Add PEC, PMC options for E, H wave operators
This commit is contained in:
parent
05d2557f6f
commit
2cac441717
@ -45,7 +45,8 @@ __author__ = 'Jan Petykiewicz'
|
|||||||
def e_full(omega: complex,
|
def e_full(omega: complex,
|
||||||
dxes: dx_lists_t,
|
dxes: dx_lists_t,
|
||||||
epsilon: vfield_t,
|
epsilon: vfield_t,
|
||||||
mu: vfield_t = None
|
mu: vfield_t = None,
|
||||||
|
pec: vfield_t = None,
|
||||||
) -> sparse.spmatrix:
|
) -> sparse.spmatrix:
|
||||||
"""
|
"""
|
||||||
Wave operator del x (1/mu * del x) - omega**2 * epsilon, for use with E-field,
|
Wave operator del x (1/mu * del x) - omega**2 * epsilon, for use with E-field,
|
||||||
@ -57,19 +58,28 @@ def e_full(omega: complex,
|
|||||||
:param omega: Angular frequency of the simulation
|
:param omega: Angular frequency of the simulation
|
||||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||||
:param epsilon: Vectorized dielectric constant
|
:param epsilon: Vectorized dielectric constant
|
||||||
:param mu: Vectorized magnetic permeability (default 1 everywhere)..
|
:param mu: Vectorized magnetic permeability (default 1 everywhere).
|
||||||
|
:param pec: Vectorized mask specifying PEC cells. Any cells where pec != 0 are interpreted
|
||||||
|
as containing a perfect electrical conductor (PEC).
|
||||||
:return: Sparse matrix containing the wave operator
|
:return: Sparse matrix containing the wave operator
|
||||||
"""
|
"""
|
||||||
ce = curl_e(dxes)
|
ce = curl_e(dxes)
|
||||||
ch = curl_h(dxes)
|
ch = curl_h(dxes)
|
||||||
|
|
||||||
e = sparse.diags(epsilon)
|
ev = epsilon
|
||||||
|
if numpy.any(numpy.equal(pec, None)):
|
||||||
|
pm = sparse.eye(epsilon.size)
|
||||||
|
else:
|
||||||
|
pm = sparse.diags(numpy.where(pec, 0, 1)) # Set pm to (not PEC)
|
||||||
|
ev = numpy.where(pec, 1.0, ev) # Set epsilon to 1 at PEC
|
||||||
|
|
||||||
|
e = sparse.diags(ev)
|
||||||
if numpy.any(numpy.equal(mu, None)):
|
if numpy.any(numpy.equal(mu, None)):
|
||||||
m_div = sparse.eye(epsilon.size)
|
m_div = sparse.eye(epsilon.size)
|
||||||
else:
|
else:
|
||||||
m_div = sparse.diags(1 / mu)
|
m_div = sparse.diags(1 / mu)
|
||||||
|
|
||||||
op = ch @ m_div @ ce - omega**2 * e
|
op = pm @ ch @ m_div @ ce @ pm - omega**2 * e
|
||||||
return op
|
return op
|
||||||
|
|
||||||
|
|
||||||
@ -99,7 +109,8 @@ def e_full_preconditioners(dxes: dx_lists_t
|
|||||||
def h_full(omega: complex,
|
def h_full(omega: complex,
|
||||||
dxes: dx_lists_t,
|
dxes: dx_lists_t,
|
||||||
epsilon: vfield_t,
|
epsilon: vfield_t,
|
||||||
mu: vfield_t = None
|
mu: vfield_t = None,
|
||||||
|
pmc: vfield_t = None,
|
||||||
) -> sparse.spmatrix:
|
) -> sparse.spmatrix:
|
||||||
"""
|
"""
|
||||||
Wave operator del x (1/epsilon * del x) - omega**2 * mu, for use with H-field,
|
Wave operator del x (1/epsilon * del x) - omega**2 * mu, for use with H-field,
|
||||||
@ -110,18 +121,28 @@ def h_full(omega: complex,
|
|||||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||||
:param epsilon: Vectorized dielectric constant
|
:param epsilon: Vectorized dielectric constant
|
||||||
:param mu: Vectorized magnetic permeability (default 1 everywhere)
|
:param mu: Vectorized magnetic permeability (default 1 everywhere)
|
||||||
|
:param pmc: Vectorized mask specifying PMC cells. Any cells where pmc != 0 are interpreted
|
||||||
|
as containing a perfect magnetic conductor (PMC).
|
||||||
:return: Sparse matrix containing the wave operator
|
:return: Sparse matrix containing the wave operator
|
||||||
"""
|
"""
|
||||||
ec = curl_e(dxes)
|
ec = curl_e(dxes)
|
||||||
hc = curl_h(dxes)
|
hc = curl_h(dxes)
|
||||||
|
|
||||||
e_div = sparse.diags(1 / epsilon)
|
if mu is None:
|
||||||
if numpy.any(numpy.equal(mu, None)):
|
mv = numpy.ones_like(epsilon)
|
||||||
m = sparse.eye(epsilon.size)
|
|
||||||
else:
|
else:
|
||||||
m = sparse.diags(mu)
|
mv = mu
|
||||||
|
|
||||||
A = ec @ e_div @ hc - omega**2 * m
|
if numpy.any(numpy.equal(pmc, None)):
|
||||||
|
pe = sparse.eye(epsilon.size)
|
||||||
|
else:
|
||||||
|
pe = sparse.diags(numpy.where(pmc, 0, 1)) # Set pe to (not PMC)
|
||||||
|
mv = numpy.where(pmc, 1.0, mv) # Set mu to 1 at PMC
|
||||||
|
|
||||||
|
e_div = sparse.diags(1 / epsilon)
|
||||||
|
m = sparse.diags(mv)
|
||||||
|
|
||||||
|
A = pe @ ec @ e_div @ hc @ pe - omega**2 * m
|
||||||
return A
|
return A
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user