Poynting vector doc updates
This commit is contained in:
parent
f9d90378b4
commit
034f79eae6
@ -288,8 +288,8 @@ If we discretize both space (m,n,p) and time (l), Maxwell's equations become
|
|||||||
|
|
||||||
$$ \\begin{align*}
|
$$ \\begin{align*}
|
||||||
\\tilde{\\nabla} \\times \\tilde{E}_{l,\\vec{r}} &= -\\tilde{\\partial}_t \\hat{B}_{l-\\frac{1}{2}, \\vec{r} + \\frac{1}{2}}
|
\\tilde{\\nabla} \\times \\tilde{E}_{l,\\vec{r}} &= -\\tilde{\\partial}_t \\hat{B}_{l-\\frac{1}{2}, \\vec{r} + \\frac{1}{2}}
|
||||||
+ \\hat{M}_{l-1, \\vec{r} + \\frac{1}{2}} \\\\
|
- \\hat{M}_{l, \\vec{r} + \\frac{1}{2}} \\\\
|
||||||
\\hat{\\nabla} \\times \\hat{H}_{l,\\vec{r} + \\frac{1}{2}} &= \\hat{\\partial}_t \\tilde{D}_{l, \\vec{r}}
|
\\hat{\\nabla} \\times \\hat{H}_{l-\\frac{1}{2},\\vec{r} + \\frac{1}{2}} &= \\hat{\\partial}_t \\tilde{D}_{l, \\vec{r}}
|
||||||
+ \\tilde{J}_{l-\\frac{1}{2},\\vec{r}} \\\\
|
+ \\tilde{J}_{l-\\frac{1}{2},\\vec{r}} \\\\
|
||||||
\\tilde{\\nabla} \\cdot \\hat{B}_{l-\\frac{1}{2}, \\vec{r} + \\frac{1}{2}} &= 0 \\\\
|
\\tilde{\\nabla} \\cdot \\hat{B}_{l-\\frac{1}{2}, \\vec{r} + \\frac{1}{2}} &= 0 \\\\
|
||||||
\\hat{\\nabla} \\cdot \\tilde{D}_{l,\\vec{r}} &= \\rho_{l,\\vec{r}}
|
\\hat{\\nabla} \\cdot \\tilde{D}_{l,\\vec{r}} &= \\rho_{l,\\vec{r}}
|
||||||
@ -311,9 +311,9 @@ and \\( \\epsilon \\) and \\( \\mu \\) are the dielectric permittivity and magne
|
|||||||
The above is Yee's algorithm, written in a form analogous to Maxwell's equations.
|
The above is Yee's algorithm, written in a form analogous to Maxwell's equations.
|
||||||
The time derivatives can be expanded to form the update equations:
|
The time derivatives can be expanded to form the update equations:
|
||||||
|
|
||||||
[code: Maxwell's equations]
|
[code: Maxwell's equations updates]
|
||||||
H[i, j, k] -= (curl_forward(E[t])[i, j, k] - M[t, i, j, k]) / mu[i, j, k]
|
H[i, j, k] -= dt * (curl_forward(E)[i, j, k] + M[t, i, j, k]) / mu[i, j, k]
|
||||||
E[i, j, k] += (curl_back( H[t])[i, j, k] + J[t, i, j, k]) / epsilon[i, j, k]
|
E[i, j, k] += dt * (curl_back( H)[i, j, k] + J[t, i, j, k]) / epsilon[i, j, k]
|
||||||
|
|
||||||
Note that the E-field fore-vector and H-field back-vector are offset by a half-cell, resulting
|
Note that the E-field fore-vector and H-field back-vector are offset by a half-cell, resulting
|
||||||
in distinct locations for all six E- and H-field components:
|
in distinct locations for all six E- and H-field components:
|
||||||
@ -383,7 +383,7 @@ $$
|
|||||||
\\begin{align*}
|
\\begin{align*}
|
||||||
\\tilde{\\nabla} \\times \\tilde{E}_{l,\\vec{r}} &=
|
\\tilde{\\nabla} \\times \\tilde{E}_{l,\\vec{r}} &=
|
||||||
-\\tilde{\\partial}_t \\hat{B}_{l-\\frac{1}{2}, \\vec{r} + \\frac{1}{2}}
|
-\\tilde{\\partial}_t \\hat{B}_{l-\\frac{1}{2}, \\vec{r} + \\frac{1}{2}}
|
||||||
+ \\hat{M}_{l-1, \\vec{r} + \\frac{1}{2}} \\\\
|
- \\hat{M}_{l-1, \\vec{r} + \\frac{1}{2}} \\\\
|
||||||
\\mu^{-1}_{\\vec{r} + \\frac{1}{2}} \\cdot \\tilde{\\nabla} \\times \\tilde{E}_{l,\\vec{r}} &=
|
\\mu^{-1}_{\\vec{r} + \\frac{1}{2}} \\cdot \\tilde{\\nabla} \\times \\tilde{E}_{l,\\vec{r}} &=
|
||||||
-\\tilde{\\partial}_t \\hat{H}_{l-\\frac{1}{2}, \\vec{r} + \\frac{1}{2}} \\\\
|
-\\tilde{\\partial}_t \\hat{H}_{l-\\frac{1}{2}, \\vec{r} + \\frac{1}{2}} \\\\
|
||||||
\\hat{\\nabla} \\times (\\mu^{-1}_{\\vec{r} + \\frac{1}{2}} \\cdot \\tilde{\\nabla} \\times \\tilde{E}_{l,\\vec{r}}) &=
|
\\hat{\\nabla} \\times (\\mu^{-1}_{\\vec{r} + \\frac{1}{2}} \\cdot \\tilde{\\nabla} \\times \\tilde{E}_{l,\\vec{r}}) &=
|
||||||
@ -488,11 +488,16 @@ $$
|
|||||||
K_x^2 + K_y^2 + K_z^2 = \\Omega^2 \\mu \\epsilon = \\Omega^2 / c^2
|
K_x^2 + K_y^2 + K_z^2 = \\Omega^2 \\mu \\epsilon = \\Omega^2 / c^2
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
where \\( c = \\sqrt{\\mu \\epsilon} \\).
|
||||||
|
|
||||||
Assuming real \\( (k_x, k_y, k_z), \\omega \\) will be real only if
|
Assuming real \\( (k_x, k_y, k_z), \\omega \\) will be real only if
|
||||||
|
|
||||||
$$ c^2 \\Delta_t^2 = \\frac{\\Delta_t^2}{\\mu \\epsilon} < 1/(\\frac{1}{\\Delta_x^2} + \\frac{1}{\\Delta_y^2} + \\frac{1}{\\Delta_z^2}) $$
|
$$ c^2 \\Delta_t^2 = \\frac{\\Delta_t^2}{\\mu \\epsilon} < 1/(\\frac{1}{\\Delta_x^2} + \\frac{1}{\\Delta_y^2} + \\frac{1}{\\Delta_z^2}) $$
|
||||||
|
|
||||||
If \\( \\Delta_x = \\Delta_y = \\Delta_z \\), this simplifies to \\( c \\Delta_t < \\frac{\\Delta_x}{\\sqrt{3}} \\).
|
If \\( \\Delta_x = \\Delta_y = \\Delta_z \\), this simplifies to \\( c \\Delta_t < \\Delta_x / \\sqrt{3} \\).
|
||||||
|
This last form can be interpreted as enforcing causality; the distance that light
|
||||||
|
travels in one timestep (i.e., \\( c \\Delta_t \\)) must be less than the diagonal
|
||||||
|
of the smallest cell ( \\( \\Delta_x / \\sqrt{3} \\) when on a uniform cubic grid).
|
||||||
|
|
||||||
|
|
||||||
Grid description
|
Grid description
|
||||||
|
@ -1,6 +1,9 @@
|
|||||||
"""
|
"""
|
||||||
Utilities for running finite-difference time-domain (FDTD) simulations
|
Utilities for running finite-difference time-domain (FDTD) simulations
|
||||||
|
|
||||||
|
See the discussion of `Maxwell's Equations` in `meanas.fdmath` for basic
|
||||||
|
mathematical background.
|
||||||
|
|
||||||
|
|
||||||
Timestep
|
Timestep
|
||||||
========
|
========
|
||||||
@ -19,13 +22,120 @@ Based on this, we can set
|
|||||||
The `dx_min`, `dy_min`, `dz_min` should be the minimum value across both the base and derived grids.
|
The `dx_min`, `dy_min`, `dz_min` should be the minimum value across both the base and derived grids.
|
||||||
|
|
||||||
|
|
||||||
Poynting Vector
|
Poynting Vector and Energy Conservation
|
||||||
===============
|
=======================================
|
||||||
# TODO
|
|
||||||
|
Let
|
||||||
|
|
||||||
|
$$ \\begin{align*}
|
||||||
|
\\tilde{S}_{l, l', \\vec{r}} &=& &\\tilde{E}_{l, \\vec{r}} \\otimes \\hat{H}_{l', \\vec{r} + \\frac{1}{2}} \\\\
|
||||||
|
&=& &\\vec{x} (\\tilde{E}^y_{l,m+1,n,p} \\hat{H}^z_{l',\\vec{r} + \\frac{1}{2}} - \\tilde{E}^z_{l,m+1,n,p} \\hat{H}^y_{l', \\vec{r} + \\frac{1}{2}}) \\\\
|
||||||
|
& &+ &\\vec{y} (\\tilde{E}^z_{l,m,n+1,p} \\hat{H}^x_{l',\\vec{r} + \\frac{1}{2}} - \\tilde{E}^x_{l,m,n+1,p} \\hat{H}^z_{l', \\vec{r} + \\frac{1}{2}}) \\\\
|
||||||
|
& &+ &\\vec{z} (\\tilde{E}^x_{l,m,n,p+1} \\hat{H}^y_{l',\\vec{r} + \\frac{1}{2}} - \\tilde{E}^y_{l,m,n,p+1} \\hat{H}^z_{l', \\vec{r} + \\frac{1}{2}})
|
||||||
|
\\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
where \\( \\vec{r} = (m, n, p) \\) and \\( \\otimes \\) is a modified cross product
|
||||||
|
in which the \\( \\tilde{E} \\) terms are shifted as indicated.
|
||||||
|
|
||||||
|
By taking the divergence and rearranging terms, we can show that
|
||||||
|
|
||||||
|
$$
|
||||||
|
\\begin{align*}
|
||||||
|
\\hat{\\nabla} \\cdot \\tilde{S}_{l, l', \\vec{r}}
|
||||||
|
&= \\hat{\\nabla} \\cdot (\\tilde{E}_{l, \\vec{r}} \\otimes \\hat{H}_{l', \\vec{r} + \\frac{1}{2}}) \\\\
|
||||||
|
&= \\hat{H}_{l', \\vec{r} + \\frac{1}{2}} \\cdot \\tilde{\\nabla} \\times \\tilde{E}_{l, \\vec{r}} -
|
||||||
|
\\tilde{E}_{l, \\vec{r}} \\cdot \\hat{\\nabla} \\times \\hat{H}_{l', \\vec{r} + \\frac{1}{2}} \\\\
|
||||||
|
&= \\hat{H}_{l', \\vec{r} + \\frac{1}{2}} \\cdot
|
||||||
|
(-\\tilde{\\partial}_t \\mu_{\\vec{r} + \\frac{1}{2}} \\hat{H}_{l - \\frac{1}{2}, \\vec{r} + \\frac{1}{2}} -
|
||||||
|
\\hat{M}_{l-1, \\vec{r} + \\frac{1}{2}}) -
|
||||||
|
\\tilde{E}_{l, \\vec{r}} \\cdot (\\hat{\\partial}_t \\tilde{\\epsilon}_\\vec{r} \\tilde{E}_{l'+\\frac{1}{2}, \\vec{r}} +
|
||||||
|
\\tilde{J}_{l', \\vec{r}}) \\\\
|
||||||
|
&= \\hat{H}_{l'} \\cdot (-\\mu / \\Delta_t)(\\hat{H}_{l + \\frac{1}{2}} - \\hat{H}_{l - \\frac{1}{2}}) -
|
||||||
|
\\tilde{E}_l \\cdot (\\epsilon / \\Delta_t )(\\tilde{E}_{l'+\\frac{1}{2}} - \\tilde{E}_{l'-\\frac{1}{2}})
|
||||||
|
- \\hat{H}_{l'} \\cdot \\hat{M}_{l-1} - \\tilde{E}_l \\cdot \\tilde{J}_{l'} \\\\
|
||||||
|
\\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
where in the last line the spatial subscripts have been dropped to emphasize
|
||||||
|
the time subscripts \\( l, l' \\), i.e.
|
||||||
|
|
||||||
|
$$
|
||||||
|
\\begin{align*}
|
||||||
|
\\tilde{E}_l &= \\tilde{E}_{l, \\vec{r}} \\\\
|
||||||
|
\\hat{H}_l &= \\tilde{H}_{l, \\vec{r} + \\frac{1}{2}} \\\\
|
||||||
|
\\tilde{\\epsilon} &= \\tilde{\\epsilon}_\\vec{r} \\\\
|
||||||
|
\\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
etc.
|
||||||
|
For \\( l' = l + \\frac{1}{2} \\) we get
|
||||||
|
|
||||||
|
$$
|
||||||
|
\\begin{align*}
|
||||||
|
\\hat{\\nabla} \\cdot \\tilde{S}_{l, l + \\frac{1}{2}}
|
||||||
|
&= \\hat{H}_{l + \\frac{1}{2}} \\cdot
|
||||||
|
(-\\mu / \\Delta_t)(\\hat{H}_{l + \\frac{1}{2}} - \\hat{H}_{l - \\frac{1}{2}}) -
|
||||||
|
\\tilde{E}_l \\cdot (\\epsilon / \\Delta_t)(\\tilde{E}_{l+1} - \\tilde{E}_l)
|
||||||
|
- \\hat{H}_{l'} \\cdot \\hat{M}_l - \\tilde{E}_l \\cdot \\tilde{J}_{l + \\frac{1}{2}} \\\\
|
||||||
|
&= (-\\mu / \\Delta_t)(\\hat{H}^2_{l + \\frac{1}{2}} - \\hat{H}_{l + \\frac{1}{2}} \\cdot \\hat{H}_{l - \\frac{1}{2}}) -
|
||||||
|
(\\epsilon / \\Delta_t)(\\tilde{E}_{l+1} \\cdot \\tilde{E}_l - \\tilde{E}^2_l)
|
||||||
|
- \\hat{H}_{l'} \\cdot \\hat{M}_l - \\tilde{E}_l \\cdot \\tilde{J}_{l + \\frac{1}{2}} \\\\
|
||||||
|
&= -(\\mu \\hat{H}^2_{l + \\frac{1}{2}}
|
||||||
|
+\\epsilon \\tilde{E}_{l+1} \\cdot \\tilde{E}_l) / \\Delta_t \\ \\
|
||||||
|
+(\\mu \\hat{H}_{l + \\frac{1}{2}} \\cdot \\hat{H}_{l - \\frac{1}{2}}
|
||||||
|
+\\epsilon \\tilde{E}^2_l) / \\Delta_t \\ \\
|
||||||
|
- \\hat{H}_{l+\\frac{1}{2}} \\cdot \\hat{M}_l \\ \\
|
||||||
|
- \\tilde{E}_l \\cdot \\tilde{J}_{l+\\frac{1}{2}} \\\\
|
||||||
|
\\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
and for \\( l' = l - \\frac{1}{2} \\),
|
||||||
|
|
||||||
|
$$
|
||||||
|
\\begin{align*}
|
||||||
|
\\hat{\\nabla} \\cdot \\tilde{S}_{l, l - \\frac{1}{2}}
|
||||||
|
&= (\\mu \\hat{H}^2_{l - \\frac{1}{2}}
|
||||||
|
+\\epsilon \\tilde{E}_{l-1} \\cdot \\tilde{E}_l) / \\Delta_t \\ \\
|
||||||
|
-(\\mu \\hat{H}_{l + \\frac{1}{2}} \\cdot \\hat{H}_{l - \\frac{1}{2}}
|
||||||
|
+\\epsilon \\tilde{E}^2_l) / \\Delta_t \\ \\
|
||||||
|
- \\hat{H}_{l-\\frac{1}{2}} \\cdot \\hat{M}_l \\ \\
|
||||||
|
- \\tilde{E}_l \\cdot \\tilde{J}_{l-\\frac{1}{2}} \\\\
|
||||||
|
\\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
These two results form the discrete time-domain analogue to Poynting's theorem.
|
||||||
|
They hint at the expressions for the energy, which can be calculated at the same
|
||||||
|
time-index as either the E or H field:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\\begin{align*}
|
||||||
|
U_l &= \\epsilon \\tilde{E}^2_l + \\mu \\hat{H}_{l + \\frac{1}{2}} \\cdot \\hat{H}_{l - \\frac{1}{2}} \\\\
|
||||||
|
U_{l + \\frac{1}{2}} &= \\epsilon \\tilde{E}_l \\cdot \\tilde{E}_{l + 1} + \\mu \\hat{H}^2_{l + \\frac{1}{2}} \\\\
|
||||||
|
\\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
Rewriting the Poynting theorem in terms of the energy expressions,
|
||||||
|
|
||||||
|
$$
|
||||||
|
\\begin{align*}
|
||||||
|
(U_{l+\\frac{1}{2}} - U_l) / \\Delta_t
|
||||||
|
&= -\\hat{\\nabla} \\cdot \\tilde{S}_{l, l + \\frac{1}{2}} \\ \\
|
||||||
|
- \\hat{H}_{l+\\frac{1}{2}} \\cdot \\hat{M}_l \\ \\
|
||||||
|
- \\tilde{E}_l \\cdot \\tilde{J}_{l+\\frac{1}{2}} \\\\
|
||||||
|
(U_l - U_{l-\\frac{1}{2}}) / \\Delta_t
|
||||||
|
&= -\\hat{\\nabla} \\cdot \\tilde{S}_{l, l - \\frac{1}{2}} \\ \\
|
||||||
|
- \\hat{H}_{l-\\frac{1}{2}} \\cdot \\hat{M}_l \\ \\
|
||||||
|
- \\tilde{E}_l \\cdot \\tilde{J}_{l-\\frac{1}{2}} \\\\
|
||||||
|
\\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
This result is exact an should practically hold to within numerical precision. No time-
|
||||||
|
or spatial-averaging is necessary.
|
||||||
|
|
||||||
|
Note that each value of \\( J \\) contributes to the energy twice (i.e. once per field update)
|
||||||
|
despite only causing the value of \\( E \\) to change once (same for \\( M \\) and \\( H \\)).
|
||||||
|
|
||||||
Energy conservation
|
|
||||||
===================
|
|
||||||
# TODO
|
|
||||||
|
|
||||||
Boundary conditions
|
Boundary conditions
|
||||||
===================
|
===================
|
||||||
|
@ -73,9 +73,9 @@ def maxwell_h(dt: float, dxes: dx_lists_t = None) -> fdfield_updater_t:
|
|||||||
|
|
||||||
The full update should be
|
The full update should be
|
||||||
|
|
||||||
H -= (curl_forward(E[t]) - M) / mu
|
H -= (curl_forward(E[t]) + M) / mu
|
||||||
|
|
||||||
which requires an additional step of `H += M / mu` which is not performed
|
which requires an additional step of `H -= M / mu` which is not performed
|
||||||
by the generated function; this step can be omitted if there is no magnetic
|
by the generated function; this step can be omitted if there is no magnetic
|
||||||
current `M`.
|
current `M`.
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user