Compare commits
1 Commits
Author | SHA1 | Date | |
---|---|---|---|
03fc9e6d70 |
@ -1,5 +1,11 @@
|
|||||||
# fdfd_tools
|
# fdfd_tools
|
||||||
|
|
||||||
|
** DEPRECATED **
|
||||||
|
|
||||||
|
The functionality in this module is now provided by [meanas](https://mpxd.net/code/jan/meanas).
|
||||||
|
|
||||||
|
-----------------------
|
||||||
|
|
||||||
**fdfd_tools** is a python package containing utilities for
|
**fdfd_tools** is a python package containing utilities for
|
||||||
creating and analyzing 2D and 3D finite-difference frequency-domain (FDFD)
|
creating and analyzing 2D and 3D finite-difference frequency-domain (FDFD)
|
||||||
electromagnetic simulations.
|
electromagnetic simulations.
|
||||||
|
@ -30,11 +30,11 @@ g2.shifts = numpy.zeros((6,3))
|
|||||||
g2.grids = [numpy.zeros(g.shape) for _ in range(6)]
|
g2.grids = [numpy.zeros(g.shape) for _ in range(6)]
|
||||||
|
|
||||||
epsilon = [g.grids[0],] * 3
|
epsilon = [g.grids[0],] * 3
|
||||||
reciprocal_lattice = numpy.diag(1000/numpy.array([x_period, y_period, z_period])) #cols are vectors
|
reciprocal_lattice = numpy.diag(1e6/numpy.array([x_period, y_period, z_period])) #cols are vectors
|
||||||
|
|
||||||
#print('Finding k at 1550nm')
|
#print('Finding k at 1550nm')
|
||||||
#k, f = bloch.find_k(frequency=1000/1550,
|
#k, f = bloch.find_k(frequency=1/1550,
|
||||||
# tolerance=(1000 * (1/1550 - 1/1551)),
|
# tolerance=(1/1550 - 1/1551),
|
||||||
# direction=[1, 0, 0],
|
# direction=[1, 0, 0],
|
||||||
# G_matrix=reciprocal_lattice,
|
# G_matrix=reciprocal_lattice,
|
||||||
# epsilon=epsilon,
|
# epsilon=epsilon,
|
||||||
@ -47,10 +47,10 @@ for k0x in [.25]:
|
|||||||
k0 = numpy.array([k0x, 0, 0])
|
k0 = numpy.array([k0x, 0, 0])
|
||||||
|
|
||||||
kmag = norm(reciprocal_lattice @ k0)
|
kmag = norm(reciprocal_lattice @ k0)
|
||||||
tolerance = (1000/1550) * 1e-4/1.5 # df = f * dn_eff / n
|
tolerance = (1e6/1550) * 1e-4/1.5 # df = f * dn_eff / n
|
||||||
logger.info('tolerance {}'.format(tolerance))
|
logger.info('tolerance {}'.format(tolerance))
|
||||||
|
|
||||||
n, v = bloch.eigsolve(4, k0, G_matrix=reciprocal_lattice, epsilon=epsilon, tolerance=tolerance**2)
|
n, v = bloch.eigsolve(4, k0, G_matrix=reciprocal_lattice, epsilon=epsilon, tolerance=tolerance)
|
||||||
v2e = bloch.hmn_2_exyz(k0, G_matrix=reciprocal_lattice, epsilon=epsilon)
|
v2e = bloch.hmn_2_exyz(k0, G_matrix=reciprocal_lattice, epsilon=epsilon)
|
||||||
v2h = bloch.hmn_2_hxyz(k0, G_matrix=reciprocal_lattice, epsilon=epsilon)
|
v2h = bloch.hmn_2_hxyz(k0, G_matrix=reciprocal_lattice, epsilon=epsilon)
|
||||||
ki = bloch.generate_kmn(k0, reciprocal_lattice, g.shape)
|
ki = bloch.generate_kmn(k0, reciprocal_lattice, g.shape)
|
||||||
|
@ -73,44 +73,21 @@ This module contains functions for generating and solving the
|
|||||||
|
|
||||||
'''
|
'''
|
||||||
|
|
||||||
from typing import Tuple, Callable
|
from typing import List, Tuple, Callable, Dict
|
||||||
import logging
|
import logging
|
||||||
import numpy
|
import numpy
|
||||||
from numpy import pi, real, trace
|
from numpy.fft import fftn, ifftn, fftfreq
|
||||||
from numpy.fft import fftfreq
|
|
||||||
import scipy
|
import scipy
|
||||||
import scipy.optimize
|
import scipy.optimize
|
||||||
from scipy.linalg import norm
|
from scipy.linalg import norm
|
||||||
import scipy.sparse.linalg as spalg
|
import scipy.sparse.linalg as spalg
|
||||||
|
|
||||||
|
from .eigensolvers import rayleigh_quotient_iteration
|
||||||
from . import field_t
|
from . import field_t
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
try:
|
|
||||||
import pyfftw.interfaces.numpy_fft
|
|
||||||
import pyfftw.interfaces
|
|
||||||
import multiprocessing
|
|
||||||
|
|
||||||
pyfftw.interfaces.cache.enable()
|
|
||||||
pyfftw.interfaces.cache.set_keepalive_time(3600)
|
|
||||||
fftw_args = {
|
|
||||||
'threads': multiprocessing.cpu_count(),
|
|
||||||
'overwrite_input': True,
|
|
||||||
'planner_effort': 'FFTW_EXHAUSTIVE',
|
|
||||||
}
|
|
||||||
|
|
||||||
def fftn(*args, **kwargs):
|
|
||||||
return pyfftw.interfaces.numpy_fft.fftn(*args, **kwargs, **fftw_args)
|
|
||||||
|
|
||||||
def ifftn(*args, **kwargs):
|
|
||||||
return pyfftw.interfaces.numpy_fft.ifftn(*args, **kwargs, **fftw_args)
|
|
||||||
|
|
||||||
except ImportError:
|
|
||||||
from numpy.fft import fftn, ifftn
|
|
||||||
|
|
||||||
|
|
||||||
def generate_kmn(k0: numpy.ndarray,
|
def generate_kmn(k0: numpy.ndarray,
|
||||||
G_matrix: numpy.ndarray,
|
G_matrix: numpy.ndarray,
|
||||||
shape: numpy.ndarray
|
shape: numpy.ndarray
|
||||||
@ -278,7 +255,7 @@ def hmn_2_hxyz(k0: numpy.ndarray,
|
|||||||
:return: Function for converting h_mn into H_xyz
|
:return: Function for converting h_mn into H_xyz
|
||||||
"""
|
"""
|
||||||
shape = epsilon[0].shape + (1,)
|
shape = epsilon[0].shape + (1,)
|
||||||
_k_mag, m, n = generate_kmn(k0, G_matrix, shape)
|
k_mag, m, n = generate_kmn(k0, G_matrix, shape)
|
||||||
|
|
||||||
def operator(h: numpy.ndarray):
|
def operator(h: numpy.ndarray):
|
||||||
hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)]
|
hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)]
|
||||||
@ -352,14 +329,147 @@ def inverse_maxwell_operator_approx(k0: numpy.ndarray,
|
|||||||
d_xyz = fftn(ifftn(e_xyz, axes=range(3)) * epsilon, axes=range(3))
|
d_xyz = fftn(ifftn(e_xyz, axes=range(3)) * epsilon, axes=range(3))
|
||||||
|
|
||||||
# cross product and transform into mn basis crossinv_t2c
|
# cross product and transform into mn basis crossinv_t2c
|
||||||
h_m = numpy.sum(d_xyz * n, axis=3)[:, :, :, None] / +k_mag
|
h_m = numpy.sum(e_xyz * n, axis=3)[:, :, :, None] / +k_mag
|
||||||
h_n = numpy.sum(d_xyz * m, axis=3)[:, :, :, None] / -k_mag
|
h_n = numpy.sum(e_xyz * m, axis=3)[:, :, :, None] / -k_mag
|
||||||
|
|
||||||
return numpy.hstack((h_m.ravel(), h_n.ravel()))
|
return numpy.hstack((h_m.ravel(), h_n.ravel()))
|
||||||
|
|
||||||
return operator
|
return operator
|
||||||
|
|
||||||
|
|
||||||
|
def eigsolve(num_modes: int,
|
||||||
|
k0: numpy.ndarray,
|
||||||
|
G_matrix: numpy.ndarray,
|
||||||
|
epsilon: field_t,
|
||||||
|
mu: field_t = None,
|
||||||
|
tolerance = 1e-8,
|
||||||
|
) -> Tuple[numpy.ndarray, numpy.ndarray]:
|
||||||
|
"""
|
||||||
|
Find the first (lowest-frequency) num_modes eigenmodes with Bloch wavevector
|
||||||
|
k0 of the specified structure.
|
||||||
|
|
||||||
|
:param k0: Bloch wavevector, [k0x, k0y, k0z].
|
||||||
|
:param G_matrix: 3x3 matrix, with reciprocal lattice vectors as columns.
|
||||||
|
:param epsilon: Dielectric constant distribution for the simulation.
|
||||||
|
All fields are sampled at cell centers (i.e., NOT Yee-gridded)
|
||||||
|
:param mu: Magnetic permability distribution for the simulation.
|
||||||
|
Default None (1 everywhere).
|
||||||
|
:return: (eigenvalues, eigenvectors) where eigenvalues[i] corresponds to the
|
||||||
|
vector eigenvectors[i, :]
|
||||||
|
"""
|
||||||
|
h_size = 2 * epsilon[0].size
|
||||||
|
|
||||||
|
kmag = norm(G_matrix @ k0)
|
||||||
|
|
||||||
|
'''
|
||||||
|
Generate the operators
|
||||||
|
'''
|
||||||
|
mop = maxwell_operator(k0=k0, G_matrix=G_matrix, epsilon=epsilon, mu=mu)
|
||||||
|
imop = inverse_maxwell_operator_approx(k0=k0, G_matrix=G_matrix, epsilon=epsilon, mu=mu)
|
||||||
|
|
||||||
|
scipy_op = spalg.LinearOperator(dtype=complex, shape=(h_size, h_size), matvec=mop)
|
||||||
|
scipy_iop = spalg.LinearOperator(dtype=complex, shape=(h_size, h_size), matvec=imop)
|
||||||
|
|
||||||
|
y_shape = (h_size, num_modes)
|
||||||
|
|
||||||
|
def rayleigh_quotient(Z: numpy.ndarray, approx_grad: bool = True):
|
||||||
|
"""
|
||||||
|
Absolute value of the block Rayleigh quotient, and the associated gradient.
|
||||||
|
|
||||||
|
See Johnson and Joannopoulos, Opt. Expr. 8, 3 (2001) for details (full
|
||||||
|
citation in module docstring).
|
||||||
|
|
||||||
|
===
|
||||||
|
|
||||||
|
Notes on my understanding of the procedure:
|
||||||
|
|
||||||
|
Minimize f(Y) = |trace((Y.H @ A @ Y)|, making use of Y = Z @ inv(Z.H @ Z)^(1/2)
|
||||||
|
(a polar orthogonalization of Y). This gives f(Z) = |trace(Z.H @ A @ Z @ U)|,
|
||||||
|
where U = inv(Z.H @ Z). We minimize the absolute value to find the eigenvalues
|
||||||
|
with smallest magnitude.
|
||||||
|
|
||||||
|
The gradient is P @ (A @ Z @ U), where P = (1 - Z @ U @ Z.H) is a projection
|
||||||
|
onto the space orthonormal to Z. If approx_grad is True, the approximate
|
||||||
|
inverse of the maxwell operator is used to precondition the gradient.
|
||||||
|
"""
|
||||||
|
z = Z.view(dtype=complex).reshape(y_shape)
|
||||||
|
U = numpy.linalg.inv(z.conj().T @ z)
|
||||||
|
zU = z @ U
|
||||||
|
AzU = scipy_op @ zU
|
||||||
|
zTAzU = z.conj().T @ AzU
|
||||||
|
f = numpy.real(numpy.trace(zTAzU))
|
||||||
|
if approx_grad:
|
||||||
|
df_dy = scipy_iop @ (AzU - zU @ zTAzU)
|
||||||
|
else:
|
||||||
|
df_dy = (AzU - zU @ zTAzU)
|
||||||
|
|
||||||
|
df_dy_flat = df_dy.view(dtype=float).ravel()
|
||||||
|
return numpy.abs(f), numpy.sign(f) * df_dy_flat
|
||||||
|
|
||||||
|
'''
|
||||||
|
Use the conjugate gradient method and the approximate gradient calculation to
|
||||||
|
quickly find approximate eigenvectors.
|
||||||
|
'''
|
||||||
|
result = scipy.optimize.minimize(rayleigh_quotient,
|
||||||
|
numpy.random.rand(*y_shape, 2),
|
||||||
|
jac=True,
|
||||||
|
method='L-BFGS-B',
|
||||||
|
tol=1e-20,
|
||||||
|
options={'maxiter': 2000, 'gtol':0, 'ftol':1e-20 , 'disp':True})#, 'maxls':80, 'm':30})
|
||||||
|
|
||||||
|
|
||||||
|
result = scipy.optimize.minimize(lambda y: rayleigh_quotient(y, True),
|
||||||
|
result.x,
|
||||||
|
jac=True,
|
||||||
|
method='L-BFGS-B',
|
||||||
|
tol=1e-20,
|
||||||
|
options={'maxiter': 2000, 'gtol':0, 'disp':True})
|
||||||
|
|
||||||
|
result = scipy.optimize.minimize(lambda y: rayleigh_quotient(y, False),
|
||||||
|
result.x,
|
||||||
|
jac=True,
|
||||||
|
method='L-BFGS-B',
|
||||||
|
tol=1e-20,
|
||||||
|
options={'maxiter': 2000, 'gtol':0, 'disp':True})
|
||||||
|
|
||||||
|
for i in range(20):
|
||||||
|
result = scipy.optimize.minimize(lambda y: rayleigh_quotient(y, False),
|
||||||
|
result.x,
|
||||||
|
jac=True,
|
||||||
|
method='L-BFGS-B',
|
||||||
|
tol=1e-20,
|
||||||
|
options={'maxiter': 70, 'gtol':0, 'disp':True})
|
||||||
|
if result.nit == 0:
|
||||||
|
# We took 0 steps, so re-running won't help
|
||||||
|
break
|
||||||
|
|
||||||
|
|
||||||
|
z = result.x.view(dtype=complex).reshape(y_shape)
|
||||||
|
|
||||||
|
'''
|
||||||
|
Recover eigenvectors from Z
|
||||||
|
'''
|
||||||
|
U = numpy.linalg.inv(z.conj().T @ z)
|
||||||
|
y = z @ scipy.linalg.sqrtm(U)
|
||||||
|
w = y.conj().T @ (scipy_op @ y)
|
||||||
|
|
||||||
|
eigvals, w_eigvecs = numpy.linalg.eig(w)
|
||||||
|
eigvecs = y @ w_eigvecs
|
||||||
|
|
||||||
|
for i in range(len(eigvals)):
|
||||||
|
v = eigvecs[:, i]
|
||||||
|
n = eigvals[i]
|
||||||
|
v /= norm(v)
|
||||||
|
eigness = norm(scipy_op @ v - (v.conj() @ (scipy_op @ v)) * v )
|
||||||
|
f = numpy.sqrt(-numpy.real(n))
|
||||||
|
df = numpy.sqrt(-numpy.real(n + eigness))
|
||||||
|
neff_err = kmag * (1/df - 1/f)
|
||||||
|
logger.info('eigness {}: {}\n neff_err: {}'.format(i, eigness, neff_err))
|
||||||
|
|
||||||
|
order = numpy.argsort(numpy.abs(eigvals))
|
||||||
|
return eigvals[order], eigvecs.T[order]
|
||||||
|
|
||||||
|
|
||||||
def find_k(frequency: float,
|
def find_k(frequency: float,
|
||||||
tolerance: float,
|
tolerance: float,
|
||||||
direction: numpy.ndarray,
|
direction: numpy.ndarray,
|
||||||
@ -389,7 +499,7 @@ def find_k(frequency: float,
|
|||||||
|
|
||||||
def get_f(k0_mag: float, band: int = 0):
|
def get_f(k0_mag: float, band: int = 0):
|
||||||
k0 = direction * k0_mag
|
k0 = direction * k0_mag
|
||||||
n, _v = eigsolve(band + 1, k0, G_matrix=G_matrix, epsilon=epsilon, mu=mu)
|
n, _v = eigsolve(band + 1, k0, G_matrix=G_matrix, epsilon=epsilon)
|
||||||
f = numpy.sqrt(numpy.abs(numpy.real(n[band])))
|
f = numpy.sqrt(numpy.abs(numpy.real(n[band])))
|
||||||
return f
|
return f
|
||||||
|
|
||||||
@ -401,244 +511,3 @@ def find_k(frequency: float,
|
|||||||
return res.x * direction, res.fun + frequency
|
return res.x * direction, res.fun + frequency
|
||||||
|
|
||||||
|
|
||||||
def eigsolve(num_modes: int,
|
|
||||||
k0: numpy.ndarray,
|
|
||||||
G_matrix: numpy.ndarray,
|
|
||||||
epsilon: field_t,
|
|
||||||
mu: field_t = None,
|
|
||||||
tolerance: float = 1e-20,
|
|
||||||
max_iters: int = 10000,
|
|
||||||
reset_iters: int = 100,
|
|
||||||
) -> Tuple[numpy.ndarray, numpy.ndarray]:
|
|
||||||
"""
|
|
||||||
Find the first (lowest-frequency) num_modes eigenmodes with Bloch wavevector
|
|
||||||
k0 of the specified structure.
|
|
||||||
|
|
||||||
:param k0: Bloch wavevector, [k0x, k0y, k0z].
|
|
||||||
:param G_matrix: 3x3 matrix, with reciprocal lattice vectors as columns.
|
|
||||||
:param epsilon: Dielectric constant distribution for the simulation.
|
|
||||||
All fields are sampled at cell centers (i.e., NOT Yee-gridded)
|
|
||||||
:param mu: Magnetic permability distribution for the simulation.
|
|
||||||
Default None (1 everywhere).
|
|
||||||
:param tolerance: Solver stops when fractional change in the objective
|
|
||||||
trace(Z.H @ A @ Z @ inv(Z Z.H)) is smaller than the tolerance
|
|
||||||
:return: (eigenvalues, eigenvectors) where eigenvalues[i] corresponds to the
|
|
||||||
vector eigenvectors[i, :]
|
|
||||||
"""
|
|
||||||
h_size = 2 * epsilon[0].size
|
|
||||||
|
|
||||||
kmag = norm(G_matrix @ k0)
|
|
||||||
|
|
||||||
'''
|
|
||||||
Generate the operators
|
|
||||||
'''
|
|
||||||
mop = maxwell_operator(k0=k0, G_matrix=G_matrix, epsilon=epsilon, mu=mu)
|
|
||||||
imop = inverse_maxwell_operator_approx(k0=k0, G_matrix=G_matrix, epsilon=epsilon, mu=mu)
|
|
||||||
|
|
||||||
scipy_op = spalg.LinearOperator(dtype=complex, shape=(h_size, h_size), matvec=mop)
|
|
||||||
scipy_iop = spalg.LinearOperator(dtype=complex, shape=(h_size, h_size), matvec=imop)
|
|
||||||
|
|
||||||
y_shape = (h_size, num_modes)
|
|
||||||
|
|
||||||
prev_E = 0
|
|
||||||
d_scale = 1
|
|
||||||
prev_traceGtKG = 0
|
|
||||||
#prev_theta = 0.5
|
|
||||||
D = numpy.zeros(shape=y_shape, dtype=complex)
|
|
||||||
|
|
||||||
y0 = None
|
|
||||||
if y0 is None:
|
|
||||||
Z = numpy.random.rand(*y_shape) + 1j * numpy.random.rand(*y_shape)
|
|
||||||
else:
|
|
||||||
Z = y0
|
|
||||||
|
|
||||||
while True:
|
|
||||||
Z *= num_modes / norm(Z)
|
|
||||||
ZtZ = Z.conj().T @ Z
|
|
||||||
try:
|
|
||||||
U = numpy.linalg.inv(ZtZ)
|
|
||||||
except numpy.linalg.LinAlgError:
|
|
||||||
Z = numpy.random.rand(*y_shape) + 1j * numpy.random.rand(*y_shape)
|
|
||||||
continue
|
|
||||||
|
|
||||||
trace_U = real(trace(U))
|
|
||||||
if trace_U > 1e8 * num_modes:
|
|
||||||
Z = Z @ scipy.linalg.sqrtm(U).conj().T
|
|
||||||
prev_traceGtKG = 0
|
|
||||||
continue
|
|
||||||
break
|
|
||||||
|
|
||||||
for i in range(max_iters):
|
|
||||||
ZtZ = Z.conj().T @ Z
|
|
||||||
U = numpy.linalg.inv(ZtZ)
|
|
||||||
AZ = scipy_op @ Z
|
|
||||||
AZU = AZ @ U
|
|
||||||
ZtAZU = Z.conj().T @ AZU
|
|
||||||
E_signed = real(trace(ZtAZU))
|
|
||||||
sgn = numpy.sign(E_signed)
|
|
||||||
E = numpy.abs(E_signed)
|
|
||||||
G = (AZU - Z @ U @ ZtAZU) * sgn
|
|
||||||
|
|
||||||
if i > 0 and abs(E - prev_E) < tolerance * 0.5 * (E + prev_E + 1e-7):
|
|
||||||
logging.info('Optimization succeded: {} - 5e-8 < {} * {} / 2'.format(abs(E - prev_E), tolerance, E + prev_E))
|
|
||||||
break
|
|
||||||
|
|
||||||
KG = scipy_iop @ G
|
|
||||||
traceGtKG = _rtrace_AtB(G, KG)
|
|
||||||
|
|
||||||
if prev_traceGtKG == 0 or i % reset_iters == 0:
|
|
||||||
logger.info('CG reset')
|
|
||||||
gamma = 0
|
|
||||||
else:
|
|
||||||
gamma = traceGtKG / prev_traceGtKG
|
|
||||||
|
|
||||||
D = gamma / d_scale * D + KG
|
|
||||||
d_scale = num_modes / norm(D)
|
|
||||||
D *= d_scale
|
|
||||||
|
|
||||||
ZtAZ = Z.conj().T @ AZ
|
|
||||||
|
|
||||||
AD = scipy_op @ D
|
|
||||||
DtD = D.conj().T @ D
|
|
||||||
DtAD = D.conj().T @ AD
|
|
||||||
|
|
||||||
symZtD = _symmetrize(Z.conj().T @ D)
|
|
||||||
symZtAD = _symmetrize(Z.conj().T @ AD)
|
|
||||||
|
|
||||||
Qi_memo = [None, None]
|
|
||||||
def Qi_func(theta):
|
|
||||||
nonlocal Qi_memo
|
|
||||||
if Qi_memo[0] == theta:
|
|
||||||
return Qi_memo[1]
|
|
||||||
|
|
||||||
c = numpy.cos(theta)
|
|
||||||
s = numpy.sin(theta)
|
|
||||||
Q = c*c * ZtZ + s*s * DtD + 2*s*c * symZtD
|
|
||||||
try:
|
|
||||||
Qi = numpy.linalg.inv(Q)
|
|
||||||
except numpy.linalg.LinAlgError:
|
|
||||||
logger.info('taylor Qi')
|
|
||||||
# if c or s small, taylor expand
|
|
||||||
if c < 1e-4 * s and c != 0:
|
|
||||||
DtDi = numpy.linalg.inv(DtD)
|
|
||||||
Qi = DtDi / (s*s) - 2*c/(s*s*s) * (DtDi @ (DtDi @ symZtD).conj().T)
|
|
||||||
elif s < 1e-4 * c and s != 0:
|
|
||||||
ZtZi = numpy.linalg.inv(ZtZ)
|
|
||||||
Qi = ZtZi / (c*c) - 2*s/(c*c*c) * (ZtZi @ (ZtZi @ symZtD).conj().T)
|
|
||||||
else:
|
|
||||||
raise Exception('Inexplicable singularity in trace_func')
|
|
||||||
Qi_memo[0] = theta
|
|
||||||
Qi_memo[1] = Qi
|
|
||||||
return Qi
|
|
||||||
|
|
||||||
def trace_func(theta):
|
|
||||||
c = numpy.cos(theta)
|
|
||||||
s = numpy.sin(theta)
|
|
||||||
Qi = Qi_func(theta)
|
|
||||||
R = c*c * ZtAZ + s*s * DtAD + 2*s*c * symZtAD
|
|
||||||
trace = _rtrace_AtB(R, Qi)
|
|
||||||
return numpy.abs(trace)
|
|
||||||
|
|
||||||
'''
|
|
||||||
def trace_deriv(theta):
|
|
||||||
Qi = Qi_func(theta)
|
|
||||||
c2 = numpy.cos(2 * theta)
|
|
||||||
s2 = numpy.sin(2 * theta)
|
|
||||||
F = -0.5*s2 * (ZtAZ - DtAD) + c2 * symZtAD
|
|
||||||
trace_deriv = _rtrace_AtB(Qi, F)
|
|
||||||
|
|
||||||
G = Qi @ F.conj().T @ Qi.conj().T
|
|
||||||
H = -0.5*s2 * (ZtZ - DtD) + c2 * symZtD
|
|
||||||
trace_deriv -= _rtrace_AtB(G, H)
|
|
||||||
|
|
||||||
trace_deriv *= 2
|
|
||||||
return trace_deriv * sgn
|
|
||||||
|
|
||||||
U_sZtD = U @ symZtD
|
|
||||||
|
|
||||||
dE = 2.0 * (_rtrace_AtB(U, symZtAD) -
|
|
||||||
_rtrace_AtB(ZtAZU, U_sZtD))
|
|
||||||
|
|
||||||
d2E = 2 * (_rtrace_AtB(U, DtAD) -
|
|
||||||
_rtrace_AtB(ZtAZU, U @ (DtD - 4 * symZtD @ U_sZtD)) -
|
|
||||||
4 * _rtrace_AtB(U, symZtAD @ U_sZtD))
|
|
||||||
|
|
||||||
# Newton-Raphson to find a root of the first derivative:
|
|
||||||
theta = -dE/d2E
|
|
||||||
|
|
||||||
if d2E < 0 or abs(theta) >= pi:
|
|
||||||
theta = -abs(prev_theta) * numpy.sign(dE)
|
|
||||||
|
|
||||||
# theta, new_E, new_dE = linmin(theta, E, dE, 0.1, min(tolerance, 1e-6), 1e-14, 0, -numpy.sign(dE) * K_PI, trace_func)
|
|
||||||
theta, n, _, new_E, _, _new_dE = scipy.optimize.line_search(trace_func, trace_deriv, xk=theta, pk=numpy.ones((1,1)), gfk=dE, old_fval=E, c1=min(tolerance, 1e-6), c2=0.1, amax=pi)
|
|
||||||
'''
|
|
||||||
result = scipy.optimize.minimize_scalar(trace_func, bounds=(0, pi), tol=tolerance)
|
|
||||||
new_E = result.fun
|
|
||||||
theta = result.x
|
|
||||||
|
|
||||||
improvement = numpy.abs(E - new_E) * 2 / numpy.abs(E + new_E)
|
|
||||||
logger.info('linmin improvement {}'.format(improvement))
|
|
||||||
Z *= numpy.cos(theta)
|
|
||||||
Z += D * numpy.sin(theta)
|
|
||||||
|
|
||||||
prev_traceGtKG = traceGtKG
|
|
||||||
#prev_theta = theta
|
|
||||||
prev_E = E
|
|
||||||
|
|
||||||
'''
|
|
||||||
Recover eigenvectors from Z
|
|
||||||
'''
|
|
||||||
U = numpy.linalg.inv(Z.conj().T @ Z)
|
|
||||||
Y = Z @ scipy.linalg.sqrtm(U)
|
|
||||||
W = Y.conj().T @ (scipy_op @ Y)
|
|
||||||
|
|
||||||
eigvals, W_eigvecs = numpy.linalg.eig(W)
|
|
||||||
eigvecs = Y @ W_eigvecs
|
|
||||||
|
|
||||||
for i in range(len(eigvals)):
|
|
||||||
v = eigvecs[:, i]
|
|
||||||
n = eigvals[i]
|
|
||||||
v /= norm(v)
|
|
||||||
eigness = norm(scipy_op @ v - (v.conj() @ (scipy_op @ v)) * v )
|
|
||||||
f = numpy.sqrt(-numpy.real(n))
|
|
||||||
df = numpy.sqrt(-numpy.real(n + eigness))
|
|
||||||
neff_err = kmag * (1/df - 1/f)
|
|
||||||
logger.info('eigness {}: {}\n neff_err: {}'.format(i, eigness, neff_err))
|
|
||||||
|
|
||||||
order = numpy.argsort(numpy.abs(eigvals))
|
|
||||||
return eigvals[order], eigvecs.T[order]
|
|
||||||
|
|
||||||
'''
|
|
||||||
def linmin(x_guess, f0, df0, x_max, f_tol=0.1, df_tol=min(tolerance, 1e-6), x_tol=1e-14, x_min=0, linmin_func):
|
|
||||||
if df0 > 0:
|
|
||||||
x0, f0, df0 = linmin(-x_guess, f0, -df0, -x_max, f_tol, df_tol, x_tol, -x_min, lambda q, dq: -linmin_func(q, dq))
|
|
||||||
return -x0, f0, -df0
|
|
||||||
elif df0 == 0:
|
|
||||||
return 0, f0, df0
|
|
||||||
else:
|
|
||||||
x = x_guess
|
|
||||||
fx = f0
|
|
||||||
dfx = df0
|
|
||||||
|
|
||||||
isave = numpy.zeros((2,), numpy.intc)
|
|
||||||
dsave = numpy.zeros((13,), float)
|
|
||||||
|
|
||||||
x, fx, dfx, task = minpack2.dsrch(x, fx, dfx, f_tol, df_tol, x_tol, task,
|
|
||||||
x_min, x_max, isave, dsave)
|
|
||||||
for i in range(int(1e6)):
|
|
||||||
if task != 'F':
|
|
||||||
logging.info('search converged in {} iterations'.format(i))
|
|
||||||
break
|
|
||||||
fx = f(x, dfx)
|
|
||||||
x, fx, dfx, task = minpack2.dsrch(x, fx, dfx, f_tol, df_tol, x_tol, task,
|
|
||||||
x_min, x_max, isave, dsave)
|
|
||||||
|
|
||||||
return x, fx, dfx
|
|
||||||
'''
|
|
||||||
|
|
||||||
def _rtrace_AtB(A, B):
|
|
||||||
return real(numpy.sum(A.conj() * B))
|
|
||||||
|
|
||||||
def _symmetrize(A):
|
|
||||||
return (A + A.conj().T) * 0.5
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user