solve_waveguide_mode_2d -> vsolve_*

- return (e_xy. wavenumber)
- vectorized inputs since we returned a vectorized output
- exy -> e_xy
This commit is contained in:
jan 2019-09-05 22:38:29 +02:00
parent b5ad284966
commit f04c0daf28

View File

@ -1,4 +1,4 @@
from typing import Dict, List
from typing import Dict, List, Tuple
import numpy
import scipy.sparse as sparse
@ -7,13 +7,13 @@ from . import operators, waveguide, functional
from ..eigensolvers import signed_eigensolve, rayleigh_quotient_iteration
def solve_waveguide_mode_2d(mode_number: int,
omega: complex,
dxes: dx_lists_t,
epsilon: field_t,
mu: field_t = None,
mode_margin: int = 2,
) -> Dict[str, complex or field_t]:
def vsolve_waveguide_mode_2d(mode_number: int,
omega: complex,
dxes: dx_lists_t,
epsilon: vfield_t,
mu: vfield_t = None,
mode_margin: int = 2,
) -> Tuple[vfield_t, complex]:
"""
Given a 2d region, attempts to solve for the eigenmode with the specified mode number.
@ -25,39 +25,31 @@ def solve_waveguide_mode_2d(mode_number: int,
:param mode_margin: The eigensolver will actually solve for (mode_number + mode_margin)
modes, but only return the target mode. Increasing this value can improve the solver's
ability to find the correct mode. Default 2.
:return: {'E': numpy.ndarray, 'H': numpy.ndarray, 'wavenumber': complex}
:return: (e_xy, wavenumber)
"""
'''
Solve for the largest-magnitude eigenvalue of the real operator
'''
dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes]
A_r = waveguide.operator_e(numpy.real(omega), dxes_real, vec(numpy.real(epsilon)), vec(numpy.real(mu)))
A_r = waveguide.operator_e(numpy.real(omega), dxes_real, numpy.real(epsilon), numpy.real(mu))
eigvals, eigvecs = signed_eigensolve(A_r, mode_number + mode_margin)
exy = eigvecs[:, -(mode_number + 1)]
e_xy = eigvecs[:, -(mode_number + 1)]
'''
Now solve for the eigenvector of the full operator, using the real operator's
eigenvector as an initial guess for Rayleigh quotient iteration.
'''
A = waveguide.operator_e(omega, dxes, vec(epsilon), vec(mu))
eigval, exy = rayleigh_quotient_iteration(A, exy)
A = waveguide.operator_e(omega, dxes, epsilon, mu)
eigval, e_xy = rayleigh_quotient_iteration(A, e_xy)
# Calculate the wave-vector (force the real part to be positive)
wavenumber = numpy.sqrt(eigval)
wavenumber *= numpy.sign(numpy.real(wavenumber))
e, h = waveguide.normalized_fields_e(exy, wavenumber, omega, dxes, vec(epsilon), vec(mu))
return e_xy, wavenumber
shape = [d.size for d in dxes[0]]
fields = {
'wavenumber': wavenumber,
'E': unvec(e, shape),
'H': unvec(h, shape),
}
return fields
def solve_waveguide_mode(mode_number: int,
@ -102,36 +94,42 @@ def solve_waveguide_mode(mode_number: int,
# Reduce to 2D and solve the 2D problem
args_2d = {
'omega': omega,
'dxes': [[dx[i][slices[i]] for i in order[:2]] for dx in dxes],
'epsilon': [epsilon[i][slices].transpose(order) for i in order],
'mu': [mu[i][slices].transpose(order) for i in order],
'epsilon': vec([epsilon[i][slices].transpose(order) for i in order]),
'mu': vec([mu[i][slices].transpose(order) for i in order]),
}
fields_2d = solve_waveguide_mode_2d(mode_number, omega=omega, **args_2d)
e_xy, wavenumber_2d = vsolve_waveguide_mode_2d(mode_number, **args_2d)
'''
Apply corrections and expand to 3D
'''
# Correct wavenumber to account for numerical dispersion.
print(fields_2d['wavenumber'] / (2/dx_prop * numpy.arcsin(fields_2d['wavenumber'] * dx_prop/2)))
print(fields_2d['wavenumber'].real / (2/dx_prop * numpy.arcsin(fields_2d['wavenumber'].real * dx_prop/2)))
fields_2d['wavenumber'] = 2/dx_prop * numpy.arcsin(fields_2d['wavenumber'] * dx_prop/2)
wavenumber = 2/dx_prop * numpy.arcsin(wavenumber_2d * dx_prop/2)
print(wavenumber_2d / wavenumber)
shape = [d.size for d in args_2d['dxes'][0]]
ve, vh = waveguide.normalized_fields_e(e_xy, wavenumber=wavenumber_2d, **args_2d, prop_phase=dx_prop * wavenumber)
e = unvec(ve, shape)
h = unvec(vh, shape)
# Adjust for propagation direction
fields_2d['H'] *= polarity
h *= polarity
# Apply phase shift to H-field
fields_2d['H'][:2] *= numpy.exp(-1j * polarity * 0.5 * fields_2d['wavenumber'] * dx_prop)
fields_2d['E'][2] *= numpy.exp(-1j * polarity * 0.5 * fields_2d['wavenumber'] * dx_prop)
h[:2] *= numpy.exp(-1j * polarity * 0.5 * wavenumber * dx_prop)
e[2] *= numpy.exp(-1j * polarity * 0.5 * wavenumber * dx_prop)
# Expand E, H to full epsilon space we were given
E = numpy.zeros_like(epsilon, dtype=complex)
H = numpy.zeros_like(epsilon, dtype=complex)
for a, o in enumerate(reverse_order):
E[(a, *slices)] = fields_2d['E'][o][:, :, None].transpose(reverse_order)
H[(a, *slices)] = fields_2d['H'][o][:, :, None].transpose(reverse_order)
E[(a, *slices)] = e[o][:, :, None].transpose(reverse_order)
H[(a, *slices)] = h[o][:, :, None].transpose(reverse_order)
results = {
'wavenumber': fields_2d['wavenumber'],
'wavenumber': wavenumber,
'wavenumber_2d': wavenumber_2d,
'H': H,
'E': E,
}