from typing import Dict, List import numpy import scipy.sparse as sparse from .. import vec, unvec, dx_lists_t, vfield_t, field_t from . import operators, waveguide, functional from ..eigensolvers import signed_eigensolve, rayleigh_quotient_iteration def solve_waveguide_mode_2d(mode_number: int, omega: complex, dxes: dx_lists_t, epsilon: field_t, mu: field_t = None, mode_margin: int = 2, ) -> Dict[str, complex or field_t]: """ Given a 2d region, attempts to solve for the eigenmode with the specified mode number. :param mode_number: Number of the mode, 0-indexed. :param omega: Angular frequency of the simulation :param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types :param epsilon: Dielectric constant :param mu: Magnetic permeability (default 1 everywhere) :param mode_margin: The eigensolver will actually solve for (mode_number + mode_margin) modes, but only return the target mode. Increasing this value can improve the solver's ability to find the correct mode. Default 2. :return: {'E': numpy.ndarray, 'H': numpy.ndarray, 'wavenumber': complex} """ ''' Solve for the largest-magnitude eigenvalue of the real operator ''' dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes] A_r = waveguide.operator_e(numpy.real(omega), dxes_real, vec(numpy.real(epsilon)), vec(numpy.real(mu))) eigvals, eigvecs = signed_eigensolve(A_r, mode_number + mode_margin) exy = eigvecs[:, -(mode_number + 1)] ''' Now solve for the eigenvector of the full operator, using the real operator's eigenvector as an initial guess for Rayleigh quotient iteration. ''' A = waveguide.operator_e(omega, dxes, vec(epsilon), vec(mu)) eigval, exy = rayleigh_quotient_iteration(A, exy) # Calculate the wave-vector (force the real part to be positive) wavenumber = numpy.sqrt(eigval) wavenumber *= numpy.sign(numpy.real(wavenumber)) e, h = waveguide.normalized_fields_e(exy, wavenumber, omega, dxes, vec(epsilon), vec(mu)) shape = [d.size for d in dxes[0]] fields = { 'wavenumber': wavenumber, 'E': unvec(e, shape), 'H': unvec(h, shape), } return fields def solve_waveguide_mode(mode_number: int, omega: complex, dxes: dx_lists_t, axis: int, polarity: int, slices: List[slice], epsilon: field_t, mu: field_t = None, ) -> Dict[str, complex or numpy.ndarray]: """ Given a 3D grid, selects a slice from the grid and attempts to solve for an eigenmode propagating through that slice. :param mode_number: Number of the mode, 0-indexed :param omega: Angular frequency of the simulation :param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types :param axis: Propagation axis (0=x, 1=y, 2=z) :param polarity: Propagation direction (+1 for +ve, -1 for -ve) :param slices: epsilon[tuple(slices)] is used to select the portion of the grid to use as the waveguide cross-section. slices[axis] should select only one :param epsilon: Dielectric constant :param mu: Magnetic permeability (default 1 everywhere) :return: {'E': List[numpy.ndarray], 'H': List[numpy.ndarray], 'wavenumber': complex} """ if mu is None: mu = numpy.ones_like(epsilon) slices = tuple(slices) ''' Solve the 2D problem in the specified plane ''' # Define rotation to set z as propagation direction order = numpy.roll(range(3), 2 - axis) reverse_order = numpy.roll(range(3), axis - 2) # Find dx in propagation direction dxab_forward = numpy.array([dx[order[2]][slices[order[2]]] for dx in dxes]) dx_prop = 0.5 * sum(dxab_forward) # Reduce to 2D and solve the 2D problem args_2d = { 'dxes': [[dx[i][slices[i]] for i in order[:2]] for dx in dxes], 'epsilon': [epsilon[i][slices].transpose(order) for i in order], 'mu': [mu[i][slices].transpose(order) for i in order], } fields_2d = solve_waveguide_mode_2d(mode_number, omega=omega, **args_2d) ''' Apply corrections and expand to 3D ''' # Correct wavenumber to account for numerical dispersion. print(fields_2d['wavenumber'] / (2/dx_prop * numpy.arcsin(fields_2d['wavenumber'] * dx_prop/2))) print(fields_2d['wavenumber'].real / (2/dx_prop * numpy.arcsin(fields_2d['wavenumber'].real * dx_prop/2))) fields_2d['wavenumber'] = 2/dx_prop * numpy.arcsin(fields_2d['wavenumber'] * dx_prop/2) # Adjust for propagation direction fields_2d['H'] *= polarity # Apply phase shift to H-field fields_2d['H'][:2] *= numpy.exp(-1j * polarity * 0.5 * fields_2d['wavenumber'] * dx_prop) fields_2d['E'][2] *= numpy.exp(-1j * polarity * 0.5 * fields_2d['wavenumber'] * dx_prop) # Expand E, H to full epsilon space we were given E = numpy.zeros_like(epsilon, dtype=complex) H = numpy.zeros_like(epsilon, dtype=complex) for a, o in enumerate(reverse_order): E[(a, *slices)] = fields_2d['E'][o][:, :, None].transpose(reverse_order) H[(a, *slices)] = fields_2d['H'][o][:, :, None].transpose(reverse_order) results = { 'wavenumber': fields_2d['wavenumber'], 'H': H, 'E': E, } return results def compute_source(E: field_t, wavenumber: complex, omega: complex, dxes: dx_lists_t, axis: int, polarity: int, slices: List[slice], epsilon: field_t, mu: field_t = None, ) -> field_t: """ Given an eigenmode obtained by solve_waveguide_mode, returns the current source distribution necessary to position a unidirectional source at the slice location. :param E: E-field of the mode :param wavenumber: Wavenumber of the mode :param omega: Angular frequency of the simulation :param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types :param axis: Propagation axis (0=x, 1=y, 2=z) :param polarity: Propagation direction (+1 for +ve, -1 for -ve) :param slices: epsilon[tuple(slices)] is used to select the portion of the grid to use as the waveguide cross-section. slices[axis] should select only one :param mu: Magnetic permeability (default 1 everywhere) :return: J distribution for the unidirectional source """ E_expanded = expand_wgmode_e(E=E, dxes=dxes, wavenumber=wavenumber, axis=axis, polarity=polarity, slices=slices) smask = [slice(None)] * 4 if polarity > 0: smask[axis + 1] = slice(slices[axis].start, None) else: smask[axis + 1] = slice(None, slices[axis].stop) mask = numpy.zeros_like(E_expanded, dtype=int) mask[tuple(smask)] = 1 masked_e2j = operators.e_boundary_source(mask=vec(mask), omega=omega, dxes=dxes, epsilon=vec(epsilon), mu=vec(mu)) J = unvec(masked_e2j @ vec(E_expanded), E.shape[1:]) return J def compute_overlap_e(E: field_t, wavenumber: complex, dxes: dx_lists_t, axis: int, polarity: int, slices: List[slice], ) -> field_t: # TODO DOCS """ Given an eigenmode obtained by solve_waveguide_mode, calculates overlap_e for the mode orthogonality relation Integrate(((E x H_mode) + (E_mode x H)) dot dn) [assumes reflection symmetry].i overlap_e makes use of the e2h operator to collapse the above expression into (vec(E) @ vec(overlap_e)), allowing for simple calculation of the mode overlap. :param E: E-field of the mode :param H: H-field of the mode (advanced by half of a Yee cell from E) :param wavenumber: Wavenumber of the mode :param omega: Angular frequency of the simulation :param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types :param axis: Propagation axis (0=x, 1=y, 2=z) :param polarity: Propagation direction (+1 for +ve, -1 for -ve) :param slices: epsilon[tuple(slices)] is used to select the portion of the grid to use as the waveguide cross-section. slices[axis] should select only one :param mu: Magnetic permeability (default 1 everywhere) :return: overlap_e for calculating the mode overlap """ slices = tuple(slices) Ee = expand_wgmode_e(E=E, wavenumber=wavenumber, dxes=dxes, axis=axis, polarity=polarity, slices=slices) start, stop = sorted((slices[axis].start, slices[axis].start - 2 * polarity)) slices2 = list(slices) slices2[axis] = slice(start, stop) slices2 = (slice(None), *slices2) Etgt = numpy.zeros_like(Ee) Etgt[slices2] = Ee[slices2] Etgt /= (Etgt.conj() * Etgt).sum() return Etgt.conj() def solve_waveguide_mode_cylindrical(mode_number: int, omega: complex, dxes: dx_lists_t, epsilon: vfield_t, r0: float, ) -> Dict[str, complex or field_t]: """ TODO: fixup Given a 2d (r, y) slice of epsilon, attempts to solve for the eigenmode of the bent waveguide with the specified mode number. :param mode_number: Number of the mode, 0-indexed :param omega: Angular frequency of the simulation :param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types. The first coordinate is assumed to be r, the second is y. :param epsilon: Dielectric constant :param r0: Radius of curvature for the simulation. This should be the minimum value of r within the simulation domain. :return: {'E': List[numpy.ndarray], 'H': List[numpy.ndarray], 'wavenumber': complex} """ ''' Solve for the largest-magnitude eigenvalue of the real operator ''' dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes] A_r = waveguide.cylindrical_operator(numpy.real(omega), dxes_real, numpy.real(epsilon), r0) eigvals, eigvecs = signed_eigensolve(A_r, mode_number + 3) e_xy = eigvecs[:, -(mode_number+1)] ''' Now solve for the eigenvector of the full operator, using the real operator's eigenvector as an initial guess for Rayleigh quotient iteration. ''' A = waveguide.cylindrical_operator(omega, dxes, epsilon, r0) eigval, e_xy = rayleigh_quotient_iteration(A, e_xy) # Calculate the wave-vector (force the real part to be positive) wavenumber = numpy.sqrt(eigval) wavenumber *= numpy.sign(numpy.real(wavenumber)) # TODO: Perform correction on wavenumber to account for numerical dispersion. shape = [d.size for d in dxes[0]] e_xy = numpy.hstack((e_xy, numpy.zeros(shape[0] * shape[1]))) fields = { 'wavenumber': wavenumber, 'E': unvec(e_xy, shape), # 'E': unvec(e, shape), # 'H': unvec(h, shape), } return fields def expand_wgmode_e(E: field_t, wavenumber: complex, dxes: dx_lists_t, axis: int, polarity: int, slices: List[slice], ) -> field_t: slices = tuple(slices) # Determine phase factors for parallel slices a_shape = numpy.roll([1, -1, 1, 1], axis) a_E = numpy.real(dxes[0][axis]).cumsum() r_E = a_E - a_E[slices[axis]] iphi = polarity * -1j * wavenumber phase_E = numpy.exp(iphi * r_E).reshape(a_shape) # Expand our slice to the entire grid using the phase factors E_expanded = numpy.zeros_like(E) slices_exp = list(slices) slices_exp[axis] = slice(E.shape[axis + 1]) slices_exp = (slice(None), *slices_exp) slices_in = (slice(None), *slices) E_expanded[slices_exp] = phase_E * numpy.array(E)[slices_in] return E_expanded