_{m} - f_{m - 1}) $$
|
|
|
|
|
|
The derivatives are shifted by a half-cell relative to the original function:
|
|
|
|
_________________________
|
|
| | | | |
|
|
| f0 | f1 | f2 | f3 |
|
|
|_____|_____|_____|_____|
|
|
| | | |
|
|
| Df0 | Df1 | Df2 | Df3
|
|
___|_____|_____|_____|____
|
|
|
|
Periodic boundaries are used unless otherwise noted.
|
|
|
|
|
|
Expanding to three dimensions, we can define two gradients
|
|
$$ [\\tilde{\\nabla} f]_{n,m,p} = \\vec{x} [\\tilde{\\partial}_x f]_{m + \\frac{1}{2},n,p} +
|
|
\\vec{y} [\\tilde{\\partial}_y f]_{m,n + \\frac{1}{2},p} +
|
|
\\vec{z} [\\tilde{\\partial}_z f]_{m,n,p + \\frac{1}{2}} $$
|
|
$$ [\\hat{\\nabla} f]_{m,n,p} = \\vec{x} [\\hat{\\partial}_x f]_{m + \\frac{1}{2},n,p} +
|
|
\\vec{y} [\\hat{\\partial}_y f]_{m,n + \\frac{1}{2},p} +
|
|
\\vec{z} [\\hat{\\partial}_z f]_{m,n,p + \\frac{1}{2}} $$
|
|
|
|
The three derivatives in the gradient cause shifts in different
|
|
directions, so the x/y/z components of the resulting "vector" are defined
|
|
at different points: the x-component is shifted in the x-direction,
|
|
y in y, and z in z.
|
|
|
|
We call the resulting object a "fore-vector" or "back-vector", depending
|
|
on the direction of the shift. We write it as
|
|
$$ \\tilde{g}_{m,n,p} = \\vec{x} g^x_{m + \\frac{1}{2},n,p} +
|
|
\\vec{y} g^y_{m,n + \\frac{1}{2},p} +
|
|
\\vec{z} g^z_{m,n,p + \\frac{1}{2}} $$
|
|
$$ \\hat{g}_{m,n,p} = \\vec{x} g^x_{m - \\frac{1}{2},n,p} +
|
|
\\vec{y} g^y_{m,n - \\frac{1}{2},p} +
|
|
\\vec{z} g^z_{m,n,p - \\frac{1}{2}} $$
|
|
|
|
|
|
There are also two divergences,
|
|
|
|
$$ d_{n,m,p} = [\\tilde{\\nabla} \\cdot \\hat{g}]_{n,m,p}
|
|
= [\\tilde{\\partial}_x g^x]_{m,n,p} +
|
|
[\\tilde{\\partial}_y g^y]_{m,n,p} +
|
|
[\\tilde{\\partial}_z g^z]_{m,n,p} $$
|
|
|
|
$$ d_{n,m,p} = [\\hat{\\nabla} \\cdot \\tilde{g}]_{n,m,p}
|
|
= [\\hat{\\partial}_x g^x]_{m,n,p} +
|
|
[\\hat{\\partial}_y g^y]_{m,n,p} +
|
|
[\\hat{\\partial}_z g^z]_{m,n,p} $$
|
|
|
|
Since we applied the forward divergence to the back-vector (and vice-versa), the resulting scalar value
|
|
is defined at the back-vector's (fore-vectors) location \\( (m,n,p) \\) and not at the locations of its components
|
|
\\( (m \\pm \\frac{1}{2},n,p) \\) etc.
|
|
|
|
|
|
The two curls are then
|
|
$$ \\begin{align}
|
|
\\hat{h}_{m + \\frac{1}{2}, n + \\frac{1}{2}, p + \\frac{1}{2}} &= \\\\
|
|
[\\tilde{\\nabla} \\times \\tilde{g}]_{m + \\frac{1}{2}, n + \\frac{1}{2}, p + \\frac{1}{2}} &=
|
|
\\vec{x} (\\tilde{\\partial}_y g^z_{m,n,p + \\frac{1}{2}} - \\tilde{\\partial}_z g^y_{m,n + \\frac{1}{2},p}) \\\\
|
|
&+ \\vec{y} (\\tilde{\\partial}_z g^x_{m + \\frac{1}{2},n,p} - \\tilde{\\partial}_x g^z_{m,n,p + \\frac{1}{2}}) \\\\
|
|
&+ \\vec{z} (\\tilde{\\partial}_x g^y_{m,n + \\frac{1}{2},p} - \\tilde{\\partial}_x g^z_{m + \\frac{1}{2},n,p})
|
|
\\end{align}$$
|
|
and
|
|
$$ \\tilde{h}_{m - \\frac{1}{2}, n - \\frac{1}{2}, p - \\frac{1}{2}} =
|
|
[\\hat{\\nabla} \\times \\hat{g}]_{m - \\frac{1}{2}, n - \\frac{1}{2}, p - \\frac{1}{2}} $$
|
|
|
|
where \\( \\hat{g} \\) and \\( \\tilde{g} \\) are located at \\((m,n,p)\\)
|
|
with components at \\( (m \\pm \\frac{1}{2},n,p) \\) etc.,
|
|
while \\( \\hat{h} \\) and \\( \\tilde{h} \\) are located at \\((m \pm \\frac{1}{2}, n \\pm \\frac{1}{2}, p \\pm \\frac{1}{2})\\)
|
|
with components at \\((m, n \\pm \\frac{1}{2}, p \\pm \\frac{1}{2})\\) etc.
|
|
|
|
"""
|