move to 3xNxMxP arrays

This commit is contained in:
Jan Petykiewicz 2019-08-01 23:48:25 -07:00
parent 1d9c9644ee
commit 1793e8cc37

View File

@ -99,7 +99,7 @@ def solve_waveguide_mode(mode_number: int,
:return: {'E': List[numpy.ndarray], 'H': List[numpy.ndarray], 'wavenumber': complex}
"""
if mu is None:
mu = [numpy.ones_like(epsilon[0])] * 3
mu = numpy.ones_like(epsilon)
slices = tuple(slices)
@ -131,18 +131,14 @@ def solve_waveguide_mode(mode_number: int,
# Apply phase shift to H-field
d_prop = 0.5 * sum(dxab_forward)
for a in range(3):
fields_2d['H'][a] *= numpy.exp(-polarity * 1j * 0.5 * fields_2d['wavenumber'] * d_prop)
fields_2d['H'] *= numpy.exp(-polarity * 1j * 0.5 * fields_2d['wavenumber'] * d_prop)
# Expand E, H to full epsilon space we were given
E = [None]*3
H = [None]*3
E = numpy.zeros_like(epsilon, dtype=complex)
H = numpy.zeros_like(epsilon, dtype=complex)
for a, o in enumerate(reverse_order):
E[a] = numpy.zeros_like(epsilon[0], dtype=complex)
H[a] = numpy.zeros_like(epsilon[0], dtype=complex)
E[a][slices] = fields_2d['E'][o][:, :, None].transpose(reverse_order)
H[a][slices] = fields_2d['H'][o][:, :, None].transpose(reverse_order)
E[(a, *slices)] = fields_2d['E'][o][:, :, None].transpose(reverse_order)
H[(a, *slices)] = fields_2d['H'][o][:, :, None].transpose(reverse_order)
results = {
'wavenumber': fields_2d['wavenumber'],
@ -180,27 +176,24 @@ def compute_source(E: field_t,
:return: J distribution for the unidirectional source
"""
if mu is None:
mu = [1] * 3
mu = numpy.ones(3)
J = [None]*3
M = [None]*3
J = numpy.zeros_like(E, dtype=complex)
M = numpy.zeros_like(E, dtype=complex)
src_order = numpy.roll(range(3), -axis)
exp_iphi = numpy.exp(1j * polarity * wavenumber * dxes[1][axis][slices[axis]])
J[src_order[0]] = numpy.zeros_like(E[0])
J[src_order[1]] = +exp_iphi * H[src_order[2]] * polarity
J[src_order[2]] = -exp_iphi * H[src_order[1]] * polarity
rollby = -1 if polarity > 0 else 0
M[src_order[0]] = numpy.zeros_like(E[0])
M[src_order[1]] = +numpy.roll(E[src_order[2]], rollby, axis=axis)
M[src_order[2]] = -numpy.roll(E[src_order[1]], rollby, axis=axis)
m2j = functional.m2j(omega, dxes, mu)
Jm = m2j(M)
Jtot = [ji + jmi for ji, jmi in zip(J, Jm)]
Jtot = J + Jm
return Jtot
@ -236,8 +229,9 @@ def compute_overlap_e(E: field_t,
"""
slices = tuple(slices)
cross_plane = [slice(None)] * 3
cross_plane[axis] = slices[axis]
cross_plane = [slice(None)] * 4
cross_plane[axis + 1] = slices[axis]
cross_plane = tuple(cross_plane)
# Determine phase factors for parallel slices
a_shape = numpy.roll([-1, 1, 1], axis)
@ -248,11 +242,8 @@ def compute_overlap_e(E: field_t,
phase_H = numpy.exp(iphi * (a_H - a_H[slices[axis]])).reshape(a_shape)
# Expand our slice to the entire grid using the calculated phase factors
Ee = [None]*3
He = [None]*3
for k in range(3):
Ee[k] = phase_E * E[k][tuple(cross_plane)]
He[k] = phase_H * H[k][tuple(cross_plane)]
Ee = phase_E * E[cross_plane]
He = phase_H * H[cross_plane]
# Write out the operator product for the mode orthogonality integral
@ -359,17 +350,16 @@ def compute_source_q(E: field_t,
A2f = functional.curl_e(dxes)
J = A1f(H)
M = A2f([-E[i] for i in range(3)])
M = A2f(-E)
m2j = functional.m2j(omega, dxes, mu)
Jm = m2j(M)
Jtot = [ji + jmi for ji, jmi in zip(J, Jm)]
Jtot = J + Jm
return Jtot, J, M
def compute_source_e(QE: field_t,
omega: complex,
dxes: dx_lists_t,
@ -389,16 +379,15 @@ def compute_source_e(QE: field_t,
# Trim a cell from each end of the propagation axis
slices_reduced = list(slices)
slices_reduced[axis] = slice(slices[axis].start + 1, slices[axis].stop - 1)
slices_reduced = tuple(slices)
slices_reduced = tuple(slice(None), *slices)
# Don't actually need to mask out E here since it needs to be pre-masked (QE)
A = functional.e_full(omega, dxes, epsilon, mu)
J4 = [ji / (-1j * omega) for ji in A(QE)] #J4 is 4-cell result of -iwJ = A QE
J4 = A(QE) / (-1j * omega) #J4 is 4-cell result of -iwJ = A QE
J = numpy.zeros_like(J4)
for a in range(3):
J[a][slices_reduced] = J4[a][slices_reduced]
J[slices_reduced] = J4[slices_reduced]
return J
@ -445,14 +434,12 @@ def compute_overlap_ce(E: field_t,
slices2 = list(slices)
slices2[axis] = slice(start, stop)
slices2 = tuple(slices2)
slices2 = tuple(slice(None), slices2)
Etgt = numpy.zeros_like(Ee)
for a in range(3):
Etgt[a][slices2] = Ee[a][slices2]
Etgt[slices2] = Ee[slices2]
Etgt /= (Etgt.conj() * Etgt).sum()
return Etgt, slices2
@ -476,10 +463,10 @@ def expand_wgmode_e(E: field_t,
Ee = numpy.zeros_like(E)
slices_exp = list(slices)
slices_exp[axis] = slice(E[0].shape[axis])
slices_exp = (slice(3), *slices_exp)
slices_exp[axis] = slice(E.shape[axis + 1])
slices_exp = (slice(None), *slices_exp)
slices_in = tuple(slice(3), *slices)
slices_in = tuple(slice(None), *slices)
Ee[slices_exp] = phase_E * numpy.array(E)[slices_in]