Modify phase factor for 1-cell shift (poynting).

Also clarify some variable names
This commit is contained in:
Jan Petykiewicz 2019-10-27 12:42:21 -07:00
parent 6257254579
commit c0f14cd07b

View File

@ -175,15 +175,17 @@ def _normalized_fields(e: numpy.ndarray,
E = unvec(e, shape)
H = unvec(h, shape)
phase = numpy.exp(-1j * prop_phase / 2)
S1 = E[0] * numpy.conj(H[1] * phase) * dxes_real[0][1] * dxes_real[1][0]
S2 = E[1] * numpy.conj(H[0] * phase) * dxes_real[0][0] * dxes_real[1][1]
P = numpy.real(S1.sum() - S2.sum())
assert P > 0, 'Found a mode propagating in the wrong direction! P={}'.format(P)
# Find time-averaged Sz and normalize to it
# H phase is adjusted by a half-cell forward shift for Yee cell, and 1-cell reverse shift for Poynting
phase = numpy.exp(-1j * -prop_phase / 2)
Sz_a = E[0] * numpy.conj(H[1] * phase) * dxes_real[0][1] * dxes_real[1][0]
Sz_b = E[1] * numpy.conj(H[0] * phase) * dxes_real[0][0] * dxes_real[1][1]
Sz_tavg = numpy.real(Sz_a.sum() - Sz_b.sum()) * 0.5 # 0.5 since E, H are assumed to be peak (not RMS) amplitudes
assert Sz_tavg > 0, 'Found a mode propagating in the wrong direction! Sz_tavg={}'.format(Sz_tavg)
energy = epsilon * e.conj() * e
norm_amplitude = 1 / numpy.sqrt(P)
norm_amplitude = 1 / numpy.sqrt(Sz_tavg)
norm_angle = -numpy.angle(e[energy.argmax()]) # Will randomly add a negative sign when mode is symmetric
# Try to break symmetry to assign a consistent sign [experimental TODO]
@ -488,5 +490,3 @@ def cylindrical_operator(omega: complex,
return op