d_prop -> dx_prop

fdtd_extras
Jan Petykiewicz 5 years ago
parent 938c4c9a35
commit 3429120993

@ -101,28 +101,28 @@ def solve_waveguide_mode(mode_number: int,
order = numpy.roll(range(3), 2 - axis)
reverse_order = numpy.roll(range(3), axis - 2)
# Find dx in propagation direction
dxab_forward = numpy.array([dx[order[2]][slices[order[2]]] for dx in dxes])
dx_prop = 0.5 * sum(dxab_forward)
# Reduce to 2D and solve the 2D problem
args_2d = {
'dxes': [[dx[i][slices[i]] for i in order[:2]] for dx in dxes],
'epsilon': vec([epsilon[i][slices].transpose(order) for i in order]),
'mu': vec([mu[i][slices].transpose(order) for i in order]),
'dx_prop': dxes[0][order[2]][slices[order[2]]],
'dx_prop': dx_prop,
}
fields_2d = solve_waveguide_mode_2d(mode_number, omega=omega, **args_2d)
'''
Apply corrections and expand to 3D
'''
# Scale based on dx in propagation direction
dxab_forward = numpy.array([dx[order[2]][slices[order[2]]] for dx in dxes])
# Adjust for propagation direction
fields_2d['E'][2] *= polarity
fields_2d['H'][2] *= polarity
# Apply phase shift to H-field
d_prop = 0.5 * sum(dxab_forward)
fields_2d['H'] *= numpy.exp(-polarity * 1j * 0.5 * fields_2d['wavenumber'] * d_prop)
fields_2d['H'] *= numpy.exp(-polarity * 1j * 0.5 * fields_2d['wavenumber'] * dx_prop)
# Expand E, H to full epsilon space we were given
E = numpy.zeros_like(epsilon, dtype=complex)
@ -136,7 +136,6 @@ def solve_waveguide_mode(mode_number: int,
'H': H,
'E': E,
}
return results

Loading…
Cancel
Save