fdfd_tools/meanas/fdmath/functional.py
2020-02-19 18:42:06 -08:00

110 lines
3.3 KiB
Python

"""
Math functions for finite difference simulations
Basic discrete calculus etc.
"""
from typing import List, Callable, Tuple, Dict
import numpy
from .types import fdfield_t, fdfield_updater_t
def deriv_forward(dx_e: List[numpy.ndarray] = None) -> fdfield_updater_t:
"""
Utility operators for taking discretized derivatives (backward variant).
Args:
dx_e: Lists of cell sizes for all axes
`[[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...]`.
Returns:
List of functions for taking forward derivatives along each axis.
"""
if dx_e:
derivs = [lambda f: (numpy.roll(f, -1, axis=0) - f) / dx_e[0][:, None, None],
lambda f: (numpy.roll(f, -1, axis=1) - f) / dx_e[1][None, :, None],
lambda f: (numpy.roll(f, -1, axis=2) - f) / dx_e[2][None, None, :]]
else:
derivs = [lambda f: numpy.roll(f, -1, axis=0) - f,
lambda f: numpy.roll(f, -1, axis=1) - f,
lambda f: numpy.roll(f, -1, axis=2) - f]
return derivs
def deriv_back(dx_h: List[numpy.ndarray] = None) -> fdfield_updater_t:
"""
Utility operators for taking discretized derivatives (forward variant).
Args:
dx_h: Lists of cell sizes for all axes
`[[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...]`.
Returns:
List of functions for taking forward derivatives along each axis.
"""
if dx_h:
derivs = [lambda f: (f - numpy.roll(f, 1, axis=0)) / dx_h[0][:, None, None],
lambda f: (f - numpy.roll(f, 1, axis=1)) / dx_h[1][None, :, None],
lambda f: (f - numpy.roll(f, 1, axis=2)) / dx_h[2][None, None, :]]
else:
derivs = [lambda f: f - numpy.roll(f, 1, axis=0),
lambda f: f - numpy.roll(f, 1, axis=1),
lambda f: f - numpy.roll(f, 1, axis=2)]
return derivs
def curl_forward(dx_e: List[numpy.ndarray] = None) -> fdfield_updater_t:
"""
Curl operator for use with the E field.
Args:
dx_e: Lists of cell sizes for all axes
`[[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...]`.
Returns:
Function `f` for taking the discrete forward curl of a field,
`f(E)` -> curlE $= \\nabla_f \\times E$
"""
Dx, Dy, Dz = deriv_forward(dx_e)
def ce_fun(e: fdfield_t) -> fdfield_t:
output = numpy.empty_like(e)
output[0] = Dy(e[2])
output[1] = Dz(e[0])
output[2] = Dx(e[1])
output[0] -= Dz(e[1])
output[1] -= Dx(e[2])
output[2] -= Dy(e[0])
return output
return ce_fun
def curl_back(dx_h: List[numpy.ndarray] = None) -> fdfield_updater_t:
"""
Create a function which takes the backward curl of a field.
Args:
dx_h: Lists of cell sizes for all axes
`[[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...]`.
Returns:
Function `f` for taking the discrete backward curl of a field,
`f(H)` -> curlH $= \\nabla_b \\times H$
"""
Dx, Dy, Dz = deriv_back(dx_h)
def ch_fun(h: fdfield_t) -> fdfield_t:
output = numpy.empty_like(h)
output[0] = Dy(h[2])
output[1] = Dz(h[0])
output[2] = Dx(h[1])
output[0] -= Dz(h[1])
output[1] -= Dx(h[2])
output[2] -= Dy(h[0])
return output
return ch_fun