implement eigenvalue algorithm from Johnson paper. Could also use arpack + refinement, but that's also slow.
This commit is contained in:
parent
4a9596921f
commit
39979edc44
@ -47,12 +47,10 @@ This module contains functions for generating and solving the
|
||||
h_mn = fftn(1/mu * ifftn(b_m * m + b_n * n))
|
||||
which forms the operator from the left side of the equation.
|
||||
|
||||
We can then use ARPACK in shift-invert mode (via scipy.linalg.eigs)
|
||||
to find the eigenvectors for this operator.
|
||||
|
||||
This approach is similar to the one used in MPB and derived at the start of
|
||||
SG Johnson and JD Joannopoulos, Block-iterative frequency-domain methods
|
||||
We can then use a preconditioned block Rayleigh iteration algorithm, as in
|
||||
SG Johnson and JD Joannopoulos, Block-iterative frequency-domain methods
|
||||
for Maxwell's equations in a planewave basis, Optics Express 8, 3, 173-190 (2001)
|
||||
(similar to that used in MPB) to find the eigenvectors for this operator.
|
||||
|
||||
===
|
||||
|
||||
@ -76,14 +74,19 @@ This module contains functions for generating and solving the
|
||||
'''
|
||||
|
||||
from typing import List, Tuple, Callable, Dict
|
||||
import logging
|
||||
import numpy
|
||||
from numpy.fft import fftn, ifftn, fftfreq
|
||||
import scipy
|
||||
import scipy.optimize
|
||||
from scipy.linalg import norm
|
||||
import scipy.sparse.linalg as spalg
|
||||
|
||||
from .eigensolvers import rayleigh_quotient_iteration
|
||||
from . import field_t
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def generate_kmn(k0: numpy.ndarray,
|
||||
G_matrix: numpy.ndarray,
|
||||
@ -338,7 +341,8 @@ def eigsolve(num_modes: int,
|
||||
k0: numpy.ndarray,
|
||||
G_matrix: numpy.ndarray,
|
||||
epsilon: field_t,
|
||||
mu: field_t = None
|
||||
mu: field_t = None,
|
||||
tolerance = 1e-8,
|
||||
) -> Tuple[numpy.ndarray, numpy.ndarray]:
|
||||
"""
|
||||
Find the first (lowest-frequency) num_modes eigenmodes with Bloch wavevector
|
||||
@ -355,15 +359,102 @@ def eigsolve(num_modes: int,
|
||||
"""
|
||||
h_size = 2 * epsilon[0].size
|
||||
|
||||
'''
|
||||
Generate the operators
|
||||
'''
|
||||
mop = maxwell_operator(k0=k0, G_matrix=G_matrix, epsilon=epsilon, mu=mu)
|
||||
imop = inverse_maxwell_operator_approx(k0=k0, G_matrix=G_matrix, epsilon=epsilon, mu=mu)
|
||||
|
||||
scipy_op = spalg.LinearOperator(dtype=complex, shape=(h_size, h_size), matvec=mop)
|
||||
scipy_iop = spalg.LinearOperator(dtype=complex, shape=(h_size, h_size), matvec=imop)
|
||||
|
||||
_eigvals, eigvecs = spalg.eigs(scipy_op, num_modes, sigma=0, OPinv=scipy_iop, which='LM')
|
||||
eigvals = numpy.sum(eigvecs * (scipy_op @ eigvecs), axis=0) / numpy.sum(eigvecs * eigvecs, axis=0)
|
||||
order = numpy.argsort(-eigvals)
|
||||
y_shape = (h_size, num_modes)
|
||||
|
||||
def rayleigh_quotient(Z: numpy.ndarray, approx_grad: bool = True):
|
||||
"""
|
||||
Absolute value of the block Rayleigh quotient, and the associated gradient.
|
||||
|
||||
See Johnson and Joannopoulos, Opt. Expr. 8, 3 (2001) for details (full
|
||||
citation in module docstring).
|
||||
|
||||
===
|
||||
|
||||
Notes on my understanding of the procedure:
|
||||
|
||||
Minimize f(Y) = |trace((Y.H @ A @ Y)|, making use of Y = Z @ inv(Z.H @ Z)^(1/2)
|
||||
(a polar orthogonalization of Y). This gives f(Z) = |trace(Z.H @ A @ Z @ U)|,
|
||||
where U = inv(Z.H @ Z). We minimize the absolute value to find the eigenvalues
|
||||
with smallest magnitude.
|
||||
|
||||
The gradient is P @ (A @ Z @ U), where P = (1 - Z @ U @ Z.H) is a projection
|
||||
onto the space orthonormal to Z. If approx_grad is True, the approximate
|
||||
inverse of the maxwell operator is used to precondition the gradient.
|
||||
"""
|
||||
z = Z.reshape(y_shape)
|
||||
U = numpy.linalg.inv(z.conj().T @ z)
|
||||
zU = z @ U
|
||||
AzU = scipy_op @ zU
|
||||
zTAzU = z.conj().T @ AzU
|
||||
f = numpy.real(numpy.trace(zTAzU))
|
||||
if approx_grad:
|
||||
df_dy = scipy_iop @ (AzU - zU @ zTAzU)
|
||||
else:
|
||||
df_dy = (AzU - zU @ zTAzU)
|
||||
return numpy.abs(f), numpy.sign(f) * df_dy.ravel()
|
||||
|
||||
'''
|
||||
Use the conjugate gradient method and the approximate gradient calculation to
|
||||
quickly find approximate eigenvectors.
|
||||
'''
|
||||
result = scipy.optimize.minimize(rayleigh_quotient,
|
||||
numpy.random.rand(*y_shape),
|
||||
jac=True,
|
||||
method='CG',
|
||||
tol=1e-5,
|
||||
options={'maxiter': 30, 'disp':True})
|
||||
|
||||
result = scipy.optimize.minimize(lambda y: rayleigh_quotient(y, False),
|
||||
result.x,
|
||||
jac=True,
|
||||
method='CG',
|
||||
tol=1e-13,
|
||||
options={'maxiter': 100, 'disp':True})
|
||||
|
||||
z = result.x.reshape(y_shape)
|
||||
|
||||
'''
|
||||
Recover eigenvectors from Z
|
||||
'''
|
||||
U = numpy.linalg.inv(z.conj().T @ z)
|
||||
y = z @ scipy.linalg.sqrtm(U)
|
||||
w = y.conj().T @ (scipy_op @ y)
|
||||
|
||||
eigvals, w_eigvecs = numpy.linalg.eig(w)
|
||||
eigvecs = y @ w_eigvecs
|
||||
|
||||
for i in range(len(eigvals)):
|
||||
v = eigvecs[:, i]
|
||||
n = eigvals[i]
|
||||
v /= norm(v)
|
||||
logger.info('eigness {}: {}'.format(i, norm(scipy_op @ v - (v.conj() @ (scipy_op @ v)) * v )))
|
||||
|
||||
ev2 = eigvecs.copy()
|
||||
for i in range(len(eigvals)):
|
||||
logger.info('Refining eigenvector {}'.format(i))
|
||||
eigvals[i], ev2[:, i] = rayleigh_quotient_iteration(scipy_op,
|
||||
guess_vector=eigvecs[:, i],
|
||||
iterations=40,
|
||||
tolerance=tolerance * numpy.real(numpy.sqrt(eigvals[i])) * 2,
|
||||
solver = lambda A, b: spalg.bicgstab(A, b, maxiter=200)[0])
|
||||
eigvecs = ev2
|
||||
order = numpy.argsort(numpy.abs(eigvals))
|
||||
|
||||
for i in range(len(eigvals)):
|
||||
v = eigvecs[:, i]
|
||||
n = eigvals[i]
|
||||
v /= norm(v)
|
||||
logger.info('eigness {}: {}'.format(i, norm(scipy_op @ v - (v.conj() @ (scipy_op @ v)) * v )))
|
||||
|
||||
return eigvals[order], eigvecs.T[order]
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user