2016-05-30 22:30:45 -07:00
|
|
|
"""
|
|
|
|
Functional versions of many FDFD operators. These can be useful for performing
|
|
|
|
FDFD calculations without needing to construct large matrices in memory.
|
|
|
|
|
|
|
|
The functions generated here expect inputs in the form E = [E_x, E_y, E_z], where each
|
|
|
|
component E_* is an ndarray of equal shape.
|
|
|
|
"""
|
|
|
|
from typing import List, Callable
|
|
|
|
import numpy
|
|
|
|
|
|
|
|
from . import dx_lists_t, field_t
|
|
|
|
|
|
|
|
__author__ = 'Jan Petykiewicz'
|
|
|
|
|
|
|
|
|
2016-07-03 01:20:51 -07:00
|
|
|
functional_matrix = Callable[[field_t], field_t]
|
2016-05-30 22:30:45 -07:00
|
|
|
|
|
|
|
|
|
|
|
def curl_h(dxes: dx_lists_t) -> functional_matrix:
|
|
|
|
"""
|
|
|
|
Curl operator for use with the H field.
|
|
|
|
|
|
|
|
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
|
|
|
:return: Function for taking the discretized curl of the H-field, F(H) -> curlH
|
|
|
|
"""
|
|
|
|
dxyz_b = numpy.meshgrid(*dxes[1], indexing='ij')
|
|
|
|
|
2016-07-03 03:01:01 -07:00
|
|
|
def dh(f, ax):
|
2016-05-30 22:30:45 -07:00
|
|
|
return (f - numpy.roll(f, 1, axis=ax)) / dxyz_b[ax]
|
|
|
|
|
2016-07-03 01:20:51 -07:00
|
|
|
def ch_fun(h: field_t) -> field_t:
|
|
|
|
e = [dh(h[2], 1) - dh(h[1], 2),
|
|
|
|
dh(h[0], 2) - dh(h[2], 0),
|
|
|
|
dh(h[1], 0) - dh(h[0], 1)]
|
|
|
|
return e
|
2016-05-30 22:30:45 -07:00
|
|
|
|
|
|
|
return ch_fun
|
|
|
|
|
|
|
|
|
|
|
|
def curl_e(dxes: dx_lists_t) -> functional_matrix:
|
|
|
|
"""
|
|
|
|
Curl operator for use with the E field.
|
|
|
|
|
|
|
|
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
|
|
|
:return: Function for taking the discretized curl of the E-field, F(E) -> curlE
|
|
|
|
"""
|
|
|
|
dxyz_a = numpy.meshgrid(*dxes[0], indexing='ij')
|
|
|
|
|
2016-07-03 03:01:01 -07:00
|
|
|
def de(f, ax):
|
2016-05-30 22:30:45 -07:00
|
|
|
return (numpy.roll(f, -1, axis=ax) - f) / dxyz_a[ax]
|
|
|
|
|
2016-07-03 01:20:51 -07:00
|
|
|
def ce_fun(e: field_t) -> field_t:
|
|
|
|
h = [de(e[2], 1) - de(e[1], 2),
|
|
|
|
de(e[0], 2) - de(e[2], 0),
|
|
|
|
de(e[1], 0) - de(e[0], 1)]
|
|
|
|
return h
|
2016-05-30 22:30:45 -07:00
|
|
|
|
|
|
|
return ce_fun
|
|
|
|
|
|
|
|
|
|
|
|
def e_full(omega: complex,
|
|
|
|
dxes: dx_lists_t,
|
|
|
|
epsilon: field_t,
|
|
|
|
mu: field_t = None
|
|
|
|
) -> functional_matrix:
|
|
|
|
"""
|
|
|
|
Wave operator del x (1/mu * del x) - omega**2 * epsilon, for use with E-field,
|
|
|
|
with wave equation
|
|
|
|
(del x (1/mu * del x) - omega**2 * epsilon) E = -i * omega * J
|
|
|
|
|
|
|
|
:param omega: Angular frequency of the simulation
|
|
|
|
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
|
|
|
:param epsilon: Dielectric constant
|
|
|
|
:param mu: Magnetic permeability (default 1 everywhere)
|
|
|
|
:return: Function implementing the wave operator A(E) -> E
|
|
|
|
"""
|
|
|
|
ch = curl_h(dxes)
|
|
|
|
ce = curl_e(dxes)
|
|
|
|
|
2016-07-03 01:20:51 -07:00
|
|
|
def op_1(e):
|
|
|
|
curls = ch(ce(e))
|
|
|
|
return [c - omega ** 2 * e * x for c, e, x in zip(curls, epsilon, e)]
|
2016-05-30 22:30:45 -07:00
|
|
|
|
2016-07-03 01:20:51 -07:00
|
|
|
def op_mu(e):
|
|
|
|
curls = ch([m * y for m, y in zip(mu, ce(e))])
|
|
|
|
return [c - omega ** 2 * p * x for c, p, x in zip(curls, epsilon, e)]
|
2016-05-30 22:30:45 -07:00
|
|
|
|
|
|
|
if numpy.any(numpy.equal(mu, None)):
|
|
|
|
return op_1
|
|
|
|
else:
|
|
|
|
return op_mu
|
|
|
|
|
|
|
|
|
|
|
|
def eh_full(omega: complex,
|
|
|
|
dxes: dx_lists_t,
|
|
|
|
epsilon: field_t,
|
|
|
|
mu: field_t = None
|
|
|
|
) -> functional_matrix:
|
|
|
|
"""
|
|
|
|
Wave operator for full (both E and H) field representation.
|
|
|
|
|
|
|
|
:param omega: Angular frequency of the simulation
|
|
|
|
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
|
|
|
:param epsilon: Dielectric constant
|
|
|
|
:param mu: Magnetic permeability (default 1 everywhere)
|
|
|
|
:return: Function implementing the wave operator A(E, H) -> (E, H)
|
|
|
|
"""
|
|
|
|
ch = curl_h(dxes)
|
|
|
|
ce = curl_e(dxes)
|
|
|
|
|
2016-07-03 01:20:51 -07:00
|
|
|
def op_1(e, h):
|
|
|
|
return ([c - 1j * omega * p * x for c, p, x in zip(ch(h), epsilon, e)],
|
|
|
|
[c + 1j * omega * y for c, y in zip(ce(e), h)])
|
2016-05-30 22:30:45 -07:00
|
|
|
|
2016-07-03 01:20:51 -07:00
|
|
|
def op_mu(e, h):
|
|
|
|
return ([c - 1j * omega * p * x for c, p, x in zip(ch(h), epsilon, e)],
|
|
|
|
[c + 1j * omega * m * y for c, m, y in zip(ce(e), mu, h)])
|
2016-05-30 22:30:45 -07:00
|
|
|
|
|
|
|
if numpy.any(numpy.equal(mu, None)):
|
|
|
|
return op_1
|
|
|
|
else:
|
|
|
|
return op_mu
|
|
|
|
|
|
|
|
|
|
|
|
def e2h(omega: complex,
|
|
|
|
dxes: dx_lists_t,
|
|
|
|
mu: field_t = None,
|
|
|
|
) -> functional_matrix:
|
|
|
|
"""
|
|
|
|
Utility operator for converting the E field into the H field.
|
|
|
|
For use with e_full -- assumes that there is no magnetic current M.
|
|
|
|
|
|
|
|
:param omega: Angular frequency of the simulation
|
|
|
|
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
|
|
|
:param mu: Magnetic permeability (default 1 everywhere)
|
|
|
|
:return: Function for converting E to H
|
|
|
|
"""
|
|
|
|
A2 = curl_e(dxes)
|
|
|
|
|
2016-07-03 01:20:51 -07:00
|
|
|
def e2h_1_1(e):
|
|
|
|
return [y / (-1j * omega) for y in A2(e)]
|
2016-05-30 22:30:45 -07:00
|
|
|
|
2016-07-03 01:20:51 -07:00
|
|
|
def e2h_mu(e):
|
|
|
|
return [y / (-1j * omega * m) for y, m in zip(A2(e), mu)]
|
2016-05-30 22:30:45 -07:00
|
|
|
|
|
|
|
if numpy.any(numpy.equal(mu, None)):
|
|
|
|
return e2h_1_1
|
|
|
|
else:
|
|
|
|
return e2h_mu
|